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Abstract
The precuneus shows considerable heterogeneity in multiple dimensions including anatomy, function, and involvement 
in brain disorders. Leveraging the state-of-the-art functional gradient approach, we aimed to investigate the hierarchical 
organization of the precuneus, which may hold promise for a unified understanding of precuneus heterogeneity. Resting-state 
functional MRI data from 793 healthy individuals were used to discover and validate functional gradients of the precuneus, 
which were calculated based on the voxel-wise precuneus-to-cerebrum functional connectivity patterns. Then, we further 
explored the potential relationships of the precuneus functional gradients with cortical morphology, intrinsic geometry, 
canonical functional networks, and behavioral domains. We found that the precuneus principal and secondary gradients 
showed dorsoanterior-ventral and ventroposterior-dorsal organizations, respectively. Concurrently, the principal gradient 
was associated with cortical morphology, and both the principal and secondary gradients showed geometric distance depend-
ence. Importantly, precuneus functional subdivisions corresponding to canonical functional networks (behavioral domains) 
were distributed along both gradients in a hierarchical manner, i.e., from the sensorimotor network (somatic movement and 
sensation) at one extreme to the default mode network (abstract cognitive functions) at the other extreme for the principal 
gradient and from the visual network (vision) at one end to the dorsal attention network (top-down control of attention) at the 
other end for the secondary gradient. These findings suggest that the precuneus functional gradients may provide mechanistic 
insights into the multifaceted nature of precuneus heterogeneity.

Keywords Precuneus · Functional gradients · Hierarchical organization · Functional MRI · Resting-state functional 
connectivity

Introduction

The precuneus (PCun), localized to the posterior medial 
portion of the parietal cortex, is an anatomically and 
functionally heterogeneous brain structure (Cavanna 

and Trimble 2006; Luo et al. 2020; Zhang et al. 2014). 
Through its widespread connections with both cortical 
and subcortical regions, the PCun has played a pivotal 
role in neural communication and coordination in mul-
tiple large-scale brain networks (e.g., the default mode 
and frontoparietal networks) (Dorfel et al. 2009; Utevsky 
et al. 2014; Yang et al. 2014; Cunningham et al. 2017), 
such that it is generally assumed to subserve a rich range 
of high-level cognitive functions (Cavanna and Trimble 
2006; Vanlierde et al. 2003; Lundstrom et al. 2005; Haj 
et al. 2014; Li et al. 2015; Al-Ramadhani et al. 2021). 
From an evolutionary perspective, the study of the PCun is 
also of vital importance (Cavanna and Trimble 2006; Mar-
gulies et al. 2009; Zhang et al. 2017) as empirical evidence 
suggests that PCun expansion is a key feature of modern 
human evolution and a major source of human cognitive 
specializations (Bruner et al. 2017). Furthermore, clini-
cal neuroimaging research has documented that PCun 
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abnormalities are critically involved in the neuropathology 
of many neurological and psychiatric disorders (Zhu et al. 
2018; Kitamura et al. 2021; Gonen et al. 2020; Dong et al. 
2020b; Frings et al. 2010), but with the exact location and 
nature of abnormalities varying across diseases. Despite 
these findings in basic and clinical neuroscience, a poten-
tially mechanistic framework for a unified understanding 
of the various facets of PCun heterogeneity remains to be 
established.

There is diverse and convergent evidence for the existence 
of hierarchical gradients in multiscale brain organization, 
which is reflected in structure, function, connectivity, and 
gene expression (Margulies et al. 2016; Bajada et al. 2017; 
Wagstyl et al. 2015; Paquola et al. 2020, 2019; Huntenburg 
et al. 2018; Shine et al. 2019; Vogel et al. 2020; Gomez et al. 
2019). Dimensionality reduction techniques (e.g., diffusion 
embedding algorithm) have been widely applied to high-
dimensional resting-state functional connectivity (rsFC) data 
from resting-state functional magnetic resonance imaging 
(rs-fMRI) to characterize the hierarchical organization of 
the brain. This analytic procedure would yield a parsimo-
nious set of principal components describing smooth tran-
sitions of rsFC patterns across brain areas, referred to as 
functional gradients (Hong et al. 2020; Bajada et al. 2020; 
Vos de Wael et al. 2020). Taking advantage of functional 
gradients, emerging efforts have recapitulated meaningful 
organizational principles for multiple brain structures such 
as the cerebral cortex (Margulies et al. 2016), cerebellum 
(Guell et al. 2018), primary somatosensory cortex (Ngo 
et al. 2021), striatum (Marquand et al. 2017), insula (Tian 
and Zalesky 2018; Wang et al. 2023), hippocampus (Vos 
de Wael et al. 2018; Bayrak et al. 2022), thalamus (Yang 
et al. 2020) and angular gyrus (Song et al. 2023), making 
functional gradients recently gain increasing attention in 
the neuroimaging and network neuroscience community. 
For example, Margulies et al. (2016) described a dominant 
sensorimotor-to-transmodal gradient in the cerebral cortex, 
in favor of the well-defined central principle that macro-
scale anatomy reflects a functional hierarchy from primary 
to transmodal processing. Moreover, some functional gradi-
ents have shown underlying structural basis, geometric dis-
tance dependence, correspondence with canonical functional 
networks, and involvement in specific behavioral domains 
(Zhu et al. 2018; Ngo et al. 2021; Yang et al. 2020). Despite 
the broad utility, there is a paucity of literature leveraging 
the functional gradient approach to investigate the hierarchi-
cal organization of the PCun, clarification of which might 
provide a mechanistic account for PCun heterogeneity.

To address this missing gap, we used rs-fMRI data from 
793 healthy individuals (361 from our discovery dataset, 329 
from Southwest University Adult Lifespan Dataset, and 103 
from Consortium for Neuropsychiatric Phenomics) to dis-
cover and validate functional gradients of the PCun, which 

were calculated based on the voxel-wise PCun-to-cerebrum 
rsFC patterns. Then, we further explored the potential rela-
tionships of PCun functional gradients with cortical mor-
phology, intrinsic geometry, canonical functional networks, 
and behavioral domains. A schematic overview of the analy-
sis pipeline is shown in Fig. 1.

Methods

Participants

Our study included a discovery dataset along with two inde-
pendent cross-scanner and cross-race validation datasets. 
The discovery participants were healthy adults of Chinese 
Han and right-handedness, recruited from the local universi-
ties and community through poster advertisements. Exclu-
sion criteria included neuropsychiatric or severe somatic 
disorder, a history of head injury with loss of consciousness, 
pregnancy, MRI contraindications, and a family history of 
psychiatric illness among first-degree relatives. This study 
was approved by the ethics committee of The First Affiliated 
Hospital of Anhui Medical University. Written informed 
consent was obtained from all participants after they had 
been given a complete description of the study. The valida-
tion samples were from two publically available datasets: 
Southwest University Adult Lifespan Dataset (SALD) (Wei 
et al. 2018) and Consortium for Neuropsychiatric Phenom-
ics (CNP) (Poldrack et al. 2016). Of note, we solely selected 
the healthy adults from the cross-disorder CNP dataset. Full 
details regarding the two validation samples (e.g., ethics, 
informed consent, inclusion and exclusion criteria, among 
others) have been described in the data descriptor publica-
tions (Wei et al. 2018; Poldrack et al. 2016). To rule out the 
potential influence of neurodevelopment and neurodegen-
eration, all the participants were restricted to an age range 
of 18–60 years. Additionally, participants with poor image 
quality or excessive head motion during scanning were 
excluded. This brought the final samples used in this study 
to 361 in the discovery dataset, 329 in the SALD dataset, 
and 103 in the CNP dataset. Details of the demographic 
data of the three datasets are presented in Table S1 in the 
Supplementary materials.

Image acquisition

MRI data of the discovery sample were obtained using the 
3.0-Tesla General Electric Discovery MR750w scanner, 
and those of the validation samples were acquired using 
the 3.0-Tesla Siemens Trio scanners. Details of the resting-
state fMRI protocols for the three datasets can be found in 
Table S2 in the Supplementary materials.
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fMRI data preprocessing

Resting-state blood-oxygen-level-dependent (BOLD) data 
were preprocessed using Statistical Parametric Mapping 
software (SPM12, http:// www. fil. ion. ucl. ac. uk/ spm) and 
Data Processing & Analysis for Brain Imaging (DPABI, 
http:// rfmri. org/ dpabi) (Yan et al. 2016). The first several 
time points (discovery: 10, SALD: 10, CNP: 5) for each 
participant were discarded to allow the signal to reach equi-
librium and the participants to adapt to the scanning noise. 
The remaining volumes were corrected for the acquisition 
time delay between slices. Then, realignment was performed 
to correct the motion between time points. Head motion 
parameters were assessed by calculating the translation in 
each direction and the angular rotation on each axis for each 
volume. All BOLD data of the final sample were within 
the defined motion thresholds (i.e., maximum translation 
or rotation < 2 mm or  2°). We also computed frame-wise 
displacement (FD), which measures the volume-to-volume 
changes in head position. Several nuisance covariates (the 
linear drift, the estimated motion parameters based on the 
Friston-24 model, the spike volumes with FD > 0.5 mm, the 
white matter signal, and the cerebrospinal fluid signal) were 

regressed out from the data. The datasets were then band-
pass filtered using a frequency range of 0.01 to 0.1 Hz. In 
the normalization step, individual structural images were 
firstly co-registered with the average functional images; then 
the transformed structural images were segmented and nor-
malized to the Montreal Neurological Institute (MNI) space 
using a high-level nonlinear warping algorithm, that is, the 
diffeomorphic anatomical registration through the exponen-
tiated Lie algebra (DARTEL) technique (Ashburner 2007). 
Finally, each filtered functional volume was spatially nor-
malized to the MNI space using the deformation parameters 
estimated during the above step and resampled into a 3 mm 
cubic voxel.

Calculation of PCun functional gradients

Functional gradients of the PCun were calculated based 
on its rsFC to the entire cerebrum (Fig.  1). First, the 
Human Brainnetome Atlas (Fan et al. 2016), a new brain 
atlas constructed using a connectivity-based parcellation 
framework, was adopted to define the PCun (1,685 vox-
els) including medial area 7 (A7m), medial area 5 (A5m), 
dorsomedial parietooccipital sulcus (dmPOS), and area 

Fig. 1  Summary of the analysis pipeline. rs-fMRI data were obtained 
from a discovery dataset and two independent cross-race, cross-
scanner validation datasets (SALD and CNP). Functional gradients 
of the PCun were calculated based on the voxel-wise PCun-to-cere-
brum rsFC patterns using diffusion embedding (top panel) and vali-
dated in the SALD and CNP datasets (right panel). For the resultant 
functional gradients, we further explored their potential relationships 

with cortical morphology, intrinsic geometry, canonical functional 
networks, and behavioral domains (left panel). BOLD blood-oxygen-
level-dependent, PCun precuneus, rsFC resting-state functional con-
nectivity, SALD Southwest University Adult Lifespan Dataset, CNP 
Consortium for Neuropsychiatric Phenomics, rs-fMRI resting-state 
functional magnetic resonance imaging

http://www.fil.ion.ucl.ac.uk/spm
http://rfmri.org/dpabi
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31 (A31) in each hemisphere (Fig. 2C). Second, the pre-
processed BOLD images were concatenated across all sub-
jects after standardization using z-scores, yielding group-
level BOLD time courses. Third, based on the group-level 
BOLD time courses, a voxel-wise PCun-to-cerebrum rsFC 
matrix (1,685 × 39,760) was generated by calculating Pear-
son’s correlation coefficients between time courses of each 
voxel within the PCun and each voxel within the cerebrum 
(excluding the PCun), followed by Fisher’s Z-transformation 
to improve normality. Then, for each row in the rsFC matrix, 
the values of the top 10% of connections were retained, 
whereas all others were zeroed (Margulies et al. 2016; Guell 
et al. 2018; Vos de Wael et al. 2018; Hong et al. 2019; Dong 
et al. 2020a). Fourth, similarity between all pairs of rows 
was calculated using cosine distance, resulting in a posi-
tive and symmetric affinity matrix representing similarity 
of connectivity profiles between each pair of voxels within 
the PCun.

We calculated PCun functional gradients using diffusion 
embedding (Coifman et al. 2005), a nonlinear dimensional-
ity reduction technique that can recover a low-dimensional 
embedding from high-dimensional connectivity data. In 
the embedding space, voxels that are strongly connected 
by either many connections or few very strong connections 
are close, whereas voxels with little or no connections are 
far apart. Relative to other non-linear dimensionality reduc-
tion algorithms, diffusion embedding is relatively robust to 
noise, computationally inexpensive, and provides a stable 
representation of connections (Lafon and Lee 2006). By 
applying this algorithm to the affinity matrix, we identified 
multiple low-dimensional gradients explaining connectivity 
variance in descending order. For each gradient, a gradient 
value was assigned to each voxel within the PCun, resulting 
in a PCun gradient map to visualize macroscale continuous 
transitions in overall connectivity patterns, i.e., the gradient 
topography. We demonstrated the variance explained by first 
40 gradients, and selected the first two gradients explaining 
the highest variations. Of note, the diffusion embedding is 
controlled by a single parameter α, which controls the influ-
ence of the density of sampling points on the underlying 
manifold (α = 0, maximal influence; α = 1, no influence). In 
line with previous studies (Margulies et al. 2016; Guell et al. 
2018; Hong et al. 2019), we set α = 0.5 that is considered 
well-suited for the analysis of brain connectivity data.

Relevance to gray matter volume

To determine the structural basis of PCun functional gradi-
ents, we examined their relationships with gray matter vol-
ume (GMV). Voxel-based morphology (VBM) approach 
was used to calculate GMV. First, all structural images were 
visually inspected to screen for artifacts or gross anatomical 
abnormalities; second, the structural images were segmented 

into gray matter, white matter and cerebrospinal fluid using 
the standard segmentation model; third, after initial affine 
registration into the MNI space, the gray matter concen-
tration map was non-linearly warped using the DARTEL 
technique; finally, the GMV map was obtained by multi-
plying the gray matter concentration map by the non-linear 
determinants derived from the spatial normalization step. 
Then, cross-voxel Pearson’s correlation analyses were per-
formed to examine the spatial associations between func-
tional gradients and group-averaged GMV within the PCun. 
Nonparametric permutation tests were pursued to determine 
the statistical significance of the associations. Briefly, we 
adopted the brainSMASH toolbox (https:// github. com/ murra 
ylab/ brain smash), based on the spatial-lag model (Burt et al. 
2020), to generate 5000 surrogate PCun maps with spatial 
autocorrelation matched to that of the PCun gradient maps 
(i.e., 5000 permutations) and repeated the above-mentioned 
gradient-GMV correlations using the shuffled data. The 
gradient-GMV correlation coefficient in each permutation 
was recorded to build a null distribution. Based on the null 
distribution, the P value was calculated as the number of 
permutations that generated correlation coefficients greater 
than the true correlation coefficient/5000.

Relevance to intrinsic geometry

To investigate whether PCun functional gradients were 
related to intrinsic geometry of the PCun, we calculated the 
Euclidean distance between the peak voxel of each gradient 
map and the remaining voxels within the PCun, resulting in 
a Euclidean distance map per gradient. Then, cross-voxel 
Pearson’s correlation coefficient between each PCun gra-
dient map and the corresponding Euclidean distance map 
was calculated to index the extent to which each gradient 
changed with spatial distance from the maximal gradient 
location. The statistical significance of correlation was 
assessed using random permutation testing (5000 permuta-
tions). Notably, the correlations between PCun functional 
gradients and spatial distance were examined in each hemi-
sphere, separately.

Relevance to functional networks

To characterize the functional implications of PCun gradi-
ents, we evaluated their associations with canonical func-
tional networks from the seven-network parcellation (Yeo 
et al. 2011). A PCun functional atlas was initially created 
with use of a custom winner-take-all parcellation method 
(Yang et al. 2020). That is, we calculated Pearson’s correla-
tion coefficient between BOLD time course of a given voxel 
within the PCun and the average BOLD time course of each 
functional network. This PCun voxel was then assigned to 
the functional network with the highest Pearson’s correlation 

https://github.com/murraylab/brainsmash
https://github.com/murraylab/brainsmash
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coefficient. This procedure was repeated for all voxels within 
the PCun, resulting in a PCun functional atlas including 
seven functional subdivisions corresponding to seven canon-
ical functional networks. Finally, we extracted the gradient 
values of voxels within these functional subdivisions and 
sorted them by the median.

Relevance to behavioral domains

To capture the behavioral relevance of PCun functional 
gradients, we investigated their associations with behavio-
ral domains from the NeuroSynth (http:// www. neuro synth. 
org), a well-validated and publicly available platform for 
large-scale automated synthesis of human neuroimaging 
data (Yarkoni et al. 2011). The NeuroSynth database pro-
vides a wide range of activation (z-statistics) maps of 1335 
behavioral terms that describe conceptually distinct aspects 
of human behavior. To establish a link between gradient and 
behavior, each gradient map was binned into ten-percentile 
increments and then binarized, yielding 10 binary masks 
ranging from 0–10% to 90–100%. For each behavioral term, 
the average z-statistics within the 10 masks were extracted. 
The terms with z-statistic > 1.645 were used for visualization 
and interpretation.

Sensitivity analyses

We performed several sensitivity analyses to verify the 
robustness of our results. First, before calculating the affin-
ity matrix, we retained the top 10% of connections per row in 
the rsFC matrix. To assess the influence of threshold selec-
tions, our analysis was repeated with two other thresholds 
(top 20 and 30%) in discovery dataset. Second, to further 
exclude the potential influence of neurodevelopment and 
neurodegeneration, we repeated the functional gradient anal-
yses in participants with a narrow age range of 18–30 years.

Results

Functional gradients of the PCun

The PCun functional gradient analyses showed consistent 
results across the discovery, SALD, and CNP datasets. 
Specifically, the variability in rsFC patterns of the PCun 
explained by the functional gradients is presented in 
descending order (Fig.  2A). The principal gradient 
(G1) accounted for the greatest variance in connectivity 
(discovery: 54.82%; SALD: 50.94%; CNP: 49.88%) and the 
secondary gradient (G2) explained the second-most variance 
(discovery: 17.79%; SALD: 20.63%; CNP: 15.60%). Scatter 
plots demonstrated the distributions of PCun G1 and G2. 
The topographies of G1 and G2 are presented in Fig. 2B. G1 

showed a dorsoanterior-ventral organization, characterized 
by a gradual increase from the dorsoanterior portion (A5m) 
to the ventral portion (A31) of the PCun (Fig. 2C); G2 
showed a ventroposterior-dorsal organization, manifested as 
a gradual increase from the ventroposterior portion (dmPOS) 
to the dorsal portion (A7m) of the PCun.

Relevance to gray matter volume

Motivated by the hypothesis that brain function can be 
shaped and constrained by brain structure, we examined 
the associations between PCun functional gradients and 
GMV. Spatial correlation analyses revealed consistent posi-
tive associations between G1 and GMV across the three 
datasets (discovery: r = 0.22, Pperm = 0.01; SALD: r = 0.22, 
Pperm = 0.0008; CNP: r = 0.21, Pperm = 0.0016) (Fig. 3). How-
ever, the spatial correlations between G2 and GMV were 
not significant (discovery: r = 0.10, Pperm = 0.27; SALD: 
r = 0.13, Pperm = 0.12; CNP: r = 0.03, Pperm = 0.39). These 
results suggested that G1 was shaped, but not limited, by 
the underlying anatomy.

Relevance to intrinsic geometry

We examined the spatial associations between PCun func-
tional gradients and the corresponding Euclidean distance 
maps to investigate their relationships with intrinsic geom-
etry of the PCun. Cross-voxel Pearson’s correlation analy-
ses demonstrated significant negative associations of G1 
(discovery: r = − 0.85; SALD: r = − 0.76; CNP: r = − 0.76; 
Pperm < 0.001 for all) and G2 (discovery: r = − 0.66; SALD: 
r = − 0.70; CNP: r = − 0.74; Pperm < 0.001 for all) with spa-
tial distance from the maximal gradient location in the left 
PCun (Fig. 4). This was also the case for the right PCun 
(Figure S1 in the Supplementary materials). These results 
suggested that G1 and G2 were related to intrinsic geometry 
of the PCun.

Relevance to functional networks

The PCun functional subdivisions corresponding to the 
canonical functional networks were not randomly distributed 
along G1 and G2, but rather tended to cluster at similar posi-
tions (Fig. 5). Along G1, the functional subdivision corre-
sponding to the sensorimotor network occupied one extreme 
position and was maximally separated from that correspond-
ing to the default mode network at the other extreme; along 
G2, the functional subdivision corresponding to the visual 
network occupied one extreme position and was maximally 
separated from that corresponding to the dorsal attention 
network at the other extreme. Note that the functional sub-
division corresponding to the limbic network was not found.

http://www.neurosynth.org
http://www.neurosynth.org
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Relevance to behavioral domains

Behavioral relevance of PCun G1 and G2 was captured 
with use of the NeuroSynth. This analysis brought for-
ward an important observation echoing the above-
described results of functional network analysis. For G1, 
the end involving the sensorimotor network was linked 
to behavioral terms describing somatic movement and 
sensation such as “motor”, “movements”, “sensorimotor” 

and “somatosensory”, whereas the other end involving 
the default mode network was linked to terms describing 
abstract cognitive functions such as “autobiographical”, 
“theory of mind”, “beliefs” and “self referential”; for G2, 
the end implicating the visual network was related to terms 
depicting vision like “visual” and “navigation”, while the 
other end implicating the dorsal attention network was 
related to terms depicting top-down control of attention 

Fig. 2  Functional gradients of the PCun in the discovery, SALD, and 
CNP datasets. A Variance explained by the functional gradients and 
inserted scatter plots of the first two gradients. B Topographies of the 
first two functional gradients. C Illustration of PCun subregions and 
their distributions along the first two gradients. Each histogram rep-

resents the distribution of gradient values of voxels within each PCun 
subregion. PCun precuneus; SALD, Southwest University Adult 
Lifespan Dataset, CNP Consortium for Neuropsychiatric Phenomics, 
A7m medial area 7, A5m medial area 5, dmPOS dorsomedial parie-
tooccipital sulcus, A31 area 31
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like “spatial attention”, “orienting”, “location” and “navi-
gation” (Fig. 6).

Sensitivity analyses

First, by applying two other thresholds (top 20% and 
30%) to the rsFC matrix, we found that explained con-
nectivity variance and topographies of the first two PCun 
functional gradients were highly consistent with those 

using the threshold of top 10% (Figure S2 in the Sup-
plementary materials). Second, analyses in participants 
with a narrow age range of 18–30 years yielded G1 and 
G2 similar to those found in the whole sample (Figure S3 
in the Supplementary materials). These results indicated 
that our findings were robust against these methodologi-
cal variations.

Fig. 3  Scatter plots of the spatial correlations between PCun G1 and gray matter volume. SALD Southwest University Adult Lifespan Dataset, 
CNP Consortium for Neuropsychiatric Phenomics, PCun precuneus, G1 gradient 1

Fig. 4  Scatter plots of the associations of G1 and G2 with spatial distance from the maximal gradient location in the left PCun. SALD Southwest 
University Adult Lifespan Dataset, CNP Consortium for Neuropsychiatric Phenomics, PCun precuneus, G1 gradient 1, G2 gradient 2
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Fig. 5  Box plots showing distributions of the PCun functional subdi-
visions corresponding to the canonical functional networks along G1 
and G2. VN visual network, DMN default mode network, SMN senso-
rimotor network, FPN frontoparietal network, DAN dorsal attention 

network, VAN ventral attention network, SALD Southwest University 
Adult Lifespan Dataset, CNP Consortium for Neuropsychiatric Phe-
nomics, PCun precuneus, G1 gradient 1, G2 gradient 2

Fig. 6  Associations of PCun G1 
and G2 with behavioral terms 
from the NeuroSynth. To estab-
lish a link between gradient and 
behavior, each gradient map 
was binned into ten-percentile 
increments and then binarized, 
yielding 10 binary masks rang-
ing from 0–10 to 90–100%. 
For each behavioral term, the 
average z-statistics within the 
10 masks were extracted. The 
terms with z-statistic > 1.645 
were used for visualization 
and interpretation, whereas 
those with z-statistic < 1.645 
were zeroed. SALD Southwest 
University Adult Lifespan 
Dataset, CNP Consortium for 
Neuropsychiatric Phenomics, 
PCun precuneus, G1 gradient 1, 
G2 gradient 2
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Discussion

By applying the state-of-the-art functional gradient approach 
to rs-fMRI data from discovery and validation samples, the 
present study opens new perspectives by being the first to 
systematically examine the hierarchical organization of the 
PCun. We found that PCun G1 showed a dorsoanterior-ven-
tral organization from the A5m to the A31, and G2 exhibited 
a ventroposterior-dorsal organization from the dmPOS to the 
A7m. Concurrently, G1 was associated with cortical mor-
phology, and both G1 and G2 showed geometric distance 
dependence. Importantly, PCun functional subdivisions 
corresponding to canonical functional networks (behavioral 
domains) were distributed along both gradients in a hierar-
chical manner, i.e., from the sensorimotor network (somatic 
movement and sensation) at one extreme to the default mode 
network (abstract cognitive functions) at the other extreme 
for G1 and from the visual network (vision) at one end to 
the dorsal attention network (top-down control of attention) 
at the other end for G2.

The high-dimensionality of brain features lies in the 
fact that more than one feature is typically assigned to each 
brain location. Examples are regional macro- and micro-
structure, structural and functional connectivity, functional 
coactivation, gene or receptor expression, and particularly 
multimodal integrative features (Glasser et al. 2016; Eick-
hoff et al. 2018). In this instance, dimensionality reduc-
tion methods are needed to extract intelligible information 
from such high-dimensional data. One common approach 
is to group brain locations into larger parcels based on 
feature similarity (i.e., brain parcellation). However, treat-
ing parcels as discrete and independent entities may fail 
to capture more gradual changes and overarching spatial 
relationships (Jbabdi et al. 2013). Gradient approaches 
instead find the main axes of variance in the data through 
decomposition or embedding techniques, and replace the 
original high dimensions of brain features with a more 
parsimonious set of new dimensions (i.e., large-scale gra-
dients) that explain most of the feature variance. Each new 
dimension is a continuous representation of one aspect of 
brain topographic organization, and each brain location 
can be described by a value reflecting where it falls along 
this dimension. There is now comprehensive evidence 
that the spatial arrangement of brain locations along these 
large-scale gradients is not arbitrary, but a consequence 
of developmental mechanisms shaped through evolution-
ary selection (Huntenburg et al. 2018). Studying the brain 
with respect to these large-scale gradients can inform our 
understanding of how the complex brain structure emerges 
and gives rise to its elaborate functions.

Employing a combination of the functional gradient 
method and rsFC data, we identified two PCun functional 

gradients, that is, a principal dorsoanterior-ventral axis 
from the A5m (sensorimotor network) to the A31 (default 
mode network) and a secondary ventroposterior-dorsal 
axis from the dmPOS (visual network) to the A7m (dorsal 
attention network). The parallel analysis with use of the 
NeuroSynth database further corroborated the results of 
functional network analysis by demonstrating a network-
behavior correspondence. Indeed, our findings are largely 
consistent with several earlier neuroimaging studies that 
have parcellated the PCun into subregions based on their 
specific functional and anatomical connectivity patterns 
(Cavanna and Trimble 2006; Zhang et al. 2014; Margulies 
et al. 2009; Cauda et al. 2010). Specifically, the dorsoan-
terior portion (A5m) is functionally connected to the sen-
sorimotor cortex, insular cortex, superior parietal lobule, 
fusiform gyrus and middle cingulate cortex, suggesting 
its involvement in the sensorimotor network; while the 
ventroposterior portion (dmPOS) exhibits strong connec-
tions with the cuneus, calcarine sulcus and lingual gyrus, 
implying a part of the visual network (Zhu et al. 2018). 
Based on transmitter receptor distribution characteristics, 
prior research has also documented that the rostral PCun 
(A5m) resembles the somatosensory cortex, whereas cau-
dal PCun (dmPOS) is more similar to the visual cortex 
(Scheperjans et al. 2005). As a transition zone from the 
PCun to the posterior cingulate cortex (Cavanna 2007), the 
ventral portion (A31) shows great connectivity with the 
medial prefrontal cortex, anterior and posterior cingulate 
cortex, angular gyrus, lateral temporal cortex, indicating 
a core node of the default mode network. Cavanna and 
Trimble et al. (2006) reviewed functional imaging findings 
and demonstrated a prominent role of the ventral PCun in 
self-related processing and episodic memory retrieval. The 
dorsal portion (A7m) has widespread connections with the 
lateral prefrontal cortex, superior parietal lobule, angu-
lar gyrus, temporo-parietal junction area, and temporo-
occipital junction area. These connections highlight the 
role of the dorsal PCun in cognitive/associative functions 
including attention (Zhang et al. 2014; Margulies et al. 
2009). Collectively, our findings, in conjunction with prior 
reports, confirm the heterogeneous nature of the PCun. 
More importantly, the current work accommodates over-
lapped spatial distribution and continuous transitions of 
the PCun hierarchical organization, complementing and 
extending previous parcellation literature in an elegant 
way.

The relationship between brain structure and function is 
an important topic in systems neuroscience, which is cru-
cial for understanding neurodevelopment, brain disorders, 
behavior and cognition (Paquola et al. 2019; Lariviere et al. 
2020; Sporns et al. 2005; Vazquez-Rodriguez et al. 2019). 
Our data showed that PCun morphology was associated with 
G1 but not G2, indicating that the former appears to have a 
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structural basis. This finding coincides with the traditional 
view that brain function is shaped, but not limited, by the 
underlying anatomy. In addition, we found that both G1 and 
G2 were linked to intrinsic geometry, with the lower gradi-
ent location being further away from the maximal gradi-
ent location. The current observation of geometric distance 
dependence is coherent with previous studies on functional 
gradients of the cerebral cortex, primary somatosensory cor-
tex, and thalamus (Margulies et al. 2016; Ngo et al. 2021; 
Yang et al. 2020), suggesting a common feature of the topo-
graphic layouts mapped by functional gradients.

This study has several limitations. First, our analyses 
focused on the first two PCun functional gradients that 
explained the greater connectivity variance. However, some 
biologically relevant gradients with smaller explained vari-
ance might be overlooked. Second, to obtain more stable 
and reliable results, the PCun functional gradients were 
computed at the group level rather than at the individual 
level. Nevertheless, this may obscure meaningful individual 
variation. Finally, it is generally accepted that brain func-
tional connectivity is shaped and constrained by structural 
connectivity (Honey et al. 2007). In future studies, diffusion 
MRI data will be collected to further investigate whether 
and how white matter structural connectivity may influence 
functional gradients of the PCun.

In conclusion, by applying the functional gradient 
approach to large-scale discovery and validation rs-fMRI 
datasets, we comprehensively characterized two hierarchical 
patterns of PCun topographic organization as well as their 
relationships with cortical morphology, intrinsic geometry, 
canonical functional networks, and behavioral domains. Our 
findings may provide mechanistic insights into the multifac-
eted nature of PCun heterogeneity. More broadly, prominent 
involvement of PCun abnormalities in many neuropsychi-
atric disorders highlights the potential of the PCun func-
tional gradients to generate new hypotheses about disease 
mechanisms.
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