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Abstract
Neural representations are internal brain states that constitute the brain’s model of the external world or some of its features. 
In the presence of sensory input, a representation may reflect various properties of this input. When perceptual information 
is no longer available, the brain can still activate representations of previously experienced episodes due to the formation 
of memory traces. In this review, we aim at characterizing the nature of neural memory representations and how they can 
be assessed with cognitive neuroscience methods, mainly focusing on neuroimaging. We discuss how multivariate analysis 
techniques such as representational similarity analysis (RSA) and deep neural networks (DNNs) can be leveraged to gain 
insights into the structure of neural representations and their different representational formats. We provide several examples 
of recent studies which demonstrate that we are able to not only measure memory representations using RSA but are also 
able to investigate their multiple formats using DNNs. We demonstrate that in addition to slow generalization during con-
solidation, memory representations are subject to semantization already during short-term memory, by revealing a shift from 
visual to semantic format. In addition to perceptual and conceptual formats, we describe the impact of affective evaluations 
as an additional dimension of episodic memories. Overall, these studies illustrate how the analysis of neural representations 
may help us gain a deeper understanding of the nature of human memory.

Keywords Memory · Neural representations · Representational similarity analysis · Representational formats · Deep neural 
networks

Introduction: why should we assume 
representations?

When we think back to what we did yesterday, we are usu-
ally able to literally picture how a specific episode looked 
like, and perhaps also how it sounded, smelled, and felt. This 
ability to form a mental image or internal representation 
plays a crucial role for both re-experiencing the past and 

making plans for the future (Schacter and Addis 2007; Bonn-
ici et al. 2012; Cheng et al. 2016; Brown et al. 2016). How is 
the sensory information about this episode transformed into 
a long-lasting neural memory trace? Will different aspects 
such as visual and abstract information be stored differently 
in memory? How can we measure the representational for-
mat of memories?

First of all: What is a representation? Described as early 
as 1904 by Richard Semon (e.g., Schacter 2001), most cog-
nitive neuroscientists nowadays believe that mental rep-
resentations of past and future episodes rely on a neural 
substrate that we can localize in the brain—on the “neu-
ral representation” of the represented episode (deCharms 
and Zador 2000; Shea 2018)—this notion has not always 
been accepted. Beginning with the “cognitive revolution” 
in the 1960s, cognitivism replaced behaviorism, a scientific 
movement trying to explain behavior not only without intro-
spection, but also without assuming mental representations 
(Watson 1913; Skinner 1953; Egan 2014; Shea 2018; Newen 
and Vosgerau 2020). In contrast to behaviorism, cognitivists 
emphasized the importance of intentional states and mental 
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contents for understanding cognitive functioning. Accord-
ing to this representational view, a mental representation 
consists of (1) a vehicle, i.e., a physical entity such as a 
population of neurons that is able to represent information, 
and (2) a content, i.e., the information about the outside 
world or about internal states that is carried by the vehicle 
(Fodor 2008; Roskies 2021). In addition—and critical for 
our review—this content can have (3) different representa-
tional formats: A given experience can be either represented 
conceptually or non-conceptually (Boghossian 1995). While 
conceptual representational formats are composed of seman-
tic thoughts, non-conceptual formats rely on sensory aspects 
of an experience. Arguably, most “real-life” representations 
consist of both representational formats. For example, the 
representation of a visit to the ocean (content) comprises 
the fact that one was at a certain beach at a certain time 
(conceptual representational formats) and the feeling of sand 
beneath one's feet, the color of the water, and the heat of the 
sun (non-conceptual representational formats). The brain 
states carrying both types of information constitute the vehi-
cles of mental representations. In this review, we will focus 
on these two types of formats—perceptual and conceptual.

The representational theory of the mind assumes that cog-
nitive functioning consists of the formation and the transfor-
mation of mental representations. It will thus be important 
to develop methods to measure these representations and 
assessing their vehicle in the brain has become a core aim 
of contemporary cognitive neuroscience.

A case for internal representations

“A neural representation is a pattern of neural activity that 
stands for some environmental feature in the internal work-
ings of the brain” (Vilarroya 2017, p. 4) and focuses on par-
ticular features in the world—i.e., neural representations 
have a representational content and involve a particular rep-
resentational format (deCharms and Zador 2000). At early 
steps of sensory processing, neural representations involve 
representational formats that are more strongly correlated 
with external input than at later processing stages. For exam-
ple, Hubel and Wiesel (1959) studied how the early visual 
cortex responds to bars at different angular directions. The 
striate cortex and other cortices at the beginning of the sen-
sory processing hierarchy exhibit pronounced topographic 
organization, such that the patterns of activity are isomor-
phic with the external world (Poldrack 2021). At later pro-
cessing steps, neural representations are less strongly driven 
by sensory inputs and more strongly shaped by cognitive 
operations. A famous example of such a representation 
occurs in an experiment that Tolman described in his book 
“Cognitive maps in rats and men” (1948): A rodent explores 
a maze and may find rewards when choosing the correct 

path. After some time, the reward path is blocked, and the 
rodent is offered several different alternative paths. Tolman 
could demonstrate that rodents took the shortest alternative 
path. This is indicative of an internal representation—in this 
case of relative spatial locations—that is referred to as “cog-
nitive map”, as the behavior of the rodent cannot be solely 
explained by stimulus–response learning based on stimulus-
outcome associations.

How can we measure and analyze neural 
representations?

Out of many ideas and possibilities how stimulus informa-
tion is represented in neural structures, three prominent 
theories evolved which differ regarding the neural features 
containing representations. On the level of single neurons, 
the ‘rate coding’ hypothesis claims that the mean firing rate 
of each neuron carries information about stimuli (Adrian 
1928; DeCharms and Zador 2000). The ‘temporal coding’ 
hypothesis posits that in addition to the mean firing rate the 
precise timing of spikes is crucial (DeCharms and Zador 
2000; Gerstner and Kistler 2002; Gollisch and Meister 
2008). We consider these coding schemes on the single unit 
level as “sparse” since they focus on coding by one or a 
few neurons (Axmacher et al. 2008; Reddy and Kanwisher 
2006). In addition, the activity of large populations of neu-
rons also carries information (Deadwyler and Hampson 
1997; DeCharms and Zador 2000; Georgopoulos et al. 1986; 
Hebb 1949). This scheme of ‘population coding’ would be 
consistent with a large number of broadly tuned neurons 
that code for a given stimulus (Reddy and Kanwisher 2006).

At the population level, neural representations can be 
measured by decoding approaches which can be applied to 
various kinds of non-invasive data in human participants 
(most importantly, functional magnetic resonance imag-
ing, fMRI, or electroencephalography, EEG). In contrast to 
univariate analysis techniques which reflect overall activity 
changes a commonly used way to assess neural representa-
tions in cognitive neuroscience is multivariate pattern analy-
sis (MVPA). With the advent of MVPA it has become pos-
sible to extract representational contents and formats from 
distributed patterns of neural activity, e.g., voxel activity 
values in fMRI data or power values at various frequency 
bands, time points, and channels in EEG data (Naselaris 
et al. 2011; Hebart and Baker 2018; Kunz et al. 2018; Rosk-
ies 2021).

When two stimuli elicit similar overall activity levels 
and their informational content is reflected by the pattern 
of voxel activations instead, it may be impossible to find 
univariate activation differences. Therefore, MVPA aims at 
decoding the information that the patterns of activity carry 
about external stimuli (Haynes and Rees 2006; Kriegeskorte 



515Brain Structure and Function (2024) 229:513–529 

1 3

et al. 2008a; Mur et al. 2009; Haxby et al. 2014; Kragel et al. 
2018). Even when brain regions are relevant for processing 
a large number of different stimuli, it thus becomes possible 
to differentiate neural representations of two stimuli based 
on their activation pattern (Mur et al. 2009; Raizada et al. 
2010), which may reflect a neural population code (Kami-
tani and Tong 2005; Watrous et al. 2015; Kriegeskorte and 
Diedrichsen 2019).

The underlying assumption of MVPA is that neural repre-
sentations can be characterized via high-dimensional state-
spaces whose dimensions correspond to stimulus attrib-
utes, and that each individual representation corresponds to 
one point in this space (Haxby et al. 2014). The two most 
commonly used MVPA methods are pattern classification 
(Pereira et al. 2009) and representational similarity analysis 
(RSA; Kriegeskorte et al. 2008a; Kriegeskorte and Diedrich-
sen 2019).

RSA allows researchers to characterize the geometry of 
a representational space that can be based on various stim-
ulus features (Kriegeskorte and Kievit 2013; Haxby et al. 
2014; Kriegeskorte and Wei 2021; Roskies 2021). Impor-
tantly, RSA abstracts from the specific type of data that is 
investigated (e.g., fMRI or EEG) and consists of a matrix of 
similarities which quantifies the (dis)similarity between neu-
ral representations (Haxby et al. 2014). Hence, it becomes 
possible to analyze second-order similarities—i.e., the 
correspondence between two separate similarity matrices 
(RDMs)—of (1) neural representations measured in differ-
ent brain regions, species, or modalities, (2) neural activity 
and behavioral outcomes, or (3) neural activity and com-
putational models (Kriegeskorte et al. 2008a; Kriegeskorte 
and Kievit 2013; Haxby et al. 2014; Roskies 2021). In other 
words, RSA allows for an analysis of any kind of data pattern 
irrespective of the data format.

Implementing RSA requires the coding of neural activ-
ity as vectors, separately for the experimental conditions 
(e.g., for stimuli in an experiment). Afterwards, the repre-
sentational distances between these vectors are calculated. 
The similarity or distance measures that are most often 
used are Pearson or Spearman correlations, or Euclidean 
or Mahalanobis distance. Higher similarity corresponds to 
lower representational distance and vice versa. The result is 
a representational dissimilarity matrix (RDM; Kriegeskorte 
et al. 2008a), i.e., a matrix that reflects the similarities or dis-
tances between every stimulus (or more generally, condition) 
with every other stimulus, resulting in a nxn matrix (e.g., 
stimulus x stimulus, condition x condition). Approaches like 
multidimensional scaling allow for a mapping of this high-
dimensional representational space in lower-dimensional 
spaces (often 2D or 3D) in order to facilitate interpretation.

We now can extract information from the RDMs to char-
acterize the underlying neural representations. First, self-
similarity, sometimes also called representational fidelity or 

reliability (see Xue 2018 for review), refers to the similar-
ity of brain patterns when the same stimulus is presented 
twice. Although self-similarity most commonly refers to the 
similarity of a stimulus compared to others (i.e., to non-
self similarity), some studies use this term to denote the 
similarity between repetitions of the same stimulus (i.e., Xue 
et al. 2010). Here, we use this term to refer to the first case 
(within vs. between similarity). This tells us how faithful 
a neural representation reflects a given stimulus. Second, 
RDMs allow us to investigate the relationships between dif-
ferent stimuli, i.e., between-item similarity. This between-
item similarity may reflect the features of a stimulus that 
are represented by a given brain region—i.e., two stimuli 
with similar low-level visual features, such as spatial fre-
quencies or gratings, have similar representations in early 
visual cortices, while conceptual similarities lead to similar 
representations in association cortices (Kriegeskorte et al. 
2008a, b). Based on these differences, RSA allows unrave-
ling the representational format of neural representations. 
This method is highly flexible since many different features 
or conditions can be investigated in one experiment. One 
possible application is the investigation of human episodic 
memory, which we will describe next.

How do neural representations relate 
to memory?

An episodic memory can be conceived of as an internal rep-
resentation of a previous experience (Goldman-Rakic 1995; 
Brewer et al. 1998; Cheng et al. 2016; Vilarroya 2017). At 
the neural level, it is widely assumed that memory repre-
sentations are stored in memory traces or engrams—a term 
coined by Richard Semon in order to refer to learning-
induced alterations of brain (micro-)structure (Semon 1904, 
1909).

According to Semon, engrams are biological states that 
are objectively observable, which means that in principle, 
we can locate and manipulate them (Semon 1904, 1909; 
Josselyn et al. 2015; Kunz et al. 2018). Second, they rep-
resent specific memory contents and thus, when activated, 
lead to expression of this memory content (i.e., behaviorally 
measurable memory retrieval) (Liu et al. 2014a, b; Kunz 
et al. 2018). Moreover, they may be distributed within and 
across brain areas, an aspect that had been suggested by 
Lashley (1950) and was empirically supported for encod-
ing by Haxby et al. (2001) and for retrieval by Brodt et al. 
(2018) more than 50 years later. Each engram corresponds 
specifically and uniquely to one particular memory, and 
this relationship is stable such that a given engram, when 
activated, should always elicit the same memory (Han et al. 
2009; Liu et al. 2012, 2014a, b; Kunz et al. 2018). How-
ever, engrams or memory traces may also be transformed 
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by various factors, such as time, memory consolidation, and 
novel learning (Dudai et al. 2015).

The formation of episodic memories requires the rep-
resentation of the episode in a lasting memory trace (Xue 
2018). In humans, various characteristics of memory rep-
resentations have been associated with episodic memory 
performance: First, high amounts of self-similarity—i.e., of 
the memory representation of a particular content—predict 
subsequent memory (Xue et al. 2010; Visser et al. 2013). 
This result was found across various brain regions involving 
frontoparietal areas, the posterior cingulate cortex and sen-
sory regions that are involved in processing the respective 
stimuli (Xue 2018). Self-similarity of memory representa-
tions may either refer to situations when a particular stimu-
lus is encoded multiple times (encoding-encoding-similar-
ity) or when encoding and retrieval of the same stimulus are 
compared (encoding-retrieval-similarity), and both measures 
predict memory accuracy (Xue et al. 2010; Xue 2018; Ten 
Oever et al. 2021). Thus, higher similarity between memory 
representations of the same stimulus seems to support (rec-
ognition) memory.

Interestingly, between-item similarity has been associ-
ated with memory performance as well, although not nec-
essarily in a positive manner: Indeed, different theoretical 
frameworks and empirical results predict a memory advan-
tage either for more distinct or for more similar memory 
representations of different items. Some studies found that 
stronger discrimination between different items (i.e., higher 
distinctiveness) supports memory (LaRocque et al. 2013; 
Xue 2018). The distinctiveness hypothesis is based on the 
idea that distinctiveness reduces possible interference with 
other, similar stimuli and thereby supports memory (Kılıç 
et al. 2017). The idea of distinctiveness is closely related to 
pattern separation in the hippocampus, a process by which 
similar memories are stored as distinct, non-overlapping rep-
resentations (Bakker et al. 2008; Yassa and Stark 2011). An 
fMRI study confirmed that higher pattern distinctiveness in 
the hippocampus is indeed associated with better memory 
performance (LaRocque et al. 2013). In contrast, in perirhi-
nal and parahippocampal cortex as well as in the amygdala, 
higher between-item similarity of neural representations 
benefits memory encoding, possibly because they are inte-
grated into one unique episode that is distinct from other 
episodes (Visser et al. 2011, 2013; LaRocque et al. 2013; 
Bierbrauer et al. 2021). While these studies point to better 
memory performance with higher distinctiveness, there is 
also evidence that global pattern similarity—i.e., the simi-
larity between different exemplars of the same concept—
may support memory (Davis et al. 2014), even causing false 
alarms for new exemplars of the same concept (Wing et al. 
2020).

These results support the idea that memory represen-
tations have multiple representational formats, whose 

representational ‘geometries’ (generalized or distinct) may 
exert different influences on memory encoding. In this 
review, we define visual/perceptual representational formats 
as reflecting visual stimulus features (e.g., their colors, tex-
tures, or shapes). Conversely, we define conceptual/semantic 
formats as reflecting semantic stimulus features including 
category information. How can we quantify the representa-
tional formats and measure the degree to which a stimulus 
might be represented in a visual or a conceptual format?

Using deep neural networks as models 
of representational formats

In recent years, the field of artificial intelligence has revo-
lutionized our lives, with artificial neural network models 
(ANN) achieving near human-like performance in areas such 
as language translation (Popel et al. 2020) and car driving 
(Gupta et al. 2021) and even out-performing humans in vari-
ous complex games such as chess (McGrath et al. 2022), Go 
(Silver et al. 2017), Starcraft (Vinyals et al. 2019) or Stratego 
(Perolat et al. 2022). If ANN models are able to perform on 
a human level, can we also utilize them to better understand 
our own brain processes?

To gain insight into the transformation of visual features 
into conceptual representations, convolutional Deep Neural 
Networks (cDNNs) from object recognition (Fig. 1A) have 
become models of choice. These models process image input 
through several convolutional layers, which are connected 
sparsely, up to fully-connected layers that assign a label to 
contents of the image. Strikingly, recent multivariate stud-
ies have found the same visual hierarchy and gradient in 
feature complexity in cDNNs trained on object recognition 
as observed in the brain (Leeds et al. 2013; Khaligh-Razavi 
and Kriegeskorte 2014; Güçlü and van Gerven 2015; Yamins 
and DiCarlo 2016; Cichy et al. 2016; Wen et al. 2018). These 
results were obtained across various data modalities, ranging 
from fMRI (Güçlü and van Gerven 2015; Allen et al. 2022) 
via magnetoencephalography (MEG; Clarke et al. 2018) and 
scalp EEG (Graumann et al. 2022) to oscillations in intrac-
ranial EEG (Kuzovkin et al. 2018) and monkey single-unit 
data (Cadieu et al 2014) and even behavioral outcomes, such 
as similarity judgements (Mur et al. 2013; Davis et al. 2021).

These findings demonstrate that the internal representa-
tions on multiple levels of complexity formed by cDNNs 
are closely linked to the features that are processed along 
the ventral visual stream (VVS) (Fig. 1A). Processing of 
visual information along the VVS reveals a hierarchy from 
basic visual features to higher-order visual and semantic 
category features (Cowell et al. 2010; DiCarlo et al. 2012; 
Kravitz et al. 2013). The visual cortex processes low-level 
visual properties, such as colors, shapes, and textures, and 
neurons in these areas have small receptive field sizes that 
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lead to pronounced retinotopic specialization (Hubel and 
Wiesel 1962). As the signal progresses through the VVS to 
more anterior regions, such as the inferior temporal cortex 
(IT cortex; Kriegeskorte et al. 2008b), the fusiform gyrus 
(Clarke et al. 2011) and the lateral occipital cortex (LOC; 
Tyler et al. 2013), feature complexity and receptive field size 
increase, leading to higher-order representational formats 
involving object parts and domain-level semantic features 
(Clarke et al. 2013; Clarke 2015).

In cDNNs from object recognition, starting with low-
level features such as edges and colors in the first convolu-
tional layer, complexity increases to textures, object parts 
and finally, object categories in the last network layer. 
While early cDNN layers show similar activation patterns 
for images with shared visual features such as similar colors 
and textures (e.g., orange color of a pumpkin and of a bas-
ketball), independent of the conceptual similarity of stimuli, 
category-specific features explain similarities in later layers 
(e.g., wings, feathers and a beak for birds). Similar repre-
sentational transformations have been found along the VVS 
(Mur et al. 2013; Hebart et al. 2020), revealing that cDNN 
models from computer vision can accurately reflect neural 

representations during object recognition. Surprisingly, in 
contrast to this functional overlap, the most prominently 
used network “AlexNet” (Krizhevsky et al. 2017) contains 
one of the simplest architectures. Yet, AlexNet and other, 
shallower cDNN models such as CorNet (Kubilius et al. 
2018, 2019) are models that match neural representations 
relatively well (Nonaka et al. 2021) and show high classifica-
tion performance in object recognition. On the other hand, it 
has been demonstrated that recurrency in DNN architectures 
may further improve the match to neural representations dur-
ing object recognition (Kubilius et al. 2019; Kietzmann et al. 
2019b; van Bergen and Kriegeskorte 2020), suggesting that 
recurrent DNNs should be increasingly used in the future to 
study neural representations.

Neural representations can be mapped onto DNN feature 
spaces via RSA, using the fact that RSA reflects represen-
tational geometry independent of data modality (Fig. 1B). 
Treating DNN feature activations as patterns allows one to 
compute similarities between all pairs of stimuli in each 
layer of the DNN or model, resulting in one RDM per DNN 
layer/model. Subsequently, DNN RDMs and neural RDMs 
can be correlated and compared for their similarity structures 

Fig. 1  Linking representational formats in DNNs and in semantic 
models to representations in the human brain. A Different represen-
tational formats in convolutional deep neural networks (cDNNs) and 
deep natural language processing models (dNLPs). In cDNNs, images 
are processed with a gradient in complexity, comparable to the human 
ventral visual pathway. As in the brain, basic visual information is 
processed in the first layer (whose receptive field properties roughly 
match those of V1) and is then passed through the convolutional lay-
ers of the network, which process increasingly complex information. 
After the last convolutional layer, the connections change, as now 
each neuron is connected to each neuron in subsequent layers (fully-
connected). The network then chooses the most active (i.e., most 
likely) label in the highest layer. Early layers of the cDNN process 
edges, colors, and textures, such that e.g., animals of different catego-
ries (species) are sorted together e.g., based on their color. DNN neu-

rons in middle layers have more complex receptive fields, processing 
object features such as the beak of the flamingo or their long necks 
and legs. Late layers respond to a visual prototype of the flamingo 
and show distinct representational similarity patterns (e.g., all bears 
are sorted together, even if they differ in their low-level visual fea-
tures). While convolutional layers process lower-level sensory infor-
mation, fully-connected layers process higher-order visual features 
including object classes. In addition to the cDNN, one can use dNLP 
models to quantify the representation of semantic information, based 
on embedding vectors of words or sentences. B The neural activations 
corresponding to all pairs of stimuli can be used to generate RDMs 
for all layers of the cDNN and the semantic dNLP, which can then be 
correlated to RDMs from brain or behavioral data generated using the 
same stimuli



518 Brain Structure and Function (2024) 229:513–529

1 3

(Mur et al. 2013; McClure and Kriegeskorte 2016). Several 
visualization techniques such as multi-dimensional scaling 
(MDS; Lin et al. 2019; Fig. 1A), class activation maps (Zhou 
et al. 2015) or similarities from RDMs (Kriegeskorte and 
Golan 2019) provide information on the representational for-
mats that are processed in individual DNN layers or models. 
Linking DNN representations to neural representations thus 
allows one to examine properties of neural representations 
(e.g., in terms of brain regions, oscillation frequencies, or 
latencies) that reflect different representational formats and 
are for example responsible for the shift from perceptual to 
conceptual formats.

Many studies mentioned above employed cDNN models 
from image classification challenges to assess representa-
tional formats during neural processing. However, these 
cDNN models are limited to visual and higher-order visual 
representations, while category abstraction and many mem-
ory functions rely on conceptual representations (Clarke 
2019). More specifically, even though perceptual features 
may allow for the derivation of conceptual representations 
in a feed-forward way (Clarke et al. 2018), this process can 
be facilitated by top-down semantic knowledge (Taylor et al. 
2012; van Kesteren et al. 2013), emphasizing the need for 
models that involve semantic processing. In fact, research 
on language processing even provided evidence for multiple 
levels of semantic features, as indicated by faster perfor-
mance for general domain features compared to exemplar-
specific features (Randall et al. 2004; Macé et al. 2009; 
Devereux et al. 2018). Thus, instead of focusing on one sin-
gle cDNN model, Clarke (2019) proposed the additional use 
of deep learning models from natural language processing 
(deep Natural Language Processing models; dNLP). Previ-
ous research showed that these models can accurately reflect 
conceptual representations during object recognition in the 
VVS (Devereux et al. 2018) and even during more abstract 
tasks such as those involving narrative content (Lee and 
Chen 2022). DNLP models are trained on text input (e.g., 
wiki pages, books, user reviews) rather than images. These 
corpus-based models, such as BERT (Devlin et al. 2018), 
the Google Sentence encoder (Cer et al. 2018), Infersent 
(Conneau et al. 2017) or GPT-3 (Brown et al. 2020) assign 
a word embedding vector to each word or sentence based on 
co-occurrences of these concepts, and these vectors can then 
be used to study semantic similarities.

Taken together, although cDNN models are only very 
rough approximations to the neural processes and connectiv-
ity within the VVS, the findings reviewed above demonstrate 
that representations in DNN layers are relatively accurate 
models of the neural representations at different levels of 
abstraction, which makes them specifically interesting to 
study neural properties of and changes in representational 
format (Marblestone et al. 2016; Kietzmann et al. 2019a; 
Richards et al. 2019; Storrs and Kriegeskorte 2019; Saxe 

et al. 2021). Surprisingly, only few studies thus far employed 
DNNs to study representational formats of memory repre-
sentations. Davis et al. (2021) were among the first to apply 
visual and semantic DNN model features to investigate the 
effects of representational formats during encoding on sub-
sequent memory. Participants first viewed images of natu-
ral objects that they had to name and were then tested in 
two retrieval tasks. During retrieval, the authors separately 
made either perceptual or conceptual formats task-relevant 
by either displaying old and new images (perceptual) or the 
label of the concepts (conceptual). Using fMRI, the authors 
could show that matching of encoding representations to 
RDMs from either a visual cDNN or semantic models (tax-
onomy/encyclopedic) predicted memory performance in 
both retrieval conditions. Conceptual and perceptual formats 
recruited different brain areas though, namely the anterior 
VVS and the early visual cortex, respectively. Interestingly, 
although the two representational formats were linked to 
different brain areas depending on the retrieval task (per-
ceptual/conceptual), the performance in both tasks bene-
fited from matching with the respective other format during 
retrieval as well, suggesting that perceptual memory benefits 
from top-down information, while bottom-up visual infor-
mation facilitates conceptual memory.

The role of representational formats 
for understanding the dynamics of memory 
representations

Several findings of item-specific memory representations 
concern frontoparietal and midline regions (e.g., Baldassano 
et al. 2017; Fernandino et al. 2022; Huth et al. 2012; Lee and 
Kuhl 2016). Since these areas do not reflect sensory process-
ing, it is currently not clear why they exhibit pronounced 
stimulus specificity. In the future, DNNs trained on more 
complex objective functions than stimulus categorization 
may account for the formats in these areas. However, stud-
ies using RSA identified an important role of the VVS in 
transforming visual into conceptual representations (DiCarlo 
et al. 2012; Kravitz et al. 2013; Martin et al. 2018). This 
transformation from perceptual to conceptual representa-
tions during perception (Kriegeskorte and Kievit 2013) may 
also give rise to different representational formats of mem-
ory traces, which may rely predominantly on either percep-
tual or semantic representational formats as well. Since both 
visual and semantic formats play a role during object rec-
ognition, the question arises whether memory traces during 
the different stages of memory processing—encoding, short-
term memory maintenance, consolidation, and retrieval—
would reveal such formats as well. Already at early visual 
processing steps, top-down knowledge plays an important 
role. Typically, we do not encounter objects without any 
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prior information on their use and behavioral importance 
but using conceptual representations that are stored in long-
term memory (Tulving and Watkins 1975; Xue 2018). At 
the same time, neural representations are not stable but 
subject to transformation processes (Xue 2022). According 
to the neural-psychological-representation-correspondence 
(NPRC) by Gilboa and Moscovitch (2021) memory traces 
can occur in different forms, a given episode can be repre-
sented in an event-specific visual format, while at the same 
time containing information about schemas and semantic 
information from prior knowledge. In addition, these repre-
sentational formats may dynamically change due to various 
factors such as time after encoding, task context, goals, or 
prior knowledge, resulting in transformations between for-
mats. How are these representations formed and especially, 
how are they transformed?

One candidate framework on the transformation of 
visual information into long-term memory is based on the 
concept of semantization or gist-abstraction (Konkle et al. 
2010; Winocur and Moscovitch 2011; Linde-Domingo et al. 
2019; Lifanov et al. 2021). During semantization, sensory 
information is integrated into long-term semantic knowl-
edge through representational transformations (Paller and 
Wagner 2002; Xue 2018; Favila et al. 2020). According to 
this framework, conceptual features of a sensory input are 
selectively strengthened, while detailed sensory informa-
tion is reduced, facilitating the integration of novel expe-
riences with prior semantic knowledge. In line with this 
theory, studies found better memory performance for con-
ceptual features as compared to low-level/perceptual features 
(Bainbridge et al. 2017; Bainbridge 2019; Linde-Domingo 
et al. 2019). Memory was also improved for stimuli that 
could easily be linked with pre-existing schemas as com-
pared to those that did not match a schema (van Kesteren 
et al. 2013), and reaction times were faster for conceptual 
compared to perceptual features during recall (Lifanov et al. 
2021). Thus, semantization can be defined as a transforma-
tion from detail-rich to compressed gist-like representations, 
suggesting a change in representational format. In addition, 
one would expect a transformation of memory traces such 
that they become more similar for stimuli that share the same 
prototypical conceptual features (e.g., beak and wings of 
birds) and less similar for stimuli with similar visual details 
(e.g., red parrot and red tomato).

In this case, semantization may actually lead to an 
increase of false alarms to semantically similar lures or 
to novel exemplars of previously presented concepts. 
Indeed, Naspi et al. (2021a) found more errors for lures 
consisting of prototypical exemplars of a given category, 
indicating that enhanced gist-abstraction during encoding 
or consolidation can lead to increased false alarms at rec-
ognition. At the same time, false alarms also increased 
for lures with high visual similarity to originally encoded 

images, suggesting that not all unique visual information 
is lost after encoding. Delhaye and Bastin (2021), who 
focused on the impact of visual or semantic processing 
during encoding, found semantization to be independent 
of encoding type format. Interestingly, Naspi et al. (2021b) 
could show that both visual and semantic formats in VVS 
contributed to successful memory encoding, but categori-
cal information in regions anterior to the VVS predicted 
later forgetting. These studies demonstrate that there is no 
rigid transformation from visual to semantic formats dur-
ing encoding but an interplay between different formats at 
different steps of memory processing.

A substantial body of evidence has shown off-line replay 
of memory representations during sleep (Frankland and 
Bontempi 2005; Deuker et al. 2013; Dudai et al. 2015). 
Integration of novel experiences into prior knowledge is 
assumed to be caused by strengthening of those features that 
are shared across encoded contents (Káli and Dayan 2004; 
Lewis and Durrant 2011; Himmer et al. 2019). These results 
are in line with the idea that replay facilitates generalization 
processes (Liu et al. 2019). While sleep contributes to inte-
gration by enhancing memory for shared features of newly 
encoded content, there is also evidence for sleep to prevent 
loss of unique feature representations (Schapiro et al. 2017). 
This might indicate that not only conceptual but multiple 
representational formats, including perceptual details, are 
strengthened due to off-line replay during sleep, which in 
turn might slow down the supposed loss of visual detail over 
time.

Perceptual details might be subject to faster forgetting 
in order to promote an integration of conceptual or super-
ordinate categorical features into memory, considering that 
different representational formats of a memory trace may 
be forgotten independently (Brady et al. 2013). In line with 
supposed gist abstraction and loss of visual detail due to 
semantization, Lifanov et al. (2021) found that a perceptual-
conceptual gap (e.g., a shift from faster reaction times for 
perceptual features to faster reaction times for conceptual 
features) increased over time, suggesting faster forgetting 
of visual details while conceptual features were integrated 
into long-term memory (LTM). During retrieval, concep-
tual features were activated prior to visual detail when no 
visual input was present (Linde-Domingo et al. 2019; Davis 
et al. 2021) and were found to be involved during memory 
retrieval of both perceptual and conceptual representational 
formats (Davis et al. 2021; see above). While these results 
could lead to the wrong conclusion of a complete loss of vis-
ual detail over time, Ferreira et al. (2019) found higher neu-
ral similarities between category-related but also between 
episode-unique information, demonstrating that conceptu-
alization during semantization does not necessarily come at 
the cost of visual detail.
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Overall, these findings deliver further evidence for 
a dynamic transformation of representational formats 
(Paller and Wagner 2002; Xue 2018, 2022; Favila et al. 
2020; Liu et al. 2020, 2021). Yet, the question remains 
whether consolidation induces transformations of mem-
ory traces from one format to another (i.e., from percep-
tual to conceptual, losing all perceptual detail) or whether 
memory traces consist of multiple formats with only their 
accessibility changing across time, and depending on 
encoding tasks and/or retrieval cues. While this can be 
investigated by analyses of encoding-retrieval similarity 
(i.e., Ten Oever et al. 2021), DNNs could be used to fur-
ther investigate the underlying representational formats 
and to address the question whether these formats are 
subject to transformation or continue to coexist. In the 
next section of this review, we will take a closer look at 
how DNNs may be used to investigate such changes in 
the representational format of memory traces during the 
earliest possible stage when semantization might occur, 
i.e., directly after the offset of a stimulus, and during 
subsequent processing stages.

Beyond recognition—using DNNs 
to investigate early stages of semantization

As described above, previous research has demonstrated 
that cDNN features can be used to study representational 
formats during object recognition (Güçlü and van Gerven 
2015; Cichy et al. 2016; Kuzovkin et al. 2018; Clarke et al. 
2018). However, these studies did not assess the question of 
how these visual inputs were transformed during the con-
secutive stages of long-term memory encoding, memory 
consolidation, and long-term memory retrieval. Investigat-
ing representational formats during initial stages of memory 
formation, we could test whether the supposedly slow pro-
cess of gist-abstraction (O’Reilly et al. 2014) unfolding dur-
ing systems consolidation might happen more rapidly and 
already in earlier post-encoding stages.

A very recent study thus set out to investigate if DNN 
similarities would reflect neural similarities during a visual 
short-term memory (VSTM) task (Fig. 2A), with VSTM 
being the earliest offline processing stage following per-
ception (Liu et  al. 2020). A follow-up study (Fig.  2B) 
then tested the effects of short-term maintenance and con-
secutive transformation stages on LTM retrieval (Liu et al. 

Fig. 2  Representational formats during visual short-term memory 
maintenance and long-term memory encoding and retrieval. A Par-
ticipants saw cue-object pairs and maintained the objects during 
a long maintenance period, which was followed either by a picture 
of the same item or of a similar lure. B During a subsequent long-
term memory test, the cue word was presented, and participants were 
asked to vividly imagine the associated image. Afterwards they con-
ducted a forced choice test on the category of the image. C Analy-
sis methods: We combined RDMs from eight different layers of a 

cDNN and from a dNLP to model lower-order visual, higher-order 
visual and semantic representational formats, respectively. Model 
RDMs were then compared to corresponding RDMs from intracra-
nial EEG data during the different task periods. D During encoding, 
higher-order visual formats were gradually transformed into seman-
tic representational formats. E More pronounced semantic formats 
during encoding predicted subsequent long-term memory success. F 
Semantic but not visual formats were found during successful mem-
ory retrieval (s=seconds)
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2021) to test whether semantization already occurs during 
VSTM and whether early semantization may improve LTM 
performance.

VSTM is defined as the active maintenance of visual 
information for a short period of time in a limited capac-
ity store (Baddeley and Hitch 1974; Luck and Vogel 1997). 
Current research suggests an important role of VSTM for 
integrating information, bridging the gap between percep-
tion and long-term memory (Chota and Van der Stigchel 
2021), specifically involving regions along the VVS (Meyers 
et al. 2008; Cichy et al. 2014). Studies indicate “dynamic 
coding” with neurons carrying different information across 
the maintenance period (Stokes 2015), reflected by distinct 
representational formats. Along the VVS, these distinct for-
mats have already been observed during object recognition 
(e.g., Devereux et al. 2018). Is there evidence for different 
representational formats present already during VSTM and 
for a shift from perceptual to semantic formats prior to LTM 
retrieval?

To address this question, we first analyzed similarities 
of neural patterns during an encoding and a maintenance 
period in a delayed matching to sample task (Fig.  2A) 
while participants (presurgical epilepsy patients) under-
went intracranial EEG (iEEG) recordings (Liu et al. 2020). 
We then examined whether neural patterns during encod-
ing reappeared during maintenance and long-term memory 
retrieval (Liu et al. 2021). During the maintenance period 
of the VSTM task, we found item-specific reinstatement of 
information from two distinct time windows during encod-
ing, an early (250–770 ms post stimulus onset) and a later 
period (1000–1980 ms post stimulus onset), suggesting that 
both periods may contain different representational for-
mats. Further analyses revealed higher item-specificity for 
the late encoding time window, indicating that specifically 
late representational formats are maintained faithfully dur-
ing VSTM. Thus, neural similarity analysis revealed rein-
statement of two distinct formats, but how exactly can these 
formats be characterized?

The integration of visual input with long-term knowledge 
suggests an involvement of semantic information (Cichy 
et al. 2014; Stokes 2015), while cDNNs from object recog-
nition capture visual and higher-order visual features only. 
Thus, we decided to combine a cDNN with a dNLP model 
to investigate matching of neural representational formats 
to either visual formats from the cDNN or semantic formats 
from the dNLP model (Fig. 2C).

Current theories suggest an involvement of VSTM in 
the transformation of visual stimuli into abstract long-term 
memory representations (Meyers et al. 2008; Cichy et al. 
2014; Stokes 2015). Accordingly, we found evidence for 
visual features during stimulus encoding periods followed 
by abstract semantic representations during later process-
ing periods, indicating a transformation of representational 

formats from sensory to abstract (i.e., non-perceptual) for-
mats (Fig. 2D). Specifically, the absence of sensory informa-
tion during the later period suggests an interplay between 
bottom-up visual processing during the early and semantic 
top-down processing during later processing steps—pos-
sibly reflecting the integration of novel sensory stimuli 
into long-term memory stores (Clarke 2015; Jozwik et al. 
2017; O’Donnell et al. 2018). In addition, the presence of 
a semantic format may be beneficial in order to transform 
stimuli into a lower-dimension representation with reduced 
information content, which may provide a functional benefit: 
Conci et al. (2021) found VSTM capacity to be linked to 
participants’ prior knowledge, with higher capacity if the 
stimulus meaning was known.

Recent findings from studies using fMRI provide addi-
tional evidence of shared representational formats between 
VSTM and long-term memory retrieval (Vo et al. 2022). 
Bainbridge et al. (2021) found different levels of abstrac-
tion when comparing encoding and retrieval representations. 
Whereas both fine-grained (e.g., penguin, lion) and coarse 
(e.g., bird, feline) features were observed during encoding, 
primarily coarse features were present during recall. Specifi-
cally, their results demonstrate a shift from the VVS show-
ing peak activity during encoding to anterior areas during 
retrieval. Yet, this study does not show a complete loss of 
perceptual (e.g., fine-grained) information that would reflect 
a transformation of the same memory trace since this per-
ceptual information was still observable in some areas. 
Whereas Audrain and McAndrews (2022) also found that 
memory representations became coarser over time, inter-
estingly they found this generalization was linked to prior 
knowledge with only congruent semantic stimuli associa-
tions integrated in the medial prefrontal cortex (mPFC). This 
suggests that rapid semantization, i.e., due to congruency 
to prior knowledge, can facilitate memory transformation.

A follow-up analysis on the results during VSTM 
described above supports these findings even further (Liu 
et al. 2021): In line with our results from the maintenance 
period, we found that transformation into semantic formats 
was linked to subsequent LTM performance. Specifically, 
remembered images showed more pronounced semantic 
formats during encoding compared to forgotten images 
(Fig. 2E) and were linked to the occurrence of semantic but 
not sensory formats during retrieval (Fig. 2F). Interestingly, 
item-specific memory representations during retrieval were 
more similar to the visual short-term maintenance period 
compared to encoding. Together with better memory per-
formance when conceptual formats were abstracted during 
encoding, the findings of these studies suggest semantization 
already happening at early stages of memory (i.e., encoding 
and VSTM) which in turn leads to better long-term mem-
ory formation. Overall, there seem to be parallel generali-
zation processes during both encoding and consolidation, 
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modulated by factors such as prior knowledge, which are 
fundamental to memory formation in both humans and neu-
ral networks (Kumaran et al. 2016) and supposedly are not 
limited to post-encoding consolidation periods.

Beyond sensory formats—affective 
and contextual dimensions

In previous sections we focused on perceptual and concep-
tual formats, yet we hardly believe that these two cover the 
entirety of representational dimensions in neurocognitive 
processing (Gilboa and Moscovitch 2021). There might be 
additional, more abstract formats (e.g., involving scripts and 
schemata) or additional dimensions, such as the affective 
evaluation or the contextual embedding of an episode. When 
we think back to the example described above on a day at the 
beach, we may not only remember its multisensory aspects 
(e.g., the feeling of the sand, the sound of waves) but also 
the emotions we felt in that moment.

Indeed, there is evidence for neural representations of 
affective dimensions and categories across large-scale 
brain networks (Kragel and LaBar 2016), even spanning 
to areas along the VVS (Kragel et al. 2019). Concern-
ing memory representations of emotional contents and 
their potential contextual embedding, emotions have been 
shown to modulate memory formation via processes of 
emotional binding (Mather 2007; Yonelinas and Ritchey 
2015). Typically, emotions enhance memory (Talmi 2013; 
LaBar and Cabeza 2006), and this is particularly the case 
for negative emotions (Kensinger 2007). Interestingly, 
negative emotions seem to specifically enhance certain 
representational formats, with some studies indicating 
better accessibility of perceptual formats (Kensinger 

et al. 2006, 2007). Similar effects may occur for negative 
emotions induced by psychosocial stress, a particularly 
ecologically relevant condition (Freund et al. 2023). How 
will affective evaluation and contextual embedding affect 
neural representations of different stimuli of a stressful 
episode?

It is well established that the effects of stress on memory 
depend on the phase (Roozendaal 2002; Het et al. 2005; 
Joëls et al. 2006; Wolf 2009; Shields et al. 2017) of memory 
processing. While stress before or during encoding may have 
mixed effects, it is usually beneficial when experienced after 
encoding or during consolidation. By contrast, experienc-
ing stress shortly before or during retrieval is consistently 
detrimental to performance (de Quervain et al. 1998; Wolf 
2009; Shields et al. 2017).

In order to investigate memories of a stressful episode, we 
applied an ecologically valid experimental design in which 
stimuli are incidentally encoded during a psychosocial 
stress intervention (Wolf 2019). In the Trier Social Stress 
Test (TSST; Kirschbaum et al. 1993), participants conduct a 
mock job interview in front of a neutrally acting committee. 
In previous studies, Wiemers et al. adapted the TSST to con-
tain a number of different everyday objects (Wiemers et al. 
2013; Wolf 2019). In this version of the TSST (Fig. 3A), 
the interview room and especially the table in front of the 
committee are equipped with a number of different objects, 
which are incidentally encoded during the TSST. Half of 
these objects are manipulated by the committee members 
in a standardized way to render them more salient for the 
participant (“central objects”), while other objects are not 
manipulated (“peripheral objects”). Several studies showed 
that central objects are better remembered than peripheral 
objects, and that this effect is increased by psychosocial 
stress (Wiemers et al. 2013, 2014; Herten et al. 2017a, b). 

Fig. 3  Effects of psychosocial stress on memory representations. 
A Participants conducted a psychosocial stress intervention (Trier 
Social Stress Test, TSST) in which some objects were manipulated 
by stress-inducing committee members (central objects) while oth-
ers were not (peripheral objects). A second group of participants took 
part in a non-stressful control version of the task. B We found that 
central objects were better remembered than peripheral objects, and 
that this effect was enhanced in stressed participants. C On the next 

day, pictures of all objects were presented in the MRI scanner, and 
we measured their representational similarity. In the left amygdala, 
we found that central objects were more similar to other objects of 
the same episode and dissimilar to distractor objects when comparing 
stressed vs. control participants (upper row). Better memory perfor-
mance for these objects was explained by the similarity of their rep-
resentations to the representation of the stressor, i.e., the committee 
members’ faces (lower row)
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These results are in line with the hypothesis that stress par-
ticularly enhances the encoding of central cues (Easterbrook 
1959; Wolf 2019).

We speculated that stress may enhance later memory for 
central objects by supporting generalization or binding pro-
cesses of their neural representations. The term “binding” 
typically refers to the formation of integrated representations 
of multiple aspects of an episode, i.e., of different elements 
within one spatiotemporal context, and has been proposed to 
rely critically on the hippocampus (Ranganath 2010; Eichen-
baum 2017). Yonelinas and Ritchey (2015) have suggested 
an “emotional binding” account according to which an emo-
tion instead of the spatio-temporal context binds the features 
of an episode. They proposed that emotional binding occurs 
in the amygdala, that it may outweigh spatio-temporal bind-
ing processes in the hippocampus, and that this is the rea-
son why emotional memories are less likely to be forgotten. 
Another binding approach proposed by Mather (2007) may 
provide an explanation for the superior memory of the cen-
tral aspects in an emotional episode. In her “object-based 
framework”, she suggests that emotionally arousing objects 
attract attention and that this is the reason why the constitu-
ent features of the object are bound and well-remembered.

On the neural level, these binding approaches would 
predict higher similarity (lower representational distances) 
between neural representations of central objects. Gener-
alization effects in humans have been previously found in a 
fear learning paradigm and were predictive of long-term fear 
memories (Visser et al. 2011, 2013). Specifically, pattern 
similarity changes in ventromedial PFC at the time of learn-
ing could predict the behavioral expression of long-term fear 
learning, i.e., changes in pupil dilation (Visser et al. 2013). 
In addition, fear learning led to generalization in other brain 
regions such as anterior cingulate cortex, amygdala, and 
superior frontal gyrus (Visser et al. 2011). These results sug-
gest that increased pattern similarity between conditioned 
and unconditioned stimuli supports fear conditioning in a 
variety of brain regions including the amygdala—i.e., that 
higher pattern similarity in these regions reflects generaliza-
tion and binding processes.

We investigated the effects of stress on memory represen-
tations and their impact on subsequent recognition memory 
(Bierbrauer et al. 2021). We conducted the TSST (Fig. 3A) 
and a non-stressful control version and tested memory per-
formance for central and peripheral objects and the faces 
of the committee members. In line with previous studies 
(Wiemers et al. 2013), central objects were generally better 
remembered than peripheral objects (Fig. 3B). This effect 
was significantly more pronounced for stressed participants. 
Using fMRI, we measured the neural representations of 
central and peripheral objects and of the faces (Fig. 3C). 
Interestingly, we found that neural representations of cen-
tral objects in the stressful episode became more similar 

to other objects from the same episode and dissimilar to 
distractor objects (i.e., objects that belonged to other poten-
tial episodes). In addition, we could explain higher memory 
performance for these objects by the similarity of their rep-
resentations to the representation of the stressor, i.e., the 
committee members’ faces. This suggests that the beneficial 
effects of stress on memory formation rely on a generaliza-
tion of neural representations within the stressful episode, 
which is driven by higher similarity with the representa-
tion of the stressor. This representational change may also 
explain why memories of stressful experiences can be trig-
gered by neutral cues with low representational distance to 
the stressor.

Our study demonstrates that investigating the represen-
tational structure or “geometry” of affective and contextual 
dimensions of memory traces may provide mechanistic 
insights into representational formats beyond perceptual 
and conceptual dimensions. In other words, understanding 
how neural representations are transformed by factors such 
as stress will help us understand how these factors change 
our memories. In the future, it would be interesting to link 
perceptual and conceptual format from DNNs to data from 
affective episodes to further broaden the understanding of 
how affective evaluation and contextual embedding mod-
ulates these formats, and how they may act as additional 
formats.

Conclusions

We started out describing several aspects of the memory 
for a recently experienced episode. The mental “image” 
of this episode as well as its non-sensory aspects relate to 
neural representations in various brain regions, across sev-
eral levels of brain organization and in different represen-
tational formats. We described that RSA is well suited to 
assess the structure of memory representations (i.e., their 
representational geometry) and that we can employ DNNs 
to differentiate multiple representational formats. Not only 
can we quantify the formats themselves, but we also gain 
insights into how one format is transformed into another 
format and how this process may benefit memory consolida-
tion and long-term memory retrieval. Importantly, we can 
demonstrate that generalization is not limited to consolida-
tion but may also happen more rapidly, i.e., during encod-
ing and maintenance. In this review we highlighted visual, 
higher-order visual and semantic formats that can be easily 
modeled by current cDNN and dNLP architectures. These 
models only provide a first approximation to the large variety 
of representational formats that are processed in the brain, 
including formats along dimensions such as affective evalu-
ation or contextual embedding. In addition, they indicate the 
importance of combining computational and neuroscientific 
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methods to understand memory. We propose that elucidat-
ing the neural representations underlying episodic memories 
should be a major goal in memory research.
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