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Abstract

Theta burst stimulation (TBS) is associated with the modulation of a range of clinical, cognitive, and behavioural outcomes,
but specific neurobiological effects remain somewhat unclear. This systematic literature review investigated resting-state
and task-based functional magnetic resonance imaging (fMRI) outcomes post-TBS in healthy human adults. Fifty studies
that applied either continuous—or intermittent—(c/i) TBS, and adopted a pretest—posttest or sham-controlled design, were
included. For resting-state outcomes following stimulation applied to motor, temporal, parietal, occipital, or cerebellar
regions, functional connectivity generally decreased in response to cTBS and increased in response to iTBS, though there
were some exceptions to this pattern of response. These findings are mostly consistent with the assumed long-term depression
(LTD)/long-term potentiation (LTP)-like plasticity effects of cTBS and iTBS, respectively. Task-related outcomes following
TBS were more variable. TBS applied to the prefrontal cortex, irrespective of task or state, also produced more variable
responses, with no consistent patterns emerging. Individual participant and methodological factors are likely to contribute
to the variability in responses to TBS. Future studies assessing the effects of TBS via fMRI must account for factors known
to affect the TBS outcomes, both at the level of individual participants and of research methodology.

Keywords Transcranial magnetic stimulation (TMS) - Repetitive transcranial magnetic stimulation (rTMS) - Theta burst
stimulation (TBS) - Functional magnetic resonance imaging (fMRI) - Non-invasive brain stimulation (NIBS) - Inter-
individual variability
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APB Abductor pollicis brevis fMRI Functional magnetic resonance imaging
BOLD Blood oxygen level dependent HCN Hippocampal-cortical network
CBF Cerebral blood flow HGal Anterolateral Heschl’s gyrus
cTBS Continuous theta burst stimulation IFG Inferior frontal gyrus
DAN Dorsal attention network IPL Inferior parietal lobe
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pSTS Posterior superior temporal sulcus

rsFC Resting-state functional connectivity
rTMS Repetitive transcranial magnetic stimulation
S1 Primary somatosensory cortex

S2 Secondary somatosensory cortex

SMA Supplementary motor area

TBS Theta burst stimulation

TMS Transcranial magnetic stimulation

TPJ Temporopatietal junction

Vi1 Primary visual cortex (medial striate area)
V2 Visual area 2

V3 Visual area 3

Introduction

Transcranial magnetic stimulation (TMS) protocols rely on a
time-varying magnetic field to produce an electrical current
that non-invasively depolarizes axons underlying a special-
ized coil held against the scalp (Barker et al. 1985; Klom-
jai et al. 2015). This technique has been used since 1985 to
transiently probe cortical excitability in human participants
(Barker et al. 1985). Repetitive (r)TMS protocols, in which
multiple TMS pulses are delivered in succession, have longer-
lasting neuro-modulatory effects, and thereby have broader
applications for basic neuroscience and also significant clini-
cal applications (Klomjai et al. 2015). Theta burst stimula-
tion (TBS) is a rTMS protocol that was first developed for
human application by Huang and colleagues (2005). Unlike
conventional rTMS protocols, in which stimuli (i.e., pulses)
are spaced identically with the inter-stimulus-interval ranging
between 1 and 25 Hz (Klomjai et al. 2015), pulses adminis-
tered during TBS are patterned based on the brain’s natural
hippocampal theta rhythm (Klomjai et al. 2015; Suppa et al.
2016). This protocol is suggested to modulate gamma oscilla-
tions, commonly referred to in the literature as theta-gamma
coupling (Cardenas-Morales et al. 2010).

The standard TBS paradigm involves administering
TMS in three-pulse 50 Hz “bursts” of stimulation repeated
every 200 ms (5 Hz, “theta” burst frequency), mimicking
the rhythm of theta-gamma coupling (Huang et al. 2005).
Continuous TBS (cTBS) involves uninterrupted TBS deliv-
ery, typically across 40 s (600 pulses). When administered
over the primary motor cortex (M1), the effects of cTBS
are generally considered to suppress cortico-spinal activity,
as measured via motor evoked potential (MEP) amplitude
(Huang et al. 2005; Chung et al. 2016). In contrast, for inter-
mittent TBS (iTBS), whereby 8 s inter-train intervals follow
2 s trains of stimulation, typically for 190 s (600 pulses), a
facilitatory effect on MEPs is described (Chung et al. 2016;
Huang et al. 2005).

Although the neurological mechanisms underpinning
c¢TBS and iTBS are not fully characterized (Di Lazzaro
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et al. 2005, 2008), TBS neuromodulation is likely under-
pinned by long-term depression (LTD)—and long-term
potentiation (LTP)—like mechanisms (Huang et al. 2011).
Studies have shown that TBS effects originate in the cortex
(Di Lazzaro et al. 2005, 2008) and are N-methyl-p-aspar-
tate receptor dependent (Huang et al. 2007). Though both
TBS protocols are modelled on theta-gamma coupling,
the variations in protocol have differential effects on the
TMS-induced corticospinal volleys, and affect different
populations of neurons. First, direct stimulation of the
pyramidal tract results in a corticospinal volley labelled
the D-wave. Following this, synaptic activation induces
indirect (I)-waves. It is the I-wave(s) which appear to be
affected by variation in the TBS protocol. cTBS preferen-
tially suppresses the first (I1) component of the I-wave,
eliciting an overall suppression, or LTD-like effect (Di
Lazzaro et al. 2005), while later components of the I-wave
and also the D-wave appear unaffected. iTBS, in contrast,
increases later I-wave amplitude, producing an LTP-like
effect (Di Lazzaro et al. 2008). The exact neurobiological
mechanisms which underpin these responses to variation
in TBS protocol remain elusive; however, several compre-
hensive reviews provide more detailed overviews on the
mechanistic effects of TBS (Céardenas-Morales et al. 2010;
Klomjai et al. 2015; Suppa et al. 2016).

Notably, while the seminal work by Huang et al. (2005)
described facilitatory and inhibitory effects of iTBS and
cTBS, respectively, many consecutive studies emphasize
a high degree of inter-individual variability in the behav-
ioral and neurobiological response to TBS paradigms (Do
et al. 2018; Chung et al. 2016; Hamada et al. 2013; Corp
et al. 2020; Jannati et al. 2017; Lopez-Alonso et al. 2014),
and while the factors surrounding this observed variabil-
ity remain largely unknown (Ridding and Ziemann 2010),
important work is being conducted to elucidate this (Corp
et al. 2020).

While it was originally considered that TMS delivered
at such a high-frequency as TBS might yield superior out-
comes to conventional rTMS protocols (Huang et al. 2005;
Suppa et al. 2016), TBS is increasingly being used in clinical
and non-clinical research settings as it is delivered faster and
at lower intensities than conventional rTMS (Huang et al.
2005; Chung et al. 2015, 2016) while yielding equivalent,
if not enhanced, neuroplastic effects (Chung et al. 2015).
The safety and tolerability profile of TBS in both adult and
paediatric samples is now well-established (Oberman et al.
2011; Hong et al. 2015; Rossi et al. 2009, 2021). This pat-
terned rTMS protocol is commonly applied to probe brain-
behaviour relationships (Demeter 2016), is considered a
viable alternative to conventional rTMS as a biomedical
intervention for major depressive disorder (Chung et al.
2015; Bulteau et al. 2022; Blumberger et al. 2018), and
has been trialled for anxiety-related disorders, psychotic
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symptoms, and dependence disorders (see Rachid 2017 for
a review). From a clinical perspective, the shorter duration
of TBS protocols allow for many more sessions/treatments
to be delivered daily within clinics, allowing greater access
for patients (Chung et al. 2015), and also increases the fea-
sibility of accelerated treatment protocols (Cole et al. 2020;
Xiao et al. 2019; Sonmez et al. 2019).

Much of what is known regarding the neurobiological
and mechanistic effects of TBS, like TMS more broadly, is
derived from research investigating the motor cortex. This
is primarily due to the relative accessibility of measurable
outcomes, such as MEPs recorded via electromyography
in peripheral muscles (Chung et al. 2016; Di Lazzaro et al.
2005, 2008; Huang et al. 2005). As with all TMS proto-
cols, the extent to which this knowledge translates to regions
beyond the motor cortex is unclear. Despite this, the past
decade has seen rapid growth in research implementing TBS
protocols outside of the motor cortex, both experimentally
and clinically. It is well established that the cytoarchitec-
ture of different brain regions, however, varies widely, which
consequently affects signal transmission (van den Heuvel
et al. 2015), and is, therefore, likely to have implications for
the response to TBS.

Functional magnetic resonance imaging ([f[MRI) can
be immensely beneficial in elucidating the neurobiological
effects of TBS. Such protocols can provide indications of
TBS-induced alterations in regional excitability and network
connectivity/reactivity, beyond the motor cortex, and with
good spatial resolution. In this review, we sought to describe
and synthesise the literature investigating the neurobiologi-
cal after-effects of a single session of TBS in non-clinical
adult populations, as measured via fMRI.

Methods

The review protocol was registered with PROSPERO
(PROSPERO 2020 CRD42020150589) and was conducted
in alignment with the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analysis (PRISMA) guidelines
(Moher et al. 2009, 2015).

Search strategy

We searched for research papers (peer-reviewed [published
or in press], pre-print, or thesis) published in English, and
did not impose limits on year of publication. Scopus, Ovid
Medline, and Google Scholar were initially searched on 16th
September 2019 using the following search terms: (“theta
burst stimulation” or “TBS” or “continuous theta burst stim-
ulation” or “cTBS” or “intermittent theta burst stimulation”

or “iTBS”) and (“magnetic resonance imaging” or “MRI”
or “functional magnetic resonance imaging” or “fMRI” or
“functional MRI” or “magnetic resonance spectroscopy’ or
“MRS” or “neuroimaging”). One reviewer (MK) completed
and compiled searches into the Rayyan database (Ouzzani
et al. 2016). A final iteration of the searches was completed
and updated on 10th October, 2022.

Eligibility criteria

Research was considered eligible for review if either cTBS
or iTBS was applied to any part of the human cortex, with
the MRI outcomes listed above recorded following stimula-
tion. Studies were required to have adopted a pretest—posttest
or sham-controlled design.

Only outcomes for neurotypical (i.e., non-clinical)
adults, aged 18 and above, were reviewed. Research was
not excluded if clinical (i.e., neuropsychiatric, neurologi-
cal, or neurodevelopmental disorders) or paediatric compari-
sons were also presented; however, this information is not
reported on in the present review. This decision was made to
avoid confounds associated with the presence of neuropatho-
physiology and/or neurodevelopmental factors.

Screening

Title and abstract screening were completed by two of the
authors (MK and PHD) via Rayyan (Ouzzani et al. 2016).
The reviewers were blind to each other’s decisions. In
instances where the title and abstract did not provide suf-
ficient information to determine eligibility, the full text
(methods section) of the manuscript was reviewed. Upon
completion of the initial screening, results were unblinded
and any discrepancies were resolved via discussion between
the two reviewers. Where consensus could not be reached, a
third reviewer (PGE) was consulted.

Risk of bias assessment

Risk of bias was assessed by one researcher (MK) using
the Cochrane Risk of Bias assessment tool, Version
2 (RoB 2) (Higgins et al. 2016; Sterne et al. 2019). The
use of one risk of bias assessor deviates from the proto-
col outlined in our Prospero Registration (PROSPERO
2020 CRD42020150589) for this review, where it was pro-
posed that risk of bias assessment would be conducted by
two researchers. The decision to make this change was in
large part a consequence of resource limitations due to the
COVID-19 pandemic. Following completion of this assess-
ment, the final judgements were discussed and agreed upon
with the senior author (PGE).

Refer to Table 1 for a summary of this assessment. Infor-
mation provided within some manuscripts indicates that data
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Table 1 Summary of Risk of D1 DS D2 D3 D4 D5

Bias Assessment Table, based

on Cochrane Risk of Bias Abellaneda-Perez et al. (2019) ! NA . . ! !

assessment tool, Version 2
Agnew et al. (2018) ! . . . 1 1
Alkhasli et al. (2019) ! ! . . 1 1
Anderkova et al. (2018) ! ‘ . ‘ ! 1
Andoh et al. (2013) ! ! . ‘ 1 1
Andoh et al. (2015) ! . . . 1 1
Annak et al. (2019) ! . . . 1 1
Cardenas-Morales et al. (2011) ! ‘ . ‘ ! 1
Cocchi et al. (2015) ! ‘ ‘ ‘ 1 1
Gann et al. (2021)? ! . . . 1 1
Gann et al. (2021)? ! ' . . 1 1
Gratton et al. (2013)° [ . ' ‘ 1 1
Gratton et al. (2014)° ! ‘ ‘ ‘ 1 1
Groen et al. (2021) 1 1 . . 1 1
Halko et al. (2014) ! ' . ‘ 1 1
Hartwigsen et al. (2013) ! ! ‘ ‘ ! !
Heinen et al. (2017) ! ' ‘ . 1 1
Hermiller et al. (2019) ! . . . 1 1
Howard et al. (2020) ! NA . . ! !
Hu et al. (2017) ‘ NA ‘ ’ ! 1
Iwabuchi et al. (2017) ! ‘ ‘ . 1 1
Jietal. (2017) ! NA . . ! !
Jietal. (2020) ! NA ‘ . ! !
Mancini et al. (2017) ! 1 ‘ ‘ 1 1
Mastropasqua et al. (2014) ! NA . . ! !
Matusa et al. (2022) ‘ NA . ‘ 1 1
Nettekoven et al. (2014)¢ ! ' . . 1 1
Nettekoven et al. (2015)¢ ! . . . ! [
Odorfer et al. (2019) ! ! ‘ . 1 1
Orosz et al. (2012) 1 ' . . 1 1
Pitcher et al. (2014) ! ! . ‘ 1 1
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Table 1 (continued)
Pitcher et al. (2017)

Rahnev et al. (2013)
Rastogi et al. (2017)
Ruan et al. (2017)¢

Ruan et al. (2019)¢

Singh et al. (2020)

Shang et al. (2019)

Steel et al. (2016)
Soutschekid et al. (2020)
Tang et al. (2019)
Thakral et al (2020)
Valchev et al. (2015)¢
Valchev et al. (2016)°
Van Holstein et al. (2018)
Van Nuenun et al. (2012)
Vidal-Pifieiro et al. (2014)
Wawrzyniak et al. (2017)
Welniarz et al. (2019)

Zhang et al. (2020)

=2
: 00: 0

=2
>

=2
: 90

D1 =Randomisation process, DS =Risk of bias arising from period and carryover effects in a cross-over
trial, D2 =Deviations from the intended interventions, D3 =Missing outcome data, D4 =Measurement of
the outcome, D5 = Selection of the reported result

abedenformation provided within these manuscripts indicates that data come from the same sample/study

. |
low

risk

came from the same sample/study (manuscripts linked/high-
lighted in Table 1). In these instances, if information was
unclear or not reported in one manuscript, but relevant infor-
mation could be extracted from another manuscript reporting
on the same sample/protocol, this information/assessment
was transferred between papers.

The majority of reviewed studies adopted cross-over
designs (n = 37), rather than parallel designs (n = 10), or
single-arm designs (n = 3). For cross-over studies, the RoB 2
considerations for cross-over trials (https://sites.google.com/
site/riskofbiastool/welcome/rob-2-0-tool/rob-2-for-cross
over-trials?authuser=0) are also provided. One study (Shang

some
concerns risk

‘ high

et al. 2019) implemented a cross-over design whereby two
groups (active/sham TBS) crossed over into a no-TBS ses-
sion. For the purpose of this assessment, this study was con-
sidered a parallel design.

Regarding Domain 1: Randomisation Process, while stud-
ies reported that participants were randomly allocated to con-
ditions (where appropriate to study design), only one study
provided sufficient information regarding the use of a “sim-
ple” randomisation protocol (Abellaneda-Pérez et al. 2019).
For studies adopting single-arm designs, the risk of bias in
this domain was considered high, given that randomisation
was not possible. No studies reported concealment efforts or
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processes. As mentioned above, for studies reporting cross-
over designs we also considered Domain S: Bias Arising
from Period and Carryover Effects of the RoB 2. Regarding
period effects, while only one study (Valchev et al. 2016)
reported precise information regarding sequence allocation,
all others indicated counterbalancing of sessions. Therefore,
it is probable that the number of participants allocated to
each sequence was equal or nearly equal. The washout period
between sessions, and therefore, the potential for carryover
effects, varied across studies. At a minimum, the reviewed
studies report spacing sessions at least one day apart, while
others implemented a week washout period to further reduce
the risk of carryover effects. In healthy (neurotypical) indi-
viduals, the effects of TBS are generally considered to last up
to approximately one hour (Wischnewski and Schutter 2015).
While there is evidence from conventional rTMS studies to
show that cumulative metaplastic effects might exist when
sessions are spaced 24 h apart (Bdumer et al. 2003; Maeda
et al. 2000), another study reports that when cTBS is applied
24 h apart, this cumulative metaplastic effect was not signifi-
cant among non-clinical controls (Oberman et al. 2016). We
therefore considered a minimum of 24 h to be an appropriate
washout period for the studies reviewed here. A number of
the reviewed studies reported that sessions were conducted
on different days, but do not provide an indication of the
time between sessions. It cannot, therefore, be ruled out that
sessions might have occurred less than 24 h apart (i.e., late
afternoon session followed by a morning session). In these
instances, not enough information had been provided to make
a clear judgement regarding risk.

When blinding was included in study protocols, the
details around such procedures were, in many instances,
insufficient. For example, for “double-blind” designs,
without further detail, it was unclear which researchers
(i.e., those administering TBS, those collecting outcome
measures, or those analysing data) were blinded to condi-
tion. Only one study (Orosz et al. 2012) specified blinding
of the researcher obtaining the scans. Two others reported
researcher blinding during the administration of clinical
assessments (Odorfer 2019; Singh et al. 2020), outcomes
of which were not considered in this review. Despite this,
none of the reviewed studies reported Deviations from the
Intended Intervention, and analyses appropriately consid-
ered group assignment, so the risk of bias in this regard
(Domain 2) was still regarded as low. Risk of bias was
also considered low across all studies regarding Missing
Outcome Data (Domain 3) as there was no indication of
condition-specific attrition across any of the studies. On
Domain 4: Measurement of the Outcome, the tool’s algo-
rithm pointed towards a low risk of bias across all studies
as, despite lack of researcher blinding, we do not report
on any researcher guided outcomes in this review, and
the outcomes (imaging protocols) were identical across
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conditions. Therefore, it might be considered unlikely that
“assessment of the outcome [would] have been influenced
by knowledge of intervention received.” For most studies,
however, the researchers were not blind to condition. As
a result of this, there exists a possibility that their interac-
tions with participants could have been subtly different
between conditions, alerting participants to conditions
or expectation. Finally, there were some concerns for all
studies across Domain 5: Selection of Results. None of the
studies specifically report having performed blind analysis.
While all results appear to be in line with the reported
analysis plan, this lack of blinding poses some risk of
selective reporting of analyses or results.

Our assessment of the risk of bias in the reviewed stud-
ies highlighted several areas of unclear reporting in the
literature, making the risk of bias assessment difficult.
Clearer reporting across many domains is imperative going
forward. Further, where possible, we strongly encourage
blinding of researchers, during assessment and analysis,
and clearer reporting of these practices.

Analysis

A systematic/narrative approach was adopted for this
review, as there is a pressing need for a clear evaluation
and summary of the relevant literature in the field. This
consolidation of the available literature will provide brain
stimulation researchers with much-needed direction when
planning future TBS studies that involve a neuroimaging
component. It was decided that a meta-analytic approach
would not be appropriate for this review given the multiple
sources of heterogeneity associated with these studies in
terms of design, stimulation site, and outcomes measures.

Results

Our searches initially identified a total of 1101 manu-
scripts. One additional manuscript (Gratton et al. 2014)
was identified via the references presented within the
reviewed manuscripts, and one was referred to us (Singh
et al. 2020). 672 remained following the removal of dupli-
cates, and these were then screened according to the cri-
teria described above, resulting in 85 manuscripts that
were full text screened for eligibility. Of these, 35 were
excluded for the following reasons: not meeting eligibil-
ity criteria (n =27), full text published in a language other
than English (n=1), and duplication of results (i.e., peer-
reviewed manuscript from within a thesis [n =4 theses
excluded]). One manuscript (Zhang et al. 2019) was also
excluded as the protocol applied deviated from the purpose
of this review by applying cTBS immediately followed by
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Fig.1 PRISMA flow diagram )
for search, screening, and manu- -
script selection. Adapted from '8 Records identified through Additional records identified
Moher et al. (Moher et al. 2009) .8 database searching through other sources
% (n=1101) (n=2)
c
[}
S
—
Records after duplicates removed
(n=672)
00
=
: |
[}
o
3 Records screened Records excluded
(n=672) (n=588)
—
)
= Full-text articles assessed Full-text articles excluded,
:_—g for eligibility with reasons
‘oo (n=285) (n=35)
w
—
)
8 Studies included in
-g qualitative synthesis
E (n=50)
—

iTBS. Additionally, two manuscripts employed magnetic
resonance spectroscopy (MRS) as outcome measures, and
one reported both MRS and fMRI outcomes. Therefore, at
this point, it was decided that MRS outcomes (n =2 manu-
scripts) would be excluded from this review as the limited
research in this area would limit our ability to make any
informed interpretations about the effects of TBS on MRS
outcomes. This resulted in a total of 50 manuscripts being
included in this review. Results of the search and screening
process are presented in Fig. 1. Relevant sample, proto-
col details, and a general indication of the results from
included studies are summarised in Table 2.

Discussion

This review sought to systematically synthesise and evaluate
the fMRI literature investigating the functional neurobiologi-
cal aftereffects of TBS applied to the human brain in neuro-
typical adults. TBS-induced alterations in offline brain activity
and connectivity are summarised herein. In all reviewed stud-
ies, TBS was applied at rest, i.e., offline and in the absence

of any cognitively demanding tasks or stimuli. As shown in
Table 2, the response to both TBS protocols, as measured
by fMRYI, is variable. Therefore, outcomes will not be sum-
marised in line with the generally “expected” responses to
TBS described in the introduction. Instead, the relevant litera-
ture will be consolidated based on target regions. Outcomes
measured at rest (i.e., in the absence of any cognitively or
behaviourally demanding stimuli) and during offline task
completion will be considered separately, as these contextual
factors have neurobiological implications. Themes and pat-
terns emerging from this summary which help to elucidate
the observed variability will then be discussed.

Functional neurobiological responses to TBS
across the cortex

TBS to the motor cortex
We first summarise studies reporting fMRI outcomes of TBS
applied to motor sites, as most available TMS knowledge

comes from research targeting this region. In total, 17 of the
identified studies targeted motor regions.
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At rest, neither cTBS to the left supplementary motor
area (SMA) (Ji et al. 2017) nor iTBS to the left M1 (Carde-
nas-Morales et al. 2011) induced any measurable effects on
blood oxygen level dependant (BOLD) response or cerebral
blood flow (CBF), respectively. Matsuta et al. (2022) fur-
ther add that cTBS to the left motor representation of the
abductor pollicis brevis (APB) had no consequences on
resting state network activity, including the default mode
network (DMN) and primary motor network. Regarding
resting-state functional connectivity ([rs]FC) however,
c¢TBS to the M1 hand (Hu et al. 2017) and suprahyoid mus-
cle (Ruan et al. 2017, 2019) representations, as well as the
SMA (Jiet al. 2017, 2020) resulted in reduced network rsFC.
Timing of post-stimulation follow-ups might, however, be
a critical factor. For example, immediately post cTBS, Ji
et al. (2020) report reduced rsFC of the bilateral cerebel-
lum. Conversely, a second post-cTBS fMRI run indicated
increased rsFC of the bilateral paracentral gyri. In contrast,
iTBS to the M1 hand (Nettekoven et al. 2014, 2015) or
suprahyoid muscle (Ruan et al. 2017, 2019) representations
generally increased rsFC, though some conflicting findings
are also reported (Cardenas-Morales et al. 2011; Zhang et al.
2020). Zhang et al. (2020) report increased degree centrality
(DC), a graph-based approach for investigating rsFC, in the
left inferior frontal gyrus (IFG) following cTBS to the left
suprahyoid M1 representation. In contrast, iTBS to this site
resulted in both increased (at the superior temporal gyrus,
right superior frontal gyrus, right postcentral gyrus, and left
paracentral lobule) and decreased (at the left cerebellum and
left medial frontal gyrus) DC.

Despite no effects of iTBS to M1 on rsFC outcomes
(Cardenas-Morales et al. 2011), during a choice reaction
task, Cardenas-Morales and colleagues report decreased
BOLD responses at numerous motor and parietal sites
(Cardenas-Morales et al. 2011). cTBS to various motor
regions has been shown not to affect BOLD response dur-
ing components of task/behaviour related aspects of motor
performance that might be considered to have cognitive
underpinnings, such as motor procedural learning (M1
hand representation; Steel et al. 2016), preparatory phases
of a motor action (dorsal premotor cortex; van Nuenen et al.
2012), and response delays (SMA; Welniarz et al. 2019).
Conversely, yet still relevant to cognitive processes, follow-
ing cTBS to the ventral premotor cortex (PMv) Agnew and
colleagues (2018) reported increases and decreases in BOLD
response at frontal, motor, parietal, and subcortical regions
during emotion processing, but no local effects of stimula-
tion. Finally, when accompanied by nociceptive (via gaseous
CO,) stimulation, cTBS to M1 reduced BOLD activity at
the rolandic operculum, insula and postcentral gyrus. The
strength of the relationship between BOLD signal and stimu-
lus strength was also reduced (Annak et al. 2019).

During motor execution, left-handed finger tapping fol-
lowing ¢cTBS resulted in increased CBF at the targeted right
MI. The authors also reported activation of a larger area of
M1 compared to baseline (Orosz et al. 2012). In line with
these findings, Cocchi et al. (2015) also observed facilita-
tory effects of cTBS applied to the right M1. Even at rest,
the authors found increased responsiveness of non-motor
regions involved in the production of left thumb movements,
which was a function of specialisation for the targeted right
APB motor cortex representation (i.e., “hot-spot”), including
the insula, striatum, and left temporal cortex.

Irrespective of the exact stimulation location, network-
wide increases in rsFC were observed mainly in response
to motor iTBS, and network-wide reductions in rsFC were
reported in response to cTBS, though some inconsistency
was noted. The introduction of cognitively or physically
demanding tasks yielded more inconsistent results, and the
specific task or target behaviour, also appears to mediate
responses. We speculate that this might, at least in part,
reflect the complexity of networks involved in associated
processes. Another important consideration, however, is that
while most studies investigating resting-state outcomes tar-
geted M1 regions, the exact location/motor representation
varied. Regarding task-related effects, less literature was
available, and there was even more variability in the motor
regions targeted.

TBS to the prefrontal cortex

Outside of the motor cortex, various regions of the prefrontal
cortex (PFC) were commonly investigated using TMS proto-
cols. In this review we identified 17 studies targeting various
prefrontal brain regions. Given the diversity of prefrontal
targets, where possible, we attempted to synthesise these as
focally as practicable.

The dorsolateral prefrontal cortex (DLPFC) is perhaps the
most commonly targeted frontal region for TMS research.
This is due to its critical involvement in numerous cognitive
processes (Balconi 2013; Brunoni and Vanderhasselt 2014),
its well-established role as an efficacious clinical target for
major depressive disorder (Perera et al. 2016), having been
trialled as a potential target for numerous conditions with
neurobiological underpinnings (Doruk Camsari et al. 2018),
and ease of access. The effects of TBS to the DLPFC as
measured by fMRI, however, are inconsistent. At rest, net-
work-wide increases (Gratton et al. 2013, 2014; Shang et al.
2019) and decreases (Iwabuchi et al. 2017; Mastropasqua
et al. 2014; Shang et al. 2019) in rsFC and CBF have been
noted in response to cTBS. While less research has inves-
tigated the neurobiological effects of iTBS to the DLPFC,
again, at rest, both network-wide increases (Alkhasli et al.
2019; Tang et al. 2019) and decreases (Tang et al. 2019) have
been observed. Singh et al. (2020) provide some evidence
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that these effects might be time-dependant. Specifically, the
authors report increased DMN FC 10-15 min post iTBS to
the left DLPFC, while at two consecutive time-points, 27-32
and 45-50 min respectively, FC of the DMN decreased and
became more widespread. While not targeting the DLPFC
specifically, Howard and colleagues (Howard et al. 2020)
applied TBS to a ventral region of the right lateral PFC,
to indirectly modulate activity at the orbitofrontal cortex
(OFC). At rest, cTBS to this region resulted in widespread
reductions in global connectivity of the right central/lateral
OFC network (Howard et al. 2020).

One study investigated the effects of cTBS to the left
DLPFC on neurobiological responses to an offline task
(switching protocol with a reward manipulation to investi-
gate reward anticipation [motivation], and task [cognitive]
or response [action] switching performance) (Van Holstein
et al. 2018). The authors reported no significant effect of
stimulation on BOLD responses at the target region, or distal
brain regions (Van Holstein et al. 2018). Gann et al. (2021a)
similarly identified no effects of either iTBS or cTBS to the
left DLPFC on their predefined ROIs, including the: basal
ganglia, hippocampus, and DLPFC, during a learning (serial
reaction time task) paradigm. Following iTBS, compared
to cTBS however, more widespread effects were noted by
way of increased BOLD at the intraparietal sulcus, cerebel-
lar lobule and frontal cortex during sequence (compared to
random) learning. Furthermore, motor sequence learning
increased fronto-hippocampal FC following cTBS, while
reduced fronto-hippocampal FC was observed following
iTBS. The authors (Gann et al. 2021a) attribute this finding
to a cTBS induced disruption to typical processing, whereby
learning itself reduces fronto-hippocampal connectivity. In
a related study by the same group, (Gann et al. 2021b) pre-
frontal stimulation had no significant impact upon early- and
late-stage learning-related DLPFC response patterns, for
which greater differences were observed during sequence
versus random learning.

Prefrontal cTBS did, however, affect similarity patterns
of early/late stage learning-related activity of the putamen,
whereby less similarity was observed between early- and
late-stage learning/practice for sequential, rather than ran-
dom, learning (Gann et al. 2021b). Prefrontal TBS also
affected pre- and post-stimulation hippocampal resting-state
pattern similarity, again, similarity was reduced as a function
of cTBS (Gann et al. 2021b).

The IFG has also been a target of interest for the TBS
research identified in this review. While some authors
report no effects of iTBS (Anderkova et al. 2018) nor cTBS
(Wawrzyniak et al. 2017; Anderkova et al. 2018) to the
IFG on rsFC, during task performance, the effects of both
TBS protocols have been observed. Specifically, iTBS to
the left IFG resulted in widespread increased network-wide
activity and connectivity at frontal, occipital and cerebellar

@ Springer

regions during phases of encoding in older adults (Vidal-
Pifieiro et al. 2014). During pseudoword repetition, task-
related BOLD response was reduced at the target left IFG
following cTBS, and increased at the contralateral homo-
logue (Hartwigsen et al. 2013).cTBS has also been shown to
increase rsFC and CBF when applied to the anterior insula/
frontal operculum (Gratton et al. 2013, 2014), and decrease
network-wide BOLD response and connectivity during an
attention shifting paradigm when applied to the frontal eye
field region (Heinen et al. 2017). As only single studies have
targeted these regions, no interpretations can be made.

Unlike the pattern of results described regarding stimu-
lation to the motor cortex, frontal stimulation yields more
inconsistent findings. There is evidence of both facilita-
tory and inhibitory responses to both TBS protocols at rest
and during various tasks. This apparent inconsistency in
response to TBS effects, therefore, appears to go beyond
task- or state-dependence when the PFC is targeted. Several
factors may contribute to this variability. For example, dif-
ferent approaches to target, specifically DLPFC, localisation
(Rusjan et al. 2010) and coil position/angle (Tsuyama et al.
2009), can affect stimulation outcomes in this region. Other
possible considerations regarding these findings are the role
that the complexity of neural organisation of the frontal cor-
tex has in producing these effects (Kolb et al. 2012), or the
complexity of cognitive and behavioural demands associated
with the tasks performed.

TBS to the parietal cortex

Seven studies applied TBS to the parietal cortex. iTBS to
the left inferior parietal lobe (IPL) (Abellaneda-Pérez et al.
2019) and superior parietal lobe (Anderkova et al. 2018) has
been demonstrated to increase network-wide rsFC (Abel-
laneda-Pérez et al. 2019; Anderkova et al. 2018).While stim-
ulating the IPL, Anderkova et al. (2018) report that cTBS
did not produce any significant effects on neurobiological
function at rest. Conversely, three studies reported reduced
rsFC following cTBS to the angular gyrus (Thakral et al.
2020), left somatosensory cortex (Valchev et al. 2015), and
precuneus (Mancini et al. 2017). Interestingly, cTBS to the
precuneus also increased the spread of activity at this region
15-24 min post stimulation. When the left parietal cortex
was targeted based on connectivity with the hippocampal-
cortical network (HCN), Hermiller et al. (2019) reported
no effects of either TBS protocol on the target HCN, or
on the control dorsal attention network (DAN) or primary
visual network. The effects of cTBS to parietal regions of
the brain on the neural basis of offline task performance has
only been investigated by one study reviewed here, which
reported no effects of cTBS to the left somatosensory cor-
tex on action/observation task performance (Valchev et al.
2016). Based on the limited research targeting the parietal
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cortex, it appears that the neurobiological effects of parietal
iTBS are more readily observable than those of cTBS. There
are, however, too few studies to enable solid rationales for
this outcome to be determined.

TBS to the temporal cortex

A total of five identified studies applied TBS to areas of the
temporal cortex. Two studies, from the same group, targeted
the auditory cortex, specifically, anterolateral Heschl’s gyrus
(HGal). cTBS to right HGal reduced rsFC in ipsilateral and
contralateral auditory regions, and in bilateral motor and
somatosensory (S1 and S2) regions, and cTBS to the left
HGal resulted in reduced rsFC between the target region
and contralateral homologue (Andoh et al. 2015). A different
neurobiological response to cTBS, however, was observed in
a task-state (Andoh and Zatorre 2013). During a melody dis-
crimination task, cTBS to the right HGal increased BOLD
responses at the contralateral homologue, as well as inferior
and superior temporal cortices, and the middle frontal gyrus.
rsFC between the left HGal, right pre- and post-central gyri,
and the insula also increased. Stimulation to the left HGal
elicited no such effects (Andoh and Zatorre 2013). Another
two studies, again from the same group, demonstrate that
cTBS to the right posterior superior temporal sulcus (pSTS)
induced reductions in BOLD response at the target and prox-
imal temporal regions, as well as the amygdala during face
emotion processing (Pitcher et al. 2014, 2017). cTBS to a
proximal target site, the right temporoparietal junction (TPJ),
resulted in reduced DLPFC activation during a delayed grat-
ification experiment. There was no evidence, however, of
connectivity between these sites (Soutschekid et al. 2020).
The authors did, however, note that delayed gratification,
mediated connectivity between the right TPJ and the stria-
tum, despite no effects on BOLD response. Care must be
taken when interpreting these findings, as only a small num-
ber of studies, and from the same groups, are reviewed here.
Again, however, increased variability was observed when
task-related outcomes were assessed.

TBS to the occipital cortex

cTBS to the left occipital cortex has been shown to reduce
rsFC between the primary, secondary, and third visual cor-
tices (V1-V2, V1-V3, and V2-V3) bilaterally (Rahnev
et al. 2013), and has also been shown to reduce BOLD
response during the presentation of static faces at the right
pSTS (Pitcher et al. 2014). ¢cTBS to right lateralised occipi-
tal scene selective (place and face) areas has also resulted
largely in reduced BOLD activity across various scene and
face selective regions, not seemingly affected by stimulus
(scene) condition (Groen et al. 2021). Given that only three
studies stimulated the occipital lobe using cTBS (and none

with iTBS), all measuring different outcomes, no meaning-
ful explanation of the effects of TBS to this region can be
provided.

TBS to the cerebellum

Cerebellar stimulation was applied in three of the identi-
fied studies. cTBS to the right lateral cerebellum (Crus I)
decreases rsFC between core DMN regions (Rastogi et al.
2017), whereas iTBS targeting an overlapping region (Crus
I/IT) increased rsFC within DMN regions (Halko et al. 2014).
iTBS to the medial cerebellum, increased DAN rsFC (Halko
et al. 2014). During a finger-tapping paradigm, however,
cerebellar cTBS was not shown to have effects on brain
regions implicated in motor performance during such tasks
in healthy populations (Odorfer 2019).

A pertinent consideration regarding cerebellar stimulation,
given the location of the cerebellum within the skull and its
cellular organisation, is whether the magnetic field created
by the TMS coil can adequately and focally stimulate the
target site (van Dun et al. 2017). Double-coned coils might
be more effective for cerebellar stimulation (van Dun et al.
2017; Fernandez et al. 2018, 2020), though none of the studies
reviewed here used this apparatus. The studies which reported
using standard figure-of-eight coils, all demonstrated effects
of cerebellar TBS (Halko et al. 2014; Rastogi et al. 2017). In
contrast, Odorfer (2019), who used a figure-of-eight coil with
a slight bend for curved scalp locations (MagVenture, Inc.,
Georgia, USA) which may improve the depth of penetration
to a target site, reported no effects of stimulation.

Limitations of the reviewed literature and directions
for future research

Regarding the observed outcomes

While tasks and state were identified as critical factors influ-
encing the fMRI response to TBS, future research needs to
characterise these effects explicitly. A greater understand-
ing of the influence of different tasks on neurobiological
responses is necessary to aid the selection of the most
appropriate TBS protocol. Regarding resting-state proto-
cols, increased consistency in terms of participant actions
during, and even immediately before this period, would be
beneficial. For example, standardised protocols regarding
having eyes open/closed, focusing on a fixation cross versus
a dark screen, or being instructed to “mind-wonder” might
be implemented. In a similar vein, such parameters during
stimulation also need to be more precisely controlled and
reported. Where possible, both resting-state and task-related
outcomes should be collected within the same study.
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Participant factors

In the broader non-invasive brain stimulation (NIBS) lit-
erature, several individual/participant factors have been
identified as contributing to the variability in response to
stimulation. These include age, biological sex, and genetic/
epigenetics (Pellegrini et al. 2018; Ridding and Ziemann
2010), though there are likely many unknown sources of
variability also. These influences, however, were seldom
investigated or appropriately controlled for in the reviewed
literature. Indeed, only one study reviewed here systemati-
cally investigated the effects of age (Abellaneda-Pérez et al.
2019), and while most studies reported here include young-
middle aged adults, two studies (Abellaneda-Pérez et al.
2019; Vidal-Pifieiro et al. 2014) report samples > 65 years.
These studies must be considered with caution as neurode-
velopmental factors associated with this population might
confound results. Further, while Hu et al. (2017) reported
outcomes stratified by biological sex, statistical comparisons
were not presented. None of the reviewed literature investi-
gated genetic or epigenetic effects.

More broadly, despite studies often reporting group
effects, and the response to TBS being described as hav-
ing effects in a particular direction, there is evidence from
the literature investigating the effects of TBS on MEPs that
demonstrates a great deal of individual variability to TBS
response. While single pulses of TMS appear to have rea-
sonably consistent effects on MEPs, the effects of TBS are
far more variable and difficult to reproduce (Ozdemir et al.
2021).That is, there are reports of some participants showing
facilitatory outcomes, others inhibitory, and others classi-
fied as “non-responders” within the same study/protocol (Do
et al. 2018; Hamada et al. 2013; Goldsworthy et al. 2014;
Vallence et al. 2015; Corp et al. 2020; Jannati et al. 2017),
and these outcomes can change across sessions (Ozdemir
et al. 2021). Of the reviewed studies, only three evaluated or
considered inter-individual variability in their own outcomes
(Abellaneda-Pérez et al. 2019; Nettekoven et al. 2015; Rah-
nev et al. 2013). Only Rahnev et al. (2013) report outcomes
for individual participants. Despite observing a similar pat-
tern of response across all four participants (i.e. reduced FC
between visual regions) these changes did not reach statis-
tical significance for all participants—those for whom the
change was not statistically significant might be considered
non-responders, though there is no clear and precise crite-
ria for this. Nettekoven et al. (2015) sought to investigate
whether applying multiple runs of TBS to increase the dose
would transition non-responders, those with < 10% change in
MERP size compared to baseline, into responders. While each
dose of iTBS further increased connectivity and MEP out-
comes among the group defined as responders, resting state
and MEP outcomes remained comparable to baseline among
the non-responder group, irrespective of dose (Nettekoven
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et al. 2015). Abellaneda-Pérez et al. (2019), however, report
that inter-individual variability might be reduced in older
adults following active, compared to sham, stimulation.

There are several factors that contribute to this variabil-
ity in response to TBS. Age, biological sex, and genetic/
epigenetic factors are among the most well documented par-
ticipant factors that contribute to inter-individual variabil-
ity in response to TBS, and NIBS more broadly (Pellegrini
et al. 2018; Ridding and Ziemann 2010). In addition to these
participant factors, the studies reviewed here also point
towards underlying anatomical structure (Abellaneda-Pérez
et al. 2019; Agnew et al. 2018) and behavioural (Hermiller
et al. 2019; Annak et al. 2019) contributors to individual
responses to TBS. Beyond this, there is also evidence that
the corticospinal state at the onset of stimulation can yield
variability in outcomes. Specifically, Zrenner et al. (2018)
report that triggering rTMS based on a high-excitability
state determined by a negative peak in p-rhythm resulted in
increased corticospinal activity following stimulation, while
rTMS triggered at a low-excitability phase, or at random
yielded no overall effects. These factors all require further
investigation to determine the extent of their impact on TBS
outcomes.

Methodological factors

Perhaps one of the most common methodological flaws in
the neuroscience literature broadly is that of inadequate
sample size. Indeed, only nine volunteers participated in
the seminal work conducted by Huang et al. (2005), and the
largest sample of the reviewed studies comprised 60 partici-
pants (Soutschekid et al. 2020). In their survey of researchers
engaging in TMS work, Héroux et al. (2015) report that less
than a quarter of respondents indicated using formal power
calculations to determine their sample size, while others
relied on previous experience, or adjusted the sample size
depending on the observed effects. None of the reviewed
studies reported how sample size was determined. This
variability in determining an appropriate sample size might
be one critical factor in another fundamental problem with
the TMS literature; that of reproducibility of findings. Only
45% of respondents in the survey by Héroux et al. (2015)
reported reproducing findings of original TBS research,
with many indicating more variability in their outcomes. In
a field where high levels of inter-individual variability are
now well established, as described previously in this review,
the robustness of reported outcomes is called into question.
Beyond the statistical appropriateness of power calculations
and its potential impact on reproducibility, another (and per-
haps more dire) finding reported by Héroux et al. (2015)
was that many respondents admitted to knowing of others
who engage in, or themselves confessed to having engaged
in, questionable research practices. This included screening
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for participants known to be responders, selective report-
ing, or rejection of data without justification. Oftentimes
these practices are not reported in publications (Héroux et al.
2015). The literature reviewed by the present study is then
further restricted by a focus on MRI outcomes only. Small
sample size is often considered unavoidable in neuroimag-
ing research due to high costs associated with conducting
such research, as well as access to participants and time
constraints (Button et al. 2013). Consequently, insufficient
power coupled with small effects, and questionable practices
reduces the likelihood of detecting true effects and impacts
upon reproducibility of both NIBS (Héroux et al. 2015)
and neuroimaging (Button et al. 2013) literature. Growing
acceptance of this problem in the field of neuroimaging has
led towards numerous data sharing initiatives, now widely
accessed across many areas. Similar initiatives have already
been implemented regarding electrophysiological outcomes
of TBS (Corp et al. 2020) and similar practices regarding
neuroimaging outcomes in response to TBS, and other NIBS
protocols, would be of immense benefit to the field. For such
an initiative to be fruitful, however, greater consistency
across protocols is imperative.

In terms of protocols, there were several sources of
methodological variability across studies which can also
influence TBS outcomes. Perhaps one of the most common
sources of variability in the TBS literature broadly is the
stimulation intensity. In their seminal TBS paper, Huang
and colleagues (Huang et al. 2005) applied TBS at 80% of
active motor threshold. For the reviewed studies, stimula-
tion intensity ranged between 80 and 100% of active motor
threshold, 70-120% of resting motor threshold, or 30-40%
of maximum stimulator output. The effects of sub- versus
supra-threshold stimulation were investigated by one study
(Alkhasli et al. 2019), which demonstrated altered outcomes
at different intensities. These results are not readily gen-
eralisable to the broader TBS literature, as stimulation is
typically administered at sub-threshold intensities, however,
point towards intensity-related variability in outcomes.

TBS dose was modulated in two ways: either by manipu-
lating the protocol parameters and, therefore, the number
of pulses delivered (Agnew et al. 2018; Pitcher et al. 2014,
2017), or by applying multiple runs of TBS to the same site
at timed intervals (Ji et al. 2017, 2020; Nettekoven et al.
2014, 2015), which may induce metaplastic-like effects
(Karabanov et al. 2015). One study investigated the impact
of TBS dose (Nettekoven et al. 2014), and while a single
run of iTBS (iTBS,) increased rsFC within a predefined
motor network, effects were stronger following three runs
of iTBS (iTBS,4,,) compared to just one or two (iTBS ;).
The observed effects were indeed cumulative effects of
iTBS, rather than a delayed response to a single run of iTBS
(Nettekoven et al. 2014).

Finally, most studies reported returning participants to the
scanner “immediately” following TBS, though many did not
specify the time taken to commence the scan. For those who
provided this information, the time to return to the scanner
ranged between ~2 and 30 min across studies. More system-
atic reporting in this regard is paramount. This inconsistency
is likely to affect observed outcomes, as some reported a
strengthening of the TBS effects over time (Tang et al. 2019;
Gratton et al. 2013), while other report shifts in the direction
(Heinen et al. 2017; Hu et al. 2017; Ji et al. 2020) or loca-
tion (Ji et al. 2020) of response, or a combination of these
outcomes (Singh et al. 2020). Further, the duration of time
that the TBS effects remain appears site/network dependant.
Ji et al. (2017), report that dynamic functional connectiv-
ity effects at the targeted left SMA might outlast similar
responses observed at other regions (specifically, the IFG).

Such methodological inconsistencies make it difficult to
elucidate related effects clearly or to provide reliable direc-
tions regarding optimal practices. The available literature
does, however, demonstrate that these factors contribute to
TBS outcome variability. Other methodological inconsisten-
cies noted in the reviewed literature included: site variabil-
ity, methods for locating the target site, outcome measures,
analysis approaches, and equipment. These, however, were
not systematically investigated in any of the reviewed stud-
ies, and our review does not provide any clear, consistent, or
differentiating effects on outcomes based on these factors.
Therefore, no speculations will be made in this regard.

Non-specific effects of TBS

Next, we consider the methodological approaches taken
when attempting to account for non-specific effects of TBS.
Several studies targeted the vertex as an active (Pitcher et al.
2017; Agnew et al. 2018; Andoh et al. 2015; Andoh and
Zatorre 2013; Rahnev et al. 2013) or sham (Nettekoven et al.
2014, 2015) control site, while others performed statistical
comparisons between the target and a non-target network
(Hermiller et al. 2019; Wawrzyniak et al. 2017; Nettekoven
et al. 2014; Halko et al. 2014; Rastogi et al. 2017).

The vertex is commonly considered an appropriate con-
trol site in TMS research, being referred to by some as an
“empty quarter” unlikely to play a role in the target (often
behavioural) mechanisms (Davis et al. 2013; Jung et al.
2016). Agnew et al. (2018), however, reported overlapping
changes in BOLD response following cTBS to the target
right PMv and active-control cTBS applied to the vertex,
thus demonstrating non-specific effects of stimulation. This
finding is not reflective of the spread or focality of cTBS,
but rather of possible network overlap concerning the stim-
ulated regions, highlighting that the vertex should not be
considered a blanket control site. An additional caveat of
active-control protocols is, depending on the location of the
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target site, that control stimulation to the vertex can feel and
sound different to the target region (Davis et al. 2013), which
might reduce its effectiveness as a comparable control. Fur-
thermore, such stimulation might only be appropriate when
testing certain outcome measures. For example, 1 Hz rTMS
to the vertex reduced BOLD at DMN regions (Jung et al.
2016) and therefore would have implications for resting-
state outcomes. As many DMN regions are also involved
in cognitive processes, however, careful consideration must
be taken when selecting the vertex as an active control site,
irrespective of outcome state. Active-control stimulation
should target a region unrelated to, or less implicated in, the
tasks and mechanisms of interest, e.g. targeting the opposite
hemisphere (Andoh et al. 2015; Andoh and Zatorre 2013),
or a region implicated in a control, or unrelated, neural net-
work. Indeed, Groen et al. (2021) report largely overlapping
effects of cTBS to the occipital place- and face- areas when
investigating scene specific neurobiological responses.

Studies comparing effects at target and non-target net-
works indicate that the effects of TBS are not global (i.e.,
brain-wide), but instead specifically act on the target net-
work. This has been demonstrated by studies showing TBS-
induced modulation of cortical networks involved in cogni-
tion, but not cortical motor networks, following stimulation
to “cognitive” cerebellar regions (Halko et al. 2014; Rastogi
et al. 2017). Similarly, functional connectivity within the
visual network, acting as a control network, was not shown
to be influenced by iTBS over M1 or the vertex (Nettekoven
et al. 2014). Others, however, report no significant neurobio-
logical effects of TBS to either the target or control networks
(Hermiller et al. 2019; Wawrzyniak et al. 2017). It is crucial
to note that many studies reviewed here report widespread
effects of TBS which might go beyond the intended/target
region or network of interest. A recent review of resting-
state fMRI outcomes of several rTMS protocols, including
TBS, also indicates that the effects are not network-specific
(Beynel et al. 2020).

No studies directly investigated the effects of active-con-
trol stimulation versus comparisons to a non-target network
on fMRI outcomes. Each approach might only be appro-
priate in certain situations, the selection of which requires
careful consideration. Task- and state-based factors related
to outcome measures are likely to affect the networks and
regions modulated by TBS, and therefore must be consid-
ered when selecting the most appropriate comparison.

Consolidation of findings and direction for future
research

The response to TBS, as measured using fMRI, appears to
be predominantly state- and task-dependent. At rest, the
observed response to TBS was generally aligned with the
electrophysiological outcomes described by Huang et al.
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(2005). That is, cTBS appeared to reduce, while iTBS
increased rsFC. An important exception to this observed
pattern occurred when stimulation was applied to the PFC.
Here, considerable variability existed across all outcome
measures, irrespective of state or task.

The introduction of external stimuli, by means of cogni-
tive or behavioural tasks, greatly affects the neurobiologi-
cal response to TBS, and vastly increases variability, across
all target regions. Furthermore, offline behavioural perfor-
mance on tasks relevant to the stimulated region/network
was also observed to be a factor related to the neurobiologi-
cal response to TBS (e.g. Annak et al. 2019; Hermiller et al.
2019), suggesting that the effects of TBS are also dependent
on external conditions. Task-related neurobiological effects,
in the absence of stimulation, are also a critical considera-
tion (Gann et al. 2021a). To elaborate, TBS is mechanis-
tically modelled on oscillatory activity (i.e. theta-gamma
coupling) that is a critical mechanism underlying cognitive,
most notably memory-related, processes in humans (Lis-
man and Idiart 1995; Lisman and Jensen 2013; Tamura
et al. 2017; Vivekananda et al. 2021). The neurobiological
underpinnings of targeted cognitive/behavioural activities
are, therefore, a potentially imperative consideration for
future research applying TBS to modulate neurobiological
or performance-based outcomes. Indeed, using a concur-
rent TBS-fMRI methodology, Hermiller et al. (2020) report
that the effects of TMS are rhythm (TBS vs. beta), network
(hippocampal vs. motor), and cognitively (memory/recall)
specific. Further work in this area is crucial.

Moving forward, from an experimental perspective, a
combination of resting-state and task-based outcomes in
future studies would be most informative. Future research
should also systematically investigate and report on partici-
pant and methodological contributors known to influence
TBS outcomes. It is not enough, however, for these factors
to be addressed at the level of individual studies. An open-
source and shared data repository, combined with a set of
established and agreed upon guidelines for basic experimen-
tal protocols using TBS, perhaps even with a platform for
peer-review of methodology and analysis plans prior to stud-
ies being conducted, would address critical methodological
limitations in the present literature, and will also contribute
to alleviating another large hurdle frequently observed in
the literature, i.e., small sample sizes, by allowing for meta-
analytic review. Similar programs have been implemented
for electrophysiological outcomes of TMS such as MEPs
(Corp et al. 2020), and also TMS evoked potentials as meas-
ured by electroencephalography (Belardinelli et al. 2019).
This could be taken a step further, striving for consistency in
TBS protocols between these outcome-focused repositories
will, in future, allow for greater understanding of the neu-
robiological effects of these stimulation protocols beyond
compartmentalised outcome measures.
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Summary and conclusion

The present review has summarised and synthesized the
literature investigating fMRI-based outcomes of TBS to
the cortex of healthy human adults. Although outcomes are
often variable, some consistencies emerged when examin-
ing resting-state outcomes of TBS applied at motor, pari-
etal, temporal, occipital and cerebellar regions. Specifically,
cTBS appeared to induce inhibitory effects, most consist-
ently by way of reduced rsFC, while iTBS produced the
opposite (i.e., facilitatory) effect, increasing rsFC. Results
of TBS delivered to the PFC were more variable. This was
apparent irrespective of task, state, or specific location. Fac-
tors contributing to this increased variability observed in
response to prefrontal stimulation, however, are unclear.

There are numerous methodological inconsistencies
across studies, as well as individual factors known to affect
the response to NIBS, which must be addressed. Future
research should aim to thoroughly and systematically inves-
tigate the role of individual factors such as age, biological
sex, anatomical structure, and genetic/epigenetic factors
on TBS outcomes. Methodologically, more consistency is
needed across studies to facilitate greater integration of find-
ings and data sharing initiatives. Where possible, resting-
state and task-based outcomes should both be measured
within studies, as well as structural and functional imaging
protocols. Care should be taken when determining appro-
priate comparisons and control targets. Such efforts will be
of great benefit to the enhancement of the field, improving
outcomes for experimental research studies, and therefore,
translation into clinical programs.

In conclusion, factors such as task and state cannot be
overlooked when developing future studies and should be
considered when determining the most appropriate TBS pro-
tocol. More research investigating the effects of known, as
well as identifying currently unknown, sources of variability
regarding the response to TBS is critical.
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