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Abstract
Categorization represents one cognitive ability fundamental to animal behavior. Grouping of elements based on perceptual 
or semantic features helps to reduce processing resources and facilitates appropriate behavior. Corvids master complex cat-
egorization, yet the detailed categorization learning strategies are less well understood. We trained two jackdaws on a delayed 
match to category paradigm using a novel, artificial stimulus type, RUBubbles. Both birds learned to differentiate between two 
session-unique categories following two distinct learning protocols. Categories were either introduced via central category 
prototypes (low variability approach) or using a subset of diverse category exemplars from which diagnostic features had 
to be identified (high variability approach). In both versions, the stimulus similarity relative to a central category prototype 
explained categorization performance best. Jackdaws consistently used a central prototype to judge category membership, 
regardless of whether this prototype was used to introduce distinct categories or had to be inferred from multiple exemplars. 
Reliance on a category prototype occurred already after experiencing only a few trials with different category exemplars. 
High stimulus set variability prolonged initial learning but showed no consistent beneficial effect on later generalization per-
formance. High numbers of stimuli, their perceptual similarity, and coherent category structure resulted in a prototype-based 
strategy, reflecting the most adaptive, efficient, and parsimonious way to represent RUBubble categories. Thus, our birds 
represent a valuable comparative animal model that permits further study of category representations throughout learning 
in different regions of a brain producing highly cognitive behavior.
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Introduction

After a long day, you decide to have an after-work drink 
with your colleague. Your favorite café serves a wide vari-
ety of wine so, knowing your all-time favorite, you order a 
‘Primitivo’. Your colleague just lists all wine varieties he 
liked at the last wine tasting instead of ordering something 
specific. Unfortunately, the bartender informs you that 
‘Primitivo’ is sold out and that none of the wines from the 
tasting are part of the regular menu. However, he assures 
you that he will find the perfect wine for both of you. Yet, 
how can he solve this task efficiently? The similarity to the 
specific example (i.e., a good alternative for the ‘Primi-
tivo’) or to common features of the full list of wines could 
be informative for a correct choice. Beyond the selection 
of fitting wines, these two different approaches represent 
two fundamental properties of categorization, a crucial 
element of cognition relevant to survival in a constantly 
changing environment (Mervis and Rosch 1981; Herrn-
stein 1990; Smith et al. 2016; Lazareva and Wasserman 
2017). Through categorization, an animal reduces the 
complexity of a stimulus to a set of features sufficient for 
adaptive behavior (Jitsumori and Delius 2001; Smith et al. 
2016). Thereby, categorization optimizes the use of work-
ing memory for information processing (Panichello et al. 
2019).

When confronted with a stimulus comprising all diag-
nostic features (i.e., the category prototype), subsequent 
stimuli can be directly compared to this ideal example 
(Posner and Keele 1968; Reed 1972; Jitsumori and Delius 
2001; Minda and Smith 2001; Smith et al. 2016). Relative 
similarity to this prototype defines whether other stimuli 
are assigned into the same category or not, based on grad-
ual category borders (Harnad 1987; Bowman et al. 2020). 
Within this framework, a category contains members that 
differ in their representativeness. Category members with 
diverging similarity can be learned, which results in a 
continuous expansion of the perceived category (Mervis 
and Pani 1980). Thus, an initially narrow category (with 
high prototype similarity) is transformed into a broader 
category that includes a wider range of members diverging 
from the prototype in non-diagnostic features.

Yet, some situations require a differentiation of indi-
vidual category members, favoring category representa-
tions that retain stimulus-specific information (e.g., dif-
ferentiating predator types (Seyfarth et al. 1980)). Such 
exemplar-based categorization requires memorization of 
individual stimuli and can therefore successfully represent 
perceptually incoherent or highly abstract categories (e.g., 
oddball exceptions (Castro et al. 2021)). Early category 
learning can be based on multiple exemplars, i.e., a diverse 
set of stimuli that span a large range of category features 

(“multiple cognitive reference points” (Medin and Schaf-
fer 1978; Smith et al. 2016, p. 3; Bowman et al. 2020)). In 
the absence of a category prototype, new stimuli must be 
compared to previously seen exemplars (Medin and Schaf-
fer 1978; Homa et al. 1981; Nosofsky 1986, 1987; Bow-
man et al. 2020). Thus, successful categorization depends 
on stimulus familiarity and initial categorization is dif-
ficult, because higher variability interferes with learning 
(Raviv et al. 2022). This process requires higher memory 
demands (due to memorization of all individual exemplars 
(Nosofsky 1987)) but results in a broader, more stable cat-
egory representation (Hahn et al. 2005; Nosofsky et al. 
2019; Raviv et al. 2022).

To process categories efficiently, it might be advanta-
geous to construct a central category prototype from indi-
vidual exemplars (Homa et al. 1981). This requires the 
identification of general diagnostic features of a stimulus 
set (Kruschke 1992; Sigala et al. 2002; Cook and Smith 
2006) and facilitates categorization of stimuli that share a 
certain perceptual similarity (“prototype representations […] 
as a byproduct of retrieving category exemplars” (Bowman 
et al. 2020), p. 3). Humans excel at this ability (Tiedemann 
et al. 2022), and beyond primates, birds offer a unique per-
spective to compare evolutionary trends of categorization. 
Targeting different aspects of categorization has revealed 
birds’ cognitive aptitude regarding perceptual, rule based, 
and abstract categories (Aust and Huber 2002; Cook and 
Smith 2006; Katz and Wright 2006; Ditz and Nieder 2016; 
Peissig et al. 2019; Zipple et al. 2019; Anderson et al. 2020; 
Vernouillet et al. 2021). In particular, corvid songbirds can 
solve a large variety of cognitive tasks as successfully as 
primates (Güntürkün and Bugnyar 2016), and are able to 
perform categorization of highly abstract and complex stim-
uli (Veit and Nieder 2013; Ditz and Nieder 2015; Wagener 
and Nieder 2020). For instance, several corvid species suc-
cessfully learned the concept of same/different (Vernouillet 
et al. 2021), with crows even flexibly alternating according 
to specific behavioral rules (‘match/nonmatch rule’, (Veit 
and Nieder 2013)). Further, the ability of crows to distin-
guish visual stimuli solely based on numerosity was exten-
sively studied, revealing successful categorization on a high 
abstraction level and spontaneous categorical representa-
tions of numerosity on the neuronal level (Wagener et al. 
2018). Even beyond the visual domain, crows were shown to 
master auditory categorization (Wagener and Nieder 2020). 
Yet, most studies so far focused on the categorization behav-
ior following prolonged behavioral training and not on cat-
egorization learning itself.

The processing of visual information in birds involves 
various hierarchically organized brain regions, suggesting 
that birds may have different types of category representa-
tions, ranging from low-level perceptual stimulus features 
in primary sensory areas, to more abstract categorical 
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representations in higher associative areas (Soto and Was-
serman 2014; Clark and Colombo 2020; Pusch et al. 2022). 
However, it remains unclear how previous experience shapes 
the formation of distinct category representations, and to 
what degree specific forms of categorization depend on the 
behavioral task and the category structure used during learn-
ing (i.e., single stimulus vs. diverse stimulus pool). Given 
the adaptive behavior of corvids to a wide range of cogni-
tive challenges, would they construct a category prototype 
to efficiently categorize a subset of similar exemplar stimuli? 
Furthermore, does the construction of an intrinsic prototype 
representation require as few trials as for humans (Xu and 
Tenenbaum 2007; Tiedemann et al. 2022) and computer 
simulations (Smith 2014)?

To resolve these questions, we trained jackdaws (Corvus 
monedula) to learn to categorize a large number of novel 
stimuli within single experimental sessions. The birds per-
formed two variations of a delayed match to category task 
in which a category prototype was either directly presented 
(‘prototype approach’) or could be constructed from a large 
number of diverse category members (‘exemplar approach’). 
We hypothesized that the jackdaws would predominantly use 
a prototype-based strategy, even if the way they experienced 
the stimuli was based on a diverse set of category exem-
plars. Our results suggest that indeed a focus on a general 
category representation, instead of individual stimuli, is the 
predominant mechanism by which the animals learn to make 
categorical judgements.

Methods

Subjects

This experiment was performed with two experimentally 
naïve jackdaws (Corvus monedula) of undetermined sex 
(4 years of age), that were housed in a large indoor aviary 
in a social group (approximately 20 to 22 °C room tem-
perature, 12-h day–night circle, including 30-min twilight 
phases, artificial daylight conditions with UV light, full 
color spectra, and high frequent illumination (5 kHz), ME 
International, Gallux). Both water and grid were available 
ad libitum and a controlled food protocol was used during 
the experiment (both birds were trained above 85% of their 
free feeding weight at 190 and 220 g). The birds obtained 
special bird food pellets as reward during training (Nutri-
Bird F16, Versele Laga) and a mix out of seeds, dried/fresh 
fruits, dried insects, mealworm larvae, and two bird foods 
(Beo-Weichfutter, Trocken-Weichfutter III braun, Claus) 
on days without training, supplemented with Korvimin 
(vitamin product, ZVT + Reptil). All experimental conduct 
was in agreement with the European Communities Council 
Directive for the care and use of animals for experimental 

purposes and approved by the local authorities (LANUV 
NRW).

Apparatus

A da rkened  ope ran t  cond i t i on ing  chamber 
(80 cm × 54 cm × 56 cm (height x width x depth)) served 
for training and testing. An acoustic pulse touchscreen (22’’, 
ELO 2200 L APR, Elo Touch Solutions Inc., CA) was used 
for stimulus presentation and to register peck responses. 
Food reward was delivered via an automated pellet feeder 
(https:// www. ngl. psy. ruhr- uni- bochum. de/ ngl/ share ware/ pel-
let- feeder. html. en). The birds were seated on a wooden perch 
(distance to monitor approximately 10.5 cm). A computer 
running custom MATLAB code using the Psychophysics 
(Brainard 1997) and Biopsychology toolboxes, OTBR (Rose 
et al. 2008), controlled all experimental procedures.

Stimulus generation

We used a novel, highly flexible artificial categorization 
stimulus type, ‘RUBubbles’ (Apostel and Rose 2021). Each 
generated RUBubble stimulus consisted of eight colored 
spheres that were arranged in 3D but shown as 2D images 
(Fig. 1a). Each stimulus category was generated based on 
one central, randomly created category prototype, for which 
the only fixed input was the number of desired spheres. 
Within-category similarity was specified by setting the mini-
mum and maximum deviation per stimulus parameter (sepa-
rately for hue, position, and size of spheres, Fig. 1b, c). We 
further subdivided these parameter ranges to create category 
members belonging to six distinct dissimilarity levels rela-
tive to the category prototype (category prototype = L0, cat-
egory members L1–L6). Deviations per stimulus parameter 
specified the respective distance relative to the correspond-
ing prototype. Thus, individual dissimilarity levels can sche-
matically be envisioned as distributions around the centered 
prototype, with varying distance (spatially with x, y, and z; 
color and size along a line) from the corresponding proto-
type spheres. Stimulus parameters could differ in their simi-
larity relative to the other category prototype (see arrows, 
Fig. 1d), which might result in some overlap between both 
category distributions regarding individual features (how-
ever, unlikely to concern all stimulus dimensions simultane-
ously). Overall, we created novel sets for each experimental 
session containing 481 category members (1 prototype and 
80 stimuli per dissimilarity level for each category). To con-
trol between-category similarity, the prototype of category 
2 was derived from the prototype of category 1. For this, 
we specified the exact deviation of position (as movement 
distance between corresponding spheres), color, and size 
between both prototypes (Fig. 1c). Categorization stimulus 
sets were individualized for each bird to adjust the difficulty 

https://www.ngl.psy.ruhr-uni-bochum.de/ngl/shareware/pellet-feeder.html.en
https://www.ngl.psy.ruhr-uni-bochum.de/ngl/shareware/pellet-feeder.html.en
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level of the task. Thus, the minimum and maximum devia-
tion ranges differed between birds and sessions.

Behavioral task

The birds initiated each trial by responding to a white dot. 
After a 500 ms delay, a sample was presented for 1 s that 
had to be memorized across a delay period of 1 s. After the 
delay, two stimuli were presented as choice and the birds 
had to select the stimulus matching the category of the pre-
viously presented sample (delayed match to category, A/B 
categorization task (Zeithamova et al. 2008), Fig. 2a). Cor-
rect responses were rewarded with food pellets, whereas 
incorrect responses were signaled via a brief screen flash 
followed by a short time out.

Two variations of a delayed match to category paradigm 
were used to differentiate distinct forms of categorization 
learning: a prototype- and an exemplar-based approach. We 
aimed to specifically manipulate the underlying stimulus 

set variability, showing either one single stimulus (i.e., the 
category prototype) or a diverse set of various stimuli (i.e., 
the subset of category exemplars). In our study, these two 
training protocol variations defined the type of session, i.e., 
‘prototype session’, and ‘exemplar session’. Individual tri-
als were structured identically in both variants, as described 
above. However, the selection of presented sample and 
choice stimuli was dependent on the session type (Fig. 2b).

In ‘prototype’ sessions, the birds were presented with two 
category prototypes in the very first trial. Each explicit cat-
egory prototype was presented as both sample and choice 
stimulus (Fig. 2b, red). Only as the session progressed, other 
category members were introduced as sample stimuli, being 
progressively less similar to the prototypes (slowly increas-
ing variability). Thus, what effectively began as a delayed 
match to sample task (i.e., select the choice stimulus identi-
cal to the sample) was transformed into a delayed match to 
category task (i.e., select the choice stimulus belonging to 
the same category as the sample). The category prototypes 

Fig. 1  RUBubble stimuli were used to create categorization stimu-
lus sets. a Three different stimulus parameters (sphere size, color, 
and position) could be manipulated separately. b Each category was 
created based on one randomly generated category ‘prototype’, from 
which individual stimuli were derived (‘distorted stimulus’, visu-
alized in orange). The number of spheres in all stimuli was fixed to 
eight. Minimum and maximum deviations per stimulus parameter 
(size, movement distance, and hue) were specified relative to the cat-
egory prototype when creating new category members. c Within- and 
between-category variation could be controlled. Stimuli used in one 
session were always created based on two distinct category prototypes 
that were related to each other. Prototype ‘C2’ was derived from pro-
totype ‘C1’, which allowed precise control of between-category varia-
tion by setting the exact deviation of all stimulus parameters between 
the two stimuli. Within-category variation was specified by the maxi-
mum deviations of all stimulus parameters relative to their respective 
category prototype. d Schematic illustration of two categories created 
from two prototypes depicted in the center. Circles visualize associ-
ated category stimuli in distinct dissimilarity levels relative to their 

prototype in a simplified way. When creating members of a given 
category, specified values defined the deviation from the central cat-
egory prototype without any directionality. Thus, the resulting cat-
egory can be visualized as a distribution around a centered category 
prototype. Depending on the random direction of variation, each indi-
vidual sphere of some category stimuli (in particular such of higher 
within-category dissimilarity) could be either more similar (yellow 
arrow), or less similar (blue arrow) relative to the opposing category 
protoype with regard to individual stimulus parameters (generally 
possible to have some overlap between two categories but unlikely 
concerning the whole stimulus). Category stimuli were subdivided 
into distinct similarity levels based on their parameter deviations rela-
tive to the corresponding prototype. This simplification was used to 
reduce the complexity within the stimulus set (independent modifica-
tion of position, size, and color of each individual sphere within each 
individual stimulus) and turn it into a more accessible similarity level. 
RUBubble stimuli in a and depiction in b modified from (Apostel and 
Rose 2021).
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were kept as the choice stimuli throughout the entire ‘pro-
totype’ session. Thus, the birds always selected the pro-
totype belonging to the presented sample category when 
responding.

In ‘exemplar’ sessions, all stimuli per trial (one sample 
and both choice stimuli) were randomly selected from the 
full RUBubble category. The birds experienced stimuli with 
varying dissimilarity to the category prototypes from the 
beginning and thus exclusively performed a delayed match 
to category task. Consequently, the category prototypes were 
not explicitly introduced, in contrast to the ‘prototype’ ses-
sions. Throughout the ‘exemplar’ session, a subset of cat-
egory stimuli spanning the full category was used as choice 
stimuli (Fig. 2b, blue).

Block design

Each session was divided into six potential blocks. The ani-
mal’s performance during a block decided when a block was 
completed, and two different criteria had to be met to pass 
over into the next block. First, specific trial conditions had to 
be used in at least 20 completed trials, to ensure a sufficient 
number of trials (conditions explained in the next section). 
Second, the birds had to respond with at least 80% correct 
choices within the last 20 completed trials (performance 
criterion). Thus, the number of blocks per session and the 
number of trials per block were dependent on the behav-
ioral performance. In ‘prototype’ sessions, each block was 

associated with one main dissimilarity level (L, color coded 
in Fig. 3). Throughout the session, sample stimuli became 
progressively more dissimilar to the prototype as the main 
dissimilarity level of sample stimuli per block increased. 
Block 1 involved only the category prototypes (L0), both as 
sample and choice stimuli (i.e., initial task consistent with 
delayed match to sample paradigm). In ‘exemplar’ sessions, 
each block contained sample stimuli from all six dissimi-
larity levels. A detailed description of trial conditions and 
block design will be given in the following sections.

Trial conditions (sample familiarity)

In addition to the six distinct dissimilarity levels relative to 
their prototype, sample stimuli were distinguished based on 
their familiarity into:

Familiar (F)—stimuli that had been presented in a pre-
ceding block. In ‘prototype’ sessions, F stimuli always had a 
dissimilarity level in accordance with the current block (i.e., 
the main dissimilarity level).

Novel (N)—novel stimuli. In ‘prototype’ sessions, novel 
stimuli were additionally differentiated based on their 
respective dissimilarity level. Novel stimuli with a dissimi-
larity level consistent with the current block were indicated 
as NF (i.e., novel stimuli of a familiar dissimilarity level). 
Novel stimuli with a dissimilarity one level higher than the 
current block were indicated as N (i.e., novel stimuli of a 
novel dissimilarity level). In ‘exemplar’ sessions, N stimuli 
were taken randomly from all dissimilarity levels.

Individual sample stimuli were used at most in two con-
secutive blocks (e.g., N stimuli in block 3 reappeared as F 
samples in block 4). Figure 4 gives a schematic overview of 
sample details.

Fig. 2  Schematic illustration of the delayed match to category para-
digm and both training approaches. a After initiating a trial by peck-
ing a white dot, a sample was presented for 1 s, which was followed 
by a 1-s delay period. During choice, the birds had to select the 
stimulus representing the matching category. Correct responses were 
rewarded, and incorrect responses were signaled by a screen flash fol-
lowed by a short time-out period before the next trial was presented. 
b Two different variations of the delayed match to category paradigm 
were implemented. ‘Prototype’ and ‘exemplar’ sessions differed in 
the selection of sample stimuli and the composition of the choice 
stimulus array. In ‘prototype’ sessions, sample stimuli with increas-
ing dissimilarity level were presented sequentially, making the initial 
variability low. In ‘exemplar’ sessions, all levels of dissimilarity were 
included from the beginning, increasing the initial variability. The 
birds had to make their response by pecking either the matching cat-
egory prototype (L0, ‘prototype’ sessions, red) or an exemplar stimu-
lus matching the sample category (subset of all category stimuli as 
choice stimulus pool in ‘exemplar’ sessions, L1–L6, blue)

Fig. 3  Overview of block design implemented in 'prototype' (top) and 
'exemplar' sessions (bottom). Prototype: block 1 in ‘prototype’ ses-
sions resembled a delay match to sample task with only category pro-
totypes (L0) used both as sample and choice stimuli. Main dissimi-
larity level increased across blocks (L0–L5, color coded). Exemplar: 
sample stimuli were randomly chosen from all six dissimilarity levels 
in each block; thus, ‘exemplar’ sessions showed no consistent rela-
tion between block number and dissimilarity level. *In some ‘exem-
plar’ sessions, block 1 contained a minimum of 80 instead of 40 trials 
(first 28 (bird 1), and 22 (bird 2) ‘exemplar’ sessions, later reduced 
to increase the number of completed trials in full blocks for analy-
sis). All full blocks contained a minimum of 120 trials in both session 
types.
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In ‘prototype’ sessions, block 2 contained only novel 
stimuli from two different dissimilarity levels (20 NF (L1) 
and 20 N (L2) per category, for a total of 80 stimuli), as 
the only familiar stimuli would have been the prototypes 
(Fig. 4). Each subsequent block then always included 20 
F, 20 NF, and 20 N stimuli per category (for a total of 120 
stimuli). Overall, each block was associated with one main 
dissimilarity level (Fig. 3 top). For instance, the majority of 
sample stimuli in block 3 belonged to dissimilarity level 2 
(L2, highlighted in orange, Fig. 4). In ‘exemplar’ sessions 
there was no consistent relation between block and dis-
similarity level since each block contained stimuli from all 
dissimilarity levels (Fig. 3 bottom). Thus, sample stimuli 
were only distinguished as familiar or novel (Fig. 4 bottom). 
Block 1 contained only 20 N stimuli per category (for a 
total of 40 stimuli), which introduced the categories without 
showing an explicit prototype. All subsequent blocks then 
contained 20 F and 40 N sample stimuli per category (for a 
total of 120 stimuli, Fig. 4 bottom).

Randomization

The behavioral task dynamics needed to be flexible to fulfill 
all requirements of performance-dependent parameters that 
could not be predefined. To that end, specific trial conditions 
labeled according to block (1–6), sample category (C1, C2), 

and sample type (F, NF, N) were predefined and randomized 
within each block before the session started. An extensive 
number of conditions per block were generated, which was 
necessary, because the actual required number of trials was 
dependent on the behavioral performance. Individual sample 
stimuli were assigned and listed online during the ongoing 
behavioral task. This enabled us to present N stimuli as F 
stimuli in the next block (by, e.g., ignoring trial omissions). 
Whenever the required 20 trials per sample type had been 
presented, but the performance criterion had not yet been 
met, we repeated previously presented sample stimuli within 
the block. These ‘repetition’ trials were excluded from later 
familiarity analyses.

Data collection and statistical analysis

Custom code written in MATLAB (Mathworks, R2018b, 
R2020b) using the Psychophysics (Brainard 1997) and 
OTBR toolboxes (Rose et al. 2008) was used to run the 
experimental paradigm and to save and analyze the behav-
ioral data. All completed trials (apart from repetition trials 
for familiarity analysis) were analyzed.

To investigate differences between session types with 
respect to initial learning of categories, we applied a χ2-test 
on the obtained learning curve slopes within the first 100 tri-
als, after removing the trials of the first block of ‘prototype’ 
sessions, as those represented a delayed match to sample 
instead of a categorization task. To do so, we binned the 
binary trial-by-trial categorization of a stimulus (1—cor-
rect; 0—false) across five consecutive trials (moving with a 
sliding window across the first 100 trials, at a step width of 
one). We counted the total amount of correct and false per 
bin, per session, per session type, and thereof calculated the 
χ2 statistic (Table S2). We considered slopes as significantly 
different between ‘prototype’ and ‘exemplar’ sessions if two 
consecutive, non-overlapping bins were individually signifi-
cant at an alpha of 0.05.

We further investigated the effect of different independent 
variables (i.e., session type, block, proportion of familiarity, 
dissimilarity, Δ-level, and familiarity) on behavioral per-
formance as the main dependent variable. Performance was 
measured as percent correct within blocks per session and 
for specific trials (e.g., the first 100 trials of each session) 
between sessions. Both of these measures were sampled 
between sessions.

To detect an effect of category experience, we performed 
a two-way ANOVA with factors session type (i.e., ‘pro-
totype’ or ‘exemplar’), block (1–5), and the interaction 
between these factors. We further analyzed the dependency 
of performance on overall similarity in ‘exemplar’ sessions 
by performing a one-way ANOVA with factor proportion 
of familiarity. To investigate effects of distinct stimulus fea-
tures, we performed a separate one-way ANOVA for the 

Fig. 4  Detailed overview of block design and trial conditions (i.e., 
sample familiarity), in ‘prototype’ and ‘exemplar’ sessions. Proto-
type: block 1 in ‘prototype’ sessions involved only the category pro-
totypes (L0). Block 2 included sample stimuli from dissimilarity level 
L1 and L2 (only novel). Block 3–6 represented full blocks, containing 
20 familiar sample stimuli that had been introduced as novel samples 
in the previous block respectively (white arrow). Novel sample stim-
uli belonged either to the same dissimilarity level as familiar samples 
(e.g., NF from L2 in block 3, orange) or to the next dissimilarity level 
(e.g., N from L3 in block 3, yellow). This pattern was maintained in 
each subsequent block. Thus, sample stimuli from specific dissimilar-
ity levels only appeared in two subsequent blocks (with the exception 
of L1 and L6). For bars on the right, dissimilarity levels are color 
coded, and the centered black line represents the category prototype. 
Exemplar: block 1 contained 20 novel stimuli that reappeared as 
familiar stimuli in block 2 (grey arrow). In the early ‘exemplar’ ses-
sions (first 28 for bird 1, and first 22 for bird 2), block 1 contained 
40 novel stimuli per category (noted as ‘*’). This was later reduced 
to 20, to increase the number of trials in later blocks. Each full block 
consisted of 20 familiar and 40 novel sample stimuli selected from all 
dissimilarity level (F samples in any given block were N samples in 
the preceding block)
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factor dissimilarity (between sample and respective category 
prototype), for both ‘prototype’ (five levels) and ‘exemplar’ 
sessions (six levels), and a one-way ANOVA for the factor 
Δ-level (dissimilarity level deviation between sample and 
matching choice stimulus in ‘exemplar’ sessions, five levels). 
The effect of sample familiarity in ‘prototype’ sessions was 
investigated by one-way ANOVAs with the factor familiar-
ity (pooled per block (i.e., F, N, and NF of the same level, 
test between blocks), and dissimilarity levels (i.e., F, N, and 
NF of the same block, test between dissimilarity levels)). 
In ‘exemplar’ sessions, effects of stimulus familiarity were 
investigated by dependent t tests. We pooled stimuli accord-
ing to dissimilarity level across the entire session (i.e., test-
ing F vs. N stimuli per dissimilarity level, irrespective of 
block) and across block 2 (i.e., testing F vs. N within block 
2, for each dissimilarity level).

As an effect size measure, we report �2 (main factor of 
one-way ANOVAs) and �2

p
 (partial �2 , for main factors 

and interaction in two-way ANOVAs), which we inter-
pret as the percentage of explained variance (PEV) by the 
respective factor. Any statement about significance fol-
lowing from post hoc comparisons between levels of an 
ANOVA used a corrected alpha level, applying Tukey’s 
honestly significant difference procedure in MATLAB. 
Other statements of significance were made based on 
appropriate corrections of the alpha level using the Bon-
ferroni method.

We conducted Bayesian statistics for all t tests and 
ANOVAs using the open-source data analysis software 
JASP (JASP Team 2023). Support for null models (i.e., 
assuming no factor driven differences) and for factor 
driven models is reported for each individual analysis. 
To quantify support, we report Bayesian factors for either 
the null model  (BFnull), or the factor driven model  (BFM), 
depending on which model had higher support given the 
observed data. All tested models were given equal prior 
probability, the resulting posterior probability given the 
observed data (P(model|data)) is reported for the more 
probable model. For analyses with only two competing 
models the posterior probability of the less probable model 
can thus be inferred.

Results

Birds categorized session‑unique stimuli 
demonstrating fast initial learning due to explicit 
category prototypes

Our jackdaws gained extensive experience in categoriz-
ing arbitrary RUBubble stimuli under two distinct learn-
ing approaches. In total, bird 1 and bird 2 performed 

24,317 and 28,960 prototype trials (an average of 458.81 
(± 45.92) and 490.85 (± 51.18) trials per session; across 
53 and 59 sessions, respectively), and 28,960 and 26,750 
exemplar trials (an average of 477.85 (± 35.21) and 514.42 
(± 39.68); across 60 and 52 sessions, respectively). Each 
session contained two session-unique sets of RUBubble 
stimuli belonging to categories C1 and C2. In ‘prototype’ 
sessions, the birds initially experienced each category’s 
de facto prototype and encountered members of either 
category with gradually reduced similarity from their 
respective prototype. In ‘exemplar’ sessions, the birds 
were confronted with stimuli representing the full range 
of possible similarities within their respective category but 
never encountered the actual prototype.

The number of blocks per session was dependent on the 
behavioral performance with a given stimulus set and, to 
some extent, reflected the respective stimulus set difficulty. 
Overall, both birds reached the higher blocks (i.e., ≥ 4) 
in most experimental sessions (Fig. S1a, b, for compa-
rability, our analysis included only sessions in which the 
birds reached at least block 4). In ‘prototype’ sessions, 
the birds generally correctly categorized sample stimuli 
from dissimilarity levels up to L4 (i.e., block 4/5, 88.33% 
and 88.06% of all ‘prototype’ sessions for birds 1 and 2, 
respectively). Similarly, in ‘exemplar’ sessions, bird 1 
most commonly reached block 4 or 5 (73.17% of sessions), 
and bird 2 most commonly reached block 3 or 4 (73.68% 
of sessions; note that in ‘exemplar’ sessions, all blocks 
contained stimuli from all six dissimilarity levels, i.e., 
up to L6). Both birds successfully categorized unfamiliar 
RUBubble category sets in individual sessions (indicated 
by reaching the higher blocks) with either prototype- or 
exemplar-based approach without showing a chronological 
dependence on session (Fig. S1 c & d).

We tracked the birds’ performances in individual ses-
sions with learning curves showing the cumulative number 
of correct responses (Fig. 5a). Learning curve slope was 
generally smaller (closer to chance) in the earlier blocks 
of ‘exemplar’ sessions (Fig. 5a, right), in comparison with 
initially very high performance in ‘prototype’ sessions 
(Fig. 5a, left). Across all sessions, the average learning 
curve slope was slightly higher in ‘prototype’ than ‘exem-
plar’ sessions throughout the first 100 trials (Fig. 5b, sig-
nificant differences in learning curve slopes between ‘pro-
totype’ and ‘exemplar’ sessions indicated by black bars, 
bird 1: all �2

(1)
≥ 4.4291, all p ≤ 0.0353, bird 2: all 

�2

(1)
≥ 4.2855, all p ≤ 0.0384, see Table  S3 for full 

results). At the end of both session types, this difference 
disappeared (average slope in last 100 trials per session, 
Fig. 5b, see supplementary Table S3 for full results). The 
overall decrease of learning curve slope towards the end 
in all sessions could have been due to a general decrease 
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in motivation owing to, for instance, saturation (compari-
son of slope for the f irst  vs.  last  100 tr ials: 
𝜒2

(1)
= 113.22, p < 0.0001,  and𝜒2

(1)
= 189.37, p < 0.0001, , 

for birds 1 and 2, respectively).

Behavior suggests prototype‑based categorization 
over memorization of individual stimuli

We aimed to characterize the different learning processes in 
the formation of novel categories based on disparate stimulus 
set variability with two distinct approaches, i.e., prototype-
based and exemplar-based categorization. When evaluating 
a novel stimulus following a prototype strategy, the compari-
son to the central prototype is the main factor determining 
category membership (Bowman et al. 2020). Thus, categori-
zation performance should be higher for stimuli that are more 
similar to the prototype. We visualized the performance per 
sample dissimilarity level in ‘prototype’ sessions and calcu-
lated an ANOVA with factor dissimilarity level to quantify 
the effect on categorization performance. Both birds showed 

a substantial decrease in performance with decreasing simi-
larity between sample and corresponding prototype (Fig. 6a, 
b, left subplots, F4,244 = 11.17, p < 0.0001, 𝜔2 = 0.1405, 
P ( M | d a t a )  >  0 . 9 9 9 ,   B F M  >  1 0 0 0 ,  a n d 
F4,263 = 22.38, p < 0.0001, 𝜔2 = 0.2419,  
P(M|data) > 0.999,  BFM > 1000). It is important to note 
that dissimilarity level was confounded with trial number 
in ‘prototype’ sessions, since most dissimilar stimuli were 
only present towards the end of a session. Thus, the effect 
of general motivational state of the animal might have been 
part of the performance decline (see Fig. S2 and Table S1 
for details). However, the effect of dissimilarity was already 
present for intermediate levels in the middle of the session, 
which indicates a strong effect that was unlikely to be driven 
solely by motivation.

Learning to categorize from multiple exemplars involves 
memorization of individual stimuli (Medin and Schaffer 
1978; Nosofsky 1986). In an exemplar-based strategy, novel 
sample stimuli are compared to all previously encountered 
and memorized exemplars of each category instead of a 
central prototype. Thus, performance should be better for 

Fig. 5  Performance increase was steeper in ‘prototype’ sessions. a 
Cumulative number of correct trials throughout exemplary ‘proto-
type’ (bird 1, left) and ‘exemplar’ (bird 2, right) sessions. In ‘proto-
type’ sessions, the initial performance was generally higher in com-
parison with ‘exemplar’ sessions. Diagonal dotted lines represent 
perfect and chance performance (100% vs. 50% correct). Transitions 
between distinct blocks are indicated by the vertical dashed lines. 
Grey shading indicates trials in which the required number of trials 
per condition was reached; however, performance within the last 20 
trials still below 80% correct. The final block reached was the  5th in 
both example sessions. b General overview of learning curve slopes 
for each bird within the first and last 100 trials of ‘prototype’ (dark 
grey) and ‘exemplar’ (light grey) sessions. The average slope in 

‘exemplar’ sessions was below that of ‘prototype’ sessions for both 
birds within the first 100 trials, indicating a slower initial learning. 
This difference disappeared towards the end with similar learning 
curve slopes throughout the last 100 trials in ‘prototype’ and ‘exem-
plar’ sessions. Perfect performance would be reflected in a learning 
curve slope of 1, chance performance in a slope of 0.5. Slope was cal-
culated as first derivative of each learning curve using a sliding win-
dow of 5 trials, and then averaged across sessions and visualized as 
mean ± SEM (block 1 of ‘prototype’ sessions was excluded from this 
analysis as it represented no true categorization task). Black bars at 
the bottom indicate significant differences, based on a χ2-test. Bird 1 
left, n = 53 and 60 sessions; bird 2 right, n = 59 and 52 sessions (‘pro-
totype’ and ‘exemplar’, respectively)
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stimuli that are more similar to already encountered exem-
plars. To investigate this, we analyzed performance based 
on the similarity of a given sample to all previously seen 
stimuli (focusing on trials 11–30). To obtain an estimate of 
the overall similarity between sample and already presented 
stimuli, we counted how many times the dissimilarity level 
of the current sample was already used either as sample or 
choice stimulus. From this, we calculated the proportion of 
familiarity per level as approximation of overall similarity 
(by dividing counts through total number of stimuli used). 
Then, we computed the mean performance as a function 
of the estimated proportion of familiarity across all ‘exem-
plar’ sessions for trials with the same sample dissimilar-
ity level and proportion of familiarity. We hypothesized 
that, if birds were relying on exemplars, the performance 
should increase with higher proportions of already encoun-
tered, similar stimuli. However, we found that the propor-
tion of previous stimuli with the same dissimilarity level 
as the current sample did not affect performance (one-way 
ANOVA of proportions of familiarity, F5,26 = 0.93, p = 0.48, 

P(null|data) = 0.777,  BFM = 3.488 and F5,23 = 1.45, p = 0.24, 
P(null|data) = 0.657,  BFM = 1.917 Fig. 7).

Another indication for the use of memorized exemplars 
would be an improved performance for familiar, relative to 
novel stimuli. Previous studies demonstrated a positive effect 
of stimulus familiarity on exemplar-based categorization 
(Medin and Schaffer 1978). Thus, familiarity of a stimulus 
should have a beneficial effect in ‘exemplar’ sessions, but 
virtually no effect in ‘prototype’ sessions, which primarily 
rely on the similarity relative to the category prototype. We 
analyzed performance separately for sample familiarity in 
‘prototype’ sessions (Fig. S4, one-way ANOVA with factor 
familiarity, all F ≤ 2.05, all p > 0.05, see Tab. S4 for detailed 
results) and ‘exemplar’ sessions (Fig. S5, dependent t test 
per dissimilarity level, all t ≤|1.37|, all p > 0.05, see Table S5 
for detailed results). We found no significant difference 
between familiar and novel stimuli in either session type, for 
any bird, or any dissimilarity level (at Bonferroni-corrected 
alpha level). The birds instead showed a general, substan-
tial effect of dissimilarity level (reduced performance due 

Fig. 6  Categorization performance depended on sample dissimilarity 
level irrespective of the learning approach. a, b Categorization per-
formance in ‘prototype’ sessions (dark grey) decreased with increas-
ing sample dissimilarity level for both birds. Performance was cal-
culated per session and dissimilarity level, and then averaged across 
all ‘prototype’ sessions. ‘Exemplar’ sessions (light grey) showed a 
similar dependency. The effect of dissimilarity level on performance 
was smaller but still present, even though no explicit prototype was 
shown. c, d Categorization performance in ‘exemplar’ sessions was 

mostly independent of the dissimilarity deviation between sample and 
matching choice stimulus (Δ-level). Performance was calculated per 
session and Δ-level per trial, and then averaged across all ‘exemplar’ 
sessions. e, f The similarity of match and choice stimuli in ‘exemplar’ 
sessions did not affect performance (Δ-level), whereas sample dis-
similarity level influenced performance to a similar degree in ‘pro-
totype’ and ‘exemplar’ sessions (level). Bird 1 top row, n = 53 and 60 
sessions; bird 2 bottom row, n = 59 and 52 sessions (‘prototype’, and 
‘exemplar’, respectively)
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to higher dissimilarity) but no differences between familiar 
and novel stimuli. Even in the first full block of ‘exemplar’ 
sessions (i.e., block 2, containing only relatively few stim-
uli), the factor familiarity did not become significant (Fig. 
S6, dependent t test per dissimilarity level, all t <|1.61|, all 
p > 0.05, see Table S6 for detailed results). Thus, it appears 
that our birds did not use stimulus familiarity to categorize 
RUBubble stimuli in ‘exemplar’ sessions.

Overall, we found no evidence for a dependency of 
performance on the similarity to previously seen exem-
plars or their familiarity. This is in contrast to what would 
have been expected from an exemplar-based approach. As 
an alternative strategy, the birds could have made their 
categorization decision based on the similarity between 
sample and matching choice stimulus per trial (a common 
behavior in delayed match to sample tasks). Therefore, 
we analyzed if the similarity between sample and match-
ing choice stimulus affected categorization performance, 
expecting a higher performance if both stimuli belonged 
to the same or adjacent dissimilarity levels. We calculated 
the performance per absolute dissimilarity level differ-
ence (Δ-level) between sample and match across all blocks 
in ‘exemplar’ sessions. Performance was significantly 
affected by the Δ-level between sample and match for bird 
1 ( F5,354 = 2.81, p = 0.0167, �2 = 0.0245, P(M|data) = 0.434, BFM = 0.766 ) 
but not for bird 2 ( F5,306 = 1.91, p = 0.0932,�2 = 0.0143,

P(null|data) = 0.844,BFnull = 5.410, Fig. 6c, d). We further 
investigated if the effect of sample-to-choice dissimilarity 
might have been limited to the early blocks (1–3), by ana-
lyzing the performance per Δ-level in each block separately. 

However, in all blocks and across the entire session, the per-
formance was quite similar for each absolute Δ-level devia-
tion between sample and match, and there was no significant 
effect for any of the blocks (Table 1, Fig. S7).

Birds constructed an implicit prototype 
from a subset of category exemplars within the first 
few trials

Another possible strategy would be to construct an implicit 
prototype from the subset of exemplars already encountered. 
To investigate if our birds followed this approach, we ana-
lyzed their performance in ‘exemplar’ sessions as a func-
tion of sample dissimilarity level (following the ‘prototype’ 
session analysis from Fig. 6a, b). We further quantified the 
effect of dissimilarity level within all completed blocks in 
all ‘exemplar’ sessions performing a one-way ANOVA with 
factor level.

Overall, we found that dissimilarity to the cat-
egory prototype significantly affected categoriza-
tion performance in ‘exemplar’ sessions (similar 
to ‘prototype’ sessions, Fig.  6 a & b right subplots, 
F4,295 = 11.01, p < 0.0001, 𝜔2 = 0.1178, P(M|data) > 0.999, 
 BFM > 1000 and F4,255 = 10.32, p < 0.0001, 𝜔2 = 0.1253, , 
P(M|data) > 0.999,  BFM > 1000). The decline in performance 
in ‘prototype’ sessions had been larger, but nonetheless was 
also present and significant in ‘exemplar’ sessions (compare 
performance and effect size per dissimilarity level in ‘proto-
type’ and ‘exemplar’ sessions, Fig. 6a, b, e, f). The decrease 
of performance with increasing dissimilarity became more 

Fig. 7  Categorization performance was independent of the overall 
similarity between sample and all previously presented stimuli. Over-
all similarity was calculated per trial including trials 11 to 30 of each 
‘exemplar’ session. For example, in trial 11, the birds already encoun-
tered a total of 30 stimuli (10 sample and 20 choice stimuli). The 
occurrence of each dissimilarity level (L1–L6) was counted in all pre-
vious trials. For example, if counted quantities were 3, 5, 5, 6, 7, and 
4 for L1, L2, L3, L4, L5, and L6, respectively, then L5 would have 
the highest proportion of familiarity (23.33%). If our birds were com-
paring the current sample to all previous stimuli, we would expect a 
higher performance for a sample belonging to L5 compared to one 

from L1, because the bird already encountered more stimuli from L5 
(L5 sample with higher overall similarity relative to all previously 
encountered exemplars). Performance was averaged across all trials 
featuring the same proportion of familiarity for a given dissimilarity 
level and binned in steps of 5 percentage points, resulting in six dis-
crete values. We used this approach as surrogate to estimate the effect 
of known exemplars. We found that the average performance of both 
birds was independent of the overall similarity of each dissimilarity 
level. See Fig. S3 for a detailed visualization including SEM. a bird 
1, n = 60 sessions; b bird 2, n = 52 sessions
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pronounced throughout ‘exemplar’ sessions (Fig. 8a, b), i.e., 
effect size increased over the first three blocks for bird 1 
(0.0610, 0.1584, and 0.0851, for blocks 1, 2, and 3, respec-
tively, Fig. 8c) and for bird 2 (0.0528, 0.0882, and 0.0880, 
for blocks 1, 2, and 3, respectively, Fig. 8d). In addition, 

sample dissimilarity level explained a higher percentage of 
performance variance compared to Δ-level (dissimilarity-
level deviation between sample and match) already from the 
first block (Fig. 6e, f). For both birds and in each block, the 
relevance of dissimilarity level difference between sample 

Table 1  Overview of statistical 
results of separate one-way 
ANOVAs testing the effect of 
Δ-level per block in ‘exemplar’ 
sessions

There was no significant effect for any block at a Bonferroni-corrected alpha level of 0.005. Bayesian sta-
tistics indicate good support for the null model (null|data), and only moderate support for the alternative 
model of Δ-level (M|data) in case of block 2 of bird 2

Block Bird 1 Bird 2

1 F5,349 = 2.16, p = 0.0576, �2 = 0.0161, F5,306 = 1.08, p = 0.3697, �2 = 0.0013

P(null|data) = 0.838, BFnull = 5.181 P(null|data) = 0.960, BFnull = 23.805

2 F5,354 = 1.22, p = 0.2979, �2 = 0.0031 F5,306 = 2.93, p = 0.0134, �2 = 0.0300

P(null|data) = 0.963, BFnull = 25.907 P(M|data) = 0.580, BFM = 1.382

3 F5,354 = 1.50, p = 0.1892, �2 = 0.0069 F5,306 = 0.83, p = 0.5274, �2 = −0.0027

P(null|data) = 0.948, BFnull = 18.066 P(null|data) = 0.978, BFnull = 43.838

4 F5,346 = 0.51, p = 0.7686, �2 = −0.0070 F5,297 = 0.67, p = 0.6498, �2 = − 0.0055

P(null|data) = 0.990, BFnull = 98.405 P(null|data) = 0.979, BFnull = 46.218

5 F5,145 = 0.14, p = 0.9817, �2 = −0.0292 F5,69 = 0.28, p = 0.9216, �2 = − 0.0503

P(null|data) = 0.980, BFnull = 49.285 P(null|data) = 0.941, BFnull = 16.016

Fig. 8  Performance in ‘exemplar’ sessions also depended on sample 
dissimilarity level. a, b Performance was dependent of sample dis-
similarity level in each block within ‘exemplar’ sessions. Already 
the first block showed an overall decrease in performance due to 
increasing dissimilarity between sample and category prototype. c, d 
PEV values visualize the proportion of variance per block that can 
be explained by sample dissimilarity level. e, f Both birds showed an 

increase in average performance throughout the first block in ‘exem-
plar’ sessions for stimuli from all six levels. Unexpectedly, the perfor-
mance of bird 1 exhibited level-dependent differences already within 
the first third of ‘exemplar’ sessions. The average performance was 
calculated per level within the first, second, and third part of block 1 
in ‘exemplar’ sessions (mean ± SEM is shown). Bird 1 top row, n = 60 
sessions; bird 2 bottom row, n = 52 sessions
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and match was generally much smaller than that of sample 
and category prototype. Thus, already with limited experi-
ence with each category set, both birds successfully formed a 
characteristic internal representation of the underlying cate-
gory prototype and used it for the decision of category mem-
bership. This suggests that both animals created a category 
prototype based on the different exemplars they encountered 
in ‘exemplar’ sessions to use the similarity relative to this 
one central stimulus for categorization.

However, it still remains unclear if the birds initially 
relied on exemplars and later switched to an internal pro-
totype. To visualize the emergence of a dependency on an 
internal prototype, we analyzed the initial learning of each 
novel stimulus set focusing on the first block per ‘exem-
plar’ session. An increase in performance throughout 
the first block was apparent in the behavior of both birds 
(Fig. 8e, f). Both improved in categorizing novel RUBub-
ble stimuli from all six dissimilarity levels. Interestingly, 
already within the first third of block 1, sample dissimilar-
ity level differentially affected the performance of bird 1 
(  F5,345 = 3.37, p = 0.0055, �2 = 0.0327,P(M|data) = 0.722, BFM = 2.593 ) , 
but not for bird 2 ( F5,303 = 1.86, p = 0.1005, �2 = 0.0138,

P(M|data) = 0.138, BF
M
= 0.160).

Discussion

We trained two jackdaws on a delayed match to category 
paradigm using a novel, artificial stimulus type, RUBub-
bles. Both birds learned to differentiate between two ses-
sion-unique categories following a prototype- or exemplar-
based learning approach. Performance in either session 
type depended most on the similarity between sample and 
category prototype, suggesting a prototype-based strategy 
for categorization. Overall, our birds appeared to rely on 
a central category prototype, irrespective of the learning 
approach. More precisely, the similarity to the prototype 
explained categorization performance best, regardless of if 
a prototype was directly presented (as the choice stimulus 
in ‘prototype’ sessions) or had to be inferred based on a 
subset of exemplar stimuli (‘exemplar’ sessions). This pref-
erence for a specific strategy could potentially be ascribed to 
our stimulus set composition or could reflect a general bias 
towards prototype category representations.

Stimulus variability affected initial learning 
but not generalization performance

Prototype- and exemplar-based sessions differed regarding 
the stimulus composition; however, behavioral results from 
the two learning procedures were surprisingly similar. The 
full range of category members was presented already within 
the first trials of ‘exemplar’ sessions (i.e., samples from all 

dissimilarity levels). Such higher stimulus variability was 
reported to “help in identifying task-relevant dimensions and 
establishing correct decision boundaries” (Raviv et al. 2022, 
p. 473), which can facilitate categorization (Hahn et al. 2005; 
Wahlheim et al. 2012). Therefore, we expected a higher gen-
eralization performance (i.e., a better performance for more 
diverging sample stimuli) and a generally more flexible, 
overarching category representation arising from exemplar-
based learning. Highly variable (and thus potentially more 
representative) input was shown to result in a more general 
and robust generalization performance facilitating more 
abstract representations (Posner and Keele 1968), however, 
at the cost of slower initial learning (Raviv et al. 2022). For 
example, a beneficial effect of stimulus set variability was 
previously reported in children (Xu and Tenenbaum 2007; 
Mather and Plunkett 2011). In contrast, less variable input 
allows fast initial learning but reduced generalization due to 
narrow category inclusion boundaries (Raviv et al. 2022). 
In our prototype approach, the birds experienced category 
boundaries successively moving outwards from a central 
prototype (i.e., via the increase in sample dissimilarity level 
relative to the prototype, Fig. 3). Thus, they constantly had 
to update their presumed category boundaries (or the lowest 
level of similarity that still represented the same category) 
to incorporate more diverging category members. We found 
faster initial learning due to lower variability in both birds 
(‘prototype’ sessions). However, only one bird showed a 
minor beneficial effect on subsequent generalization per-
formance (following high stimulus variability in ‘exemplar’ 
sessions). The complete lack of this observation in the other 
bird could potentially be attributed to its overall higher per-
formance on either session type (Fig. 6 top).

Prototype‑based categorization results 
from previous categorization experience 
and category structure

Another factor influencing categorization behavior is pre-
vious experience. Our birds were trained for a prolonged 
period to categorize RUBubble stimuli (with novel sets 
per session) and thus most likely learned to ignore stimu-
lus identity in favor of stimulus category (Bowman et al. 
2020). Ignoring stimulus identity argues against an exem-
plar-based category representation which would require an 
identification of individual category members (Nosofsky 
1987). Initial training on RUBubble categories involved only 
prototype-based sessions with the exemplar-based protocol 
as secondary task variation. This could have biased our birds 
towards a prototype-based categorization strategy. Further-
more, category structure has a substantial influence, showing 
a clear advantage of prototype representations for percep-
tually coherent categories (Smith et al. 2008; Smith 2014; 
Bowman and Zeithamova 2020). Our RUBubble categories 
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were created from one central category prototype per cat-
egory, using increasingly diverging parameter ranges (see 
Fig. 1). Thus, they were always (by design) defined in terms 
of graded perceptual similarity and members could be clas-
sified purely based on similarity to the respective category 
prototype. This inherent category structure was similar in 
‘prototype’ and ‘exemplar’ sessions. The close perceptual 
similarity within some RUBubble category sets could fur-
ther have discouraged our birds to differentiate individual 
category members (Smith et al. 2008).

The number of category members can also influence 
which strategy is favored. A large number of complex stim-
uli support a prototype-based strategy (Jitsumori and Delius 
2001; Minda and Smith 2001). We overall used the same 
number of unique RUBubble stimuli in both ‘prototype’ and 
‘exemplar’ sessions (distinct blocks with slightly differing 
stimulus numbers, see Fig. 3), which quickly made memori-
zation of individual stimuli very demanding. Therefore, the 
stimulus sets we used, together with the birds’ training his-
tory, could have biased our birds to adopt a prototype-based 
strategy. This might also explain why we found no effect of 
stimulus familiarity in general (not even at the beginning 
of ‘exemplar’ sessions, when the low number of observed 
stimuli would have made such a strategy feasible; Fig. S6). 
Consequently, it was both possible and the most effective 
strategy to construct a category prototype in ‘exemplar’ ses-
sions (something the birds potentially learned during their 
prolonged training experience).

We did not implement a model-based approach to ana-
lyze our results. Due to the high number of dimensions in 
our stimulus design (i.e., with respect to (dis-) similarity of 
stimuli to their respective category prototype, and to the pro-
totype of the alternative category), such an approach turned 
out as not feasible. With appropriate changes in stimulus 
design, a model-based analysis could give us more detailed 
information, in particular about exemplar-based categori-
zation. This line of analysis will be required in the future 
to comprehensively address questions about differences 
between potential prototype- and exemplar-based strategies.

Prototype representations as default strategy?

Categorization of information that has to be encoded and 
maintained in memory helps to efficiently reduce the pro-
cessing amount and effectively mitigates the effect of noise 
on working memory representations (Olsson and Poom 
2005; Panichello et al. 2019). If the details of individual 
items are irrelevant to guide future behavior, it would be 
advantageous to focus only on the diagnostic aspects of 
stimuli that identify their category (Olsson and Poom 2005; 
Smith et al. 2010; Smith 2014). Our results suggest that 
when confronted with few trials of only a subset of cate-
gory exemplars, both birds formed an approximation of the 

category prototype, focusing on the overall category instead 
of individual stimuli. Thus, they quickly adopted the most 
efficient strategy to categorize our artificial RUBubble cat-
egories. The prototype advantage we found could indicate 
a general bias towards prototype representations that goes 
beyond the detailed aspects of our stimulus set. Most ecolog-
ically relevant categories follow a similarity-based or family-
resemblance structure (e.g., (Smith et al. 2010)). Therefore, 
defaulting to prototype-based representations is likely adap-
tive over rote learning of myriads of individual exemplars. 
An almost instantaneously emerging prototype representa-
tion based on the experience of only few category exemplars 
as we have found with our jackdaws has been shown before 
(Smith 2014; Tiedemann et al. 2022). Prototype representa-
tion as a default and most efficient categorization strategy 
has been reported in primates (Smith et al. 2008, 2010), 
pigeons (Cook and Smith 2006), humans (Minda and Smith 
2001; Smith and Minda 2002; Cook and Smith 2006; Smith 
et al. 2010; Bowman et al. 2020), and even formal computer 
simulations (Smith 2014). This led to the conclusion that a 
default prototype representation might be present in several 
vertebrate evolutionary lines (Smith et al. 2016).

A potential issue concerning categorization abilities 
shown for various animal species is that they have often 
relied on training of specific categories across multiple ses-
sions. For example, following extensive training, excellent 
categorization abilities in pigeons were shown to range from 
similarity-based categorization to the formation of abstract 
concepts (e.g., (Levenson et al. 2015; Peissig et al. 2019); 
Picasso vs. Monet paintings: (Watanabe et al. 1995; Ander-
son et al. 2020), numerosity: (Scarf et al. 2011), same–differ-
ent: (Katz and Wright 2006), word non-word orthographic 
processing: (Scarf et al. 2016), behavioral meaning: (Kirsch 
et al. 2009), concept ‘human’: (Herrnstein and Loveland 
1964)). Our experimental approach required learning to 
categorize complex artificial stimuli within individual ses-
sions. Therefore, we decided to probe categorization learn-
ing in jackdaws (members of the corvid family, excellent at 
mastering cognitively challenging categorization tasks: (Veit 
and Nieder 2013; Ditz and Nieder 2016)). We can now add 
successful categorization of arbitrary and complex stimuli 
in single experimental sessions to the cognitive capabilities 
of corvids. In our study, a prototype-based categorization 
occurred already after very short exposure to novel catego-
ries, mirroring findings in humans and computer simulations 
(e.g., (Smith 2014; Tiedemann et al. 2022)). Our behavioral 
analyses were limited by our stimulus design that required 
us to drastically reduce complexity. Thus, we might not 
have been able to sufficiently differentiate between indi-
vidual stimuli to detect an exemplar representation of the 
very first few stimuli. We therefore advise caution to rule 
out exemplar-based processes. Investigating categorization 
in jackdaws offers the advantage of providing a valuable 
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comparative perspective enabling us to study categorization 
strategies in highly visual animals whose brain evolution dif-
fers profoundly from mammals (for example with regard to 
the organization of pallial regions into nuclei instead of the 
layered neocortex (Clark and Colombo 2020)). Examining 
the neuronal basis supporting categorization learning would 
be highly informative, for instance to resolve the interplay 
of prototype- and exemplar-based processes, which has been 
studied in humans (Bowman et al. 2020). The visual system 
of birds has gathered substantial interest in this regard as it 
offers a clear structure and hierarchy of processing stimuli 
for categorization (Pusch et al. 2022). In humans, different 
brain areas within the categorization network were shown to 
be involved in either prototype (e.g., ventromedial prefrontal 
cortex and anterior hippocampus) or exemplar representa-
tions (e.g., inferior frontal gyrus and lateral parietal cortex) 
(Bowman et al. 2020). Bowman et al. (2020) were able to 
identify both representations in a single study, however, they 
found a clear prototype advantage in the final task. Yet, some 
authors have also argued for exemplar representation as a 
secondary process, that would be shaped following suffi-
cient previous experience with the category (e.g., (Minda 
and Smith 2001)) and thus only found later on. Neverthe-
less, additional electrophysical recordings within the avian 
categorization network could further our understanding of 
categorization strategies in jackdaws to investigate the exist-
ence of (prospective) encoding of category prototypes or 
individual representations of specific exemplars.

Category exceptions and stimulus identification 
may encourage non‑prototype strategy

Two potential changes in our experimental design could be 
implemented to mitigate the bias towards a prototype-based 
strategy in future experiments. Prototype representations 
are based on similarity relations, characterized by indistinct 
category boundaries, and thus largely unsuitable for cor-
rect exception classification (Cook and Smith 2006; Smith 
et al. 2010, 2016). Introducing exception stimuli whose cat-
egory membership must be learned by rote could be used 
to weaken the bias towards a prototype representation in 
our paradigm by favoring an exemplar-based approach 
(although previous studies in monkeys failed to bias their 
subjects reliably towards exemplar-based strategies with 
only a few stimuli (prototype-exception task) (Smith et al. 
2010)). Exemplar memorization could further be enhanced 
by introducing additional probe trials focusing on the work-
ing memory representation of distinct stimuli (i.e., delayed 
match to sample trials with both choice stimuli matching 
the category), reducing the number of stimuli, or repeatedly 
present individual sample stimuli (Smith et al. 2008).

With our stimulus generation, we have controlled the 
similarity relative to the corresponding category prototype 

(via the differentiation of specific dissimilarity levels); 
however, the similarity of individual stimuli to the other 
category prototype remains ambiguous (see Fig. 1d). This 
complicates the interpretation of results and the application 
of categorization models. One possible solution for future 
studies could be the use of a continuous category created 
from two RUBubble stimuli serving as category prototypes. 
In this continuum, a decreasing similarity to category A 
would always be linked to an increasing similarity relative 
to category B (Apostel and Rose 2021). By removing stimuli 
equidistant to both category prototypes, one could then cre-
ate a clear boundary despite the initial continuum.

Conclusion

We showed that learning of novel, artificial categories was 
dependent on the specific experience with individual cat-
egory stimuli. Jackdaws consistently used a central proto-
type to judge category membership, regardless of whether 
this prototype was used to introduce distinct categories or 
had to be created from multiple exemplars. This default 
prototype assumption in early categorization learning was 
similar to earlier findings in various human and animal 
subjects (monkeys, pigeons), and might reflect a predomi-
nant category structure. Just as humans and pigeons, jack-
daws might exhibit an additional exemplar representation 
of individual stimuli if required by the specific situation. 
Generally, the behavior of jackdaws reflected a central 
category prototype as the most adaptive, efficient, and 
parsimonious way to represent RUBubble categories (in 
agreement with the specific task demands).
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