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Abstract
Understanding encoded language, such as written words, requires multiple cognitive processes that act in a parallel and inter-
active fashion. These processes and their interactions, however, are not fully understood. Various conceptual and methodical 
approaches including computational modeling and neuroimaging have been applied to better understand the neural underpin-
nings of these complex processes in the human brain. In this study, we tested different predictions of cortical interactions 
that derived from computational models for reading using dynamic causal modeling. Morse code was used as a model for 
non-lexical decoding followed by a lexical-decision during a functional magnetic resonance examination. Our results suggest 
that individual letters are first converted into phonemes within the left supramarginal gyrus, followed by a phoneme assembly 
to reconstruct word phonology, involving the left inferior frontal cortex. To allow the identification and comprehension of 
known words, the inferior frontal cortex then interacts with the semantic system via the left angular gyrus. As such, the left 
angular gyrus is likely to host phonological and semantic representations and serves as a bidirectional interface between the 
networks involved in language perception and word comprehension.

Keywords  Dynamic causal modeling · Reading model · Non-lexical processing · Phonological lexicon · Semantic system · 
Angular gyrus

Abbreviations
ACC​	� Anterior cingulate cortex
AG	� Angular gyrus
BA	� Brodmann area
CDP	� Connectionist dual-process
DCM	� Dynamic causal modeling
DMN	� Default mode network
DRC	� Dual-route cascade

fMRI	� Functional Magnetic Resonance Imaging
GLM	� General linear model
GPC	� Grapheme-phoneme correspondence
IFC	� Inferior frontal cortex
MC	� Morse code
MNI	� Montreal Neurological Institute
MTC	� Middle temporal cortex
PC	� Precuneus
ROI	� Region of interest
RT	� Reaction time
SD	� Standard deviation
SMG	� Supramarginal gyrus
SPM	� Statistical Parametric Mapping

Introduction

Translating phonological speech into written orthography 
and vice versa are highly demanding cognitive skills that 
have significantly contributed to the evolution of human 
culture. In alphabetic languages, encoding is achieved 
by combining graphemes to represent the phonology 
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of individual words. Decoding alphabetic languages is 
thought to rely on two separate processes dependent on 
the orthographic regularity of a word. On the one hand, 
regular words can be—and unknown words must be—
decoded in a letter-by-letter fashion (non-lexical decod-
ing). This decoding utilizes regularities in the grapheme-
phoneme correspondence (GPC; Protopapas et al. 2016; 
Yap et al. 2015), where the phonology of a word can be 
reconstructed based on the individual phonemes. On the 
other hand, irregular words that violate these regularities 
need to be decoded involving item-specific knowledge, 
which is possible once the word has become familiar to 
the reader (lexical decoding; e.g., Graves et al. 2010). 
Reading models addressing both decoding strategies have 
been strongly influenced by the investigation of patients 
with acquired dyslexia, who suffer from impaired reading 
performance of either regular (phonological dyslexia) or 
irregular words (surface dyslexia). Both, phonological and 
surface dyslexia can be associated with lesions in distinct 
brain regions (Tomasino et al. 2020), indicating that the 
cognitive processes involved in non-lexical and lexical 
decoding rely on at least partially distinct brain regions. 
At the same time, decoding in experienced readers, such 
as adults, is likely to involve both non-lexical and lexi-
cal decoding strategies simultaneously in an interactive 
manner (Barton et al. 2014). Various approaches such as 
computational modeling have been used to explain the 
interaction of non-lexical and lexical decoding in healthy 
subjects (Levy et al. 2009) and dyslexic patients (Ziegler 

et al. 2008; Bergmann and Wimmer 2008; for a review, see 
Rapcsak et al. 2007).

Common computational models like the dual-route cas-
cade (DRC; Coltheart et al. 2001) and the connectionist 
dual-process (CDP; Perry et al. 2007) model use two paral-
lel decoding routes to simulate the interaction of non-lexical 
and lexical decoding (see Fig. 1). The lexical route links 
the orthography of known words to their meaning (seman-
tic system) either directly or indirectly via their phonology 
(phonological lexicon) and is therefore crucial for decoding 
irregular words (Coltheart et al. 2001). In contrast, the non-
lexical route reconstructs the phonology of the word via a 
serial conversion of the individual graphemes (sublexical 
system) followed by a subsequent storage and assembly of 
the resolved phonemes (phonological buffer). As outlined 
above, this route is essential for reading unfamiliar words 
or artificial nonwords. Although the DRC and CDP models 
share an identical lexical route, they differ in their imple-
mentation of the non-lexical route. While the DRC model 
assumes a rule-based grapheme-phoneme network (see 
Fig. 1a), the CDP model uses a parallel two-layered asso-
ciation network to extract the statistically most reliable GPC 
(sublexical system) with a preceding graphemic buffer (see 
Fig. 1b). In both models, associations between the phonol-
ogy (phonological lexicon) and semantics (semantic sys-
tem) enable subsequent comprehension of known words. 
Although both models differ in their computational imple-
mentation, they can be criticized for their pure bottom-up 
view on non-lexical decoding.

Fig. 1   Models for language decoding. Dual-route cascade (DRC; a) 
and connectionist dual-process (CDP; b) model for reading. Both 
models were joined into a cognitive model for non-lexical decoding 

used for later modeling (c). This model includes possible bidirec-
tional connections from the phonological buffer to the sublexical sys-
tem (top-down: dotted line) that is not included in DRC or DCP
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This unidirectional processing alone cannot account for 
the ‘word superiority effect’, in which the recognition of 
individual letters can be enhanced when written in the 
context of a word or readable nonword (Ripamonti et al. 
2018). Accordingly, additional modulation via top-down 
connections might be required, suggesting a bidirectional 
network for non-lexical decoding. Furthermore, neither 
DRC nor CDP include a computational implementation 
of semantics, representing only a framework for word 
comprehension (Seidenberg 2012). Nevertheless, both 
models reflect the main processes involved in understand-
ing encoded language, yielding a priori hypotheses for 
the cognitive network architecture involved in non-lexical 
language decoding (see Fig. 1c). In this way, these models 
represent a suitable framework to guide the interpretation 
of brain imaging data (e.g., Taylor et al. 2013). Impor-
tantly, the DRC and CDP are computational models that 
per se do not assign the postulated functions to any spe-
cific brain regions. However, due to the high reading speed 
and parallel lexical and non-lexical decoding, the mapping 
of these functions remains challenging.

Although the usage of artificial nonwords and irregular 
words allows at least a partial distinction between non-
lexical and lexical decoding strategies, a parallel activation 
of the two decoding routes cannot be ruled out (Levy et al. 
2009). Both routes are not fully independent and interact 
at both the phonological and semantic level (Rapcsak et al. 
2007). To circumvent these challenges, we previously used 
the international Morse code (MC) as a model for lan-
guage learning and decoding, allowing us to probe exclu-
sively the non-lexical decoding strategy followed by a lex-
ical-decision (for a detailed description, see Junker et al. 
2020). While MC and written script differ perceptually 
(auditory vs. visual) and in their way of encoding (tempo-
ral vs. spatial encoding), both require the same (or at least 
similar) cognitive computations to be decoded and under-
stood. During non-lexical decoding, individual graphemes 
must be translated and combined. For comprehension, the 
phonology of a known word must then be reconstructed, 
leading to a (re)activation of semantic associations learned 
during language acquisition. These decoding processes are 
unique to encoded languages such as written script or MC 
and are not required for speech perception. In contrast to 
verbal language, which has evolved at least within the 
modern Homo sapiens over the past 200.000 years (Richter 
et al. 2017), reading and writing are a fairly recent inven-
tion (first evidence for alphabetic languages around 2000 
BC (Darnell et al. 2005)). As no cortical specialization for 
reading can be assumed within this short period (Tooby 
and Cosmides 2000), language decoding makes use of pre-
existing cognitive features (Dehaene et al. 2010, 2015). 
Since the cognitive computations (and their underlying 
neuronal resources) for non-lexical decoding of written 

script and MC are the same, MC can be used as a (limited) 
model for language learning and decoding.

Using MC and fMRI, we previously identified brain acti-
vations associated with non-lexical decoding (sublexical 
system and phonological buffer) in the left inferior parietal 
lobule and inferior frontal cortex (non-lexical decoding net-
work; Junker et al. 2020). Additional activations associated 
with word comprehension (lexicality effect) were found in 
the left angular gyrus, the anterior cingulate cortex, and the 
precuneus, indicating subsequent lexical and semantic pro-
cessing (comprehension network). Accordingly, the brain 
regions that host the cognitive computations required for 
decoding and comprehension of MC and written script (e.g., 
Taylor et al. 2013) are highly consistent, further supporting 
the concept of feature-specific rather than modality-specific 
representations. However, this study used a univariate data 
analysis within the framework of the general linear model 
(GLM) to identify brain regions associated with non-lexical 
decoding and word comprehension. As this analysis is not 
capable to detect cross-regional interactions (as expected 
during language decoding), further classifications were not 
possible in this prior study.

To investigate causal interactions across brain regions 
using functional brain imaging, advanced analysis tech-
niques such as dynamic causal modeling (DCM) are required 
(Friston 2009). In contrast to alternative methods for effec-
tive connectivity analyses, DCM combines a neurobiologi-
cal model for neural dynamics and a biophysical model to 
describe the transformation of neural activity to the meas-
ured BOLD signal, minimizing the influence of regional 
differences in hemodynamic response (Friston et al. 2013). 
DCM uses Bayesian model selection to identify significant 
families of models as well as the most likely individual 
model architecture, which takes both model performance 
and complexity into account (Stephan and Friston 2010). In 
addition, DCM aims to estimate various model parameters, 
describing how activity in an area is affected by intrinsic 
and latent static connections (A matrix), as well as modula-
tory experimental influences (C matrix). Additionally, the 
direct influence of experimental influences on the effective 
connectivity between regions can be estimated (B matrix).

In this study, we further investigated the non-lexical route 
using fMRI and DCM, with a specific interest in the interac-
tion of brain regions involved in non-lexical decoding (sub-
lexical system, phonological buffer) and word comprehen-
sion (phonological lexicon, semantic system). Based on the 
brain regions identified by task-related fMRI (while decoding 
MC) and applying the cognitive model for non-lexical lan-
guage decoding (see Fig. 1c), we sought to disentangle the 
functional network architecture with different subcomponents 
enabling decoding and comprehension. More specifically, we 
investigated the interaction of two intertwined networks sub-
serving non-lexical decoding and word comprehension; i.e., 
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the translation, short-term storage and assembly of phonologi-
cal units (phonemes), and the subsequent identification of a 
(known) word. We also sought to identify the connecting hubs, 
enabling an information flow between the decoding and com-
prehension network.

Material and methods

Subjects

Thirty-three participants (18 male) between 18 and 30 years 
(mean: 23; standard deviation: 2) took part in the experiment. 
All participants were naïve to Morse code (MC). Exclusion 
criteria included metal implants (retainers, pacemakers, etc.), 
neurological or psychiatric history, and claustrophobia. The 
handedness was restricted to right-handed persons and con-
trolled using the Edinburgh handedness inventory (Oldfield 
1971). All participants gave written informed consent before 
the study was performed.

Training

All participants learned 12 Morse code (MC) letters in 6 sepa-
rate lessons spaced across a maximum time range of 12 days 
using an audiobook. These letters (A, D, E, G, I, M, N, O, R, 
S, T, and U) were chosen so that their MC consisted of a maxi-
mum of three signals (short or long) and that a sufficient num-
ber of German words could be formed. Each audiobook lesson 
consisted of 5–10 blocks (30–60 letters per block) and was 
completed on-site in the laboratory. If subjects failed to reach 
a certain learning target per lesson (e.g., errors in three of the 
last six blocks), a repetition of the last block was conducted 
(~ 5 min). Although the learning procedure was similar for all 
subjects, it differed in the sensory modalities involved. While 
some subjects learned the MC as purely auditory sequences 
(Junker et al. 2021: Unisensory learners; 17 subjects), oth-
ers additionally perceived the MC as vibrotactile sequences 
applied to the left hand (Junker et al. 2021: Multisensory low-
level learners; 16 subjects). However, since training-related 
differences between these groups were only found in right-
hemispheric brain regions associated with tactile perception 
(postcentral gyrus) and multisensory integration (inferior fron-
tal cortex), both groups were analyzed together in the present 
study. Importantly, all subjects spent the same amount of time 
exercising (for a detailed description of the learning procedure, 
see Junker et al. 2021).

Task

Stimuli

A total of 40 German words (mean duration: 3.57 s; e.g., 
‘RAD’ or ‘NOT’) and 40 meaningless nonwords (mean 

duration: 3.56 s; e.g., ‘ENS’ or ‘RUO’) were used in the 
experiment and presented as auditory MC (for a detailed 
list of all stimuli, see Supplementary Table 1). Only three-
letter stimuli were used, as these provided a good balance 
between possible words (n = 86) and working memory load. 
The words included 37 nouns and 3 adjectives, while the 
nonwords included 30 pronounceable pseudowords and 
10 unpronounceable nonwords. All words and nonwords 
included 79 bigrams and 11 multi-letter graphemes. The 
average word frequency was 14.7 instances per million 
words (standard deviation = 43.98) and was measured based 
on a German word corpus comprising the literature between 
2000 and 2010 (DWDS core corpus 21; including over 121 
million words from Fiction, Popular Literature, Science, and 
Journalistic Prose). In addition, the international SOS signal 
in MC (mean duration: 2.28 s) as well as a 796 Hz sinusoidal 
tone (mean duration: 3.7 s) were presented 25 times each 
and served as control stimuli (only sinusoidal tone analyzed 
here).

Lexical‑decision task

Subjects performed a lexical-decision task before and after 
learning while we simultaneously recorded neural activ-
ity using functional magnetic resonance imaging (fMRI). 
For this purpose, words and nonwords were presented as 
auditory MC sequences. Subjects had to decide whether the 
presented letters represent a German word or a nonword. 
Additionally, both control tones were presented and had to 
be identified. All stimuli were presented in randomized order 
using the software Presentation® (Neurobehavioral Sys-
tems, Albany, CA, USA). The subjects communicated their 
answers by pressing a keypad with the left pinky (word), 
ring (nonword), middle (SOS signal), or index finger (con-
trol). In addition to the lexical-decision task, the subjects 
performed a perceptual task using the same stimulus mate-
rial, which has been described elsewhere (see Junker et al. 
2021). Each task was divided into two sessions, allowing for 
a short break between the sessions. However, only the data 
from the lexical-decision task after training were analyzed 
here, as the subjects could only decode the MC stimuli after 
training (for a comparison of the data before and after learn-
ing, see Schlaffke et al. 2015).

Behavior

Statistical analysis of the behavioral data was performed 
using IBM SPSS (version 20), aiming to investigate stim-
ulus-specific differences in recognition performance and 
response times (stimuli comparisons). To test for statistical 
differences, the normality of the data was tested using the 
Shapiro–Wilk test before the stimuli were compared using 
either parametric analysis of variance or non-parametric 
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Kruskal–Wallis test. Post hoc pairwise comparisons were 
performed using either student’s t-tests or Mann–Whitney-
U-test for normal or non-normal distributed data, respec-
tively. Bonferroni correction for multiple comparisons was 
performed across stimuli comparisons (recognition perfor-
mance and response times; n = 2) and corresponding post 
hoc tests (n = 3) by multiplying the calculated p-values by 
the number of tests performed. This correction was chosen 
since an interpretable alpha error of 5% will be maintained. 
However, as this correction procedure can yield p-values 
above 1, high p-values are indicated as “ > 1”.

Magnetic resonance imaging

Acquisition

To investigate the neural basis of MC decoding, struc-
tural and functional magnetic resonance (MR) images 
were acquired at the University Hospital Bergmannsheil in 
Bochum (Germany), using a 3 T MR scanner and a 32-chan-
nel head coil (Philips Achieva 3.2, Best, Netherlands). Audi-
tory stimuli were presented via MR-compatible headphones. 
Furthermore, protection was provided against the scanner 
noises. All stimuli were presented at a volume that could 
be easily heard by the subject. In addition, MR-compatible 
LCD goggles were used, via which the task instruction and 
response options were displayed during the experiment.

After preparation of the subject, a structural high-
resolved T1 weighted image was acquired (~ 5 min), result-
ing in an isometric resolution of 1  mm (field of view: 
256 × 256 × 220 mm3; repetition times TR: 8.3 ms; echo 
times TE: 3.8 ms). Subsequently, T2*-weighted echo-planar 
images were acquired while the subjects performed a per-
ceptual (not investigated here) and lexical-decision task (TR: 
2400 ms; TE: 35 ms; flip-angle: 90°). 250 dynamic scans 
were recorded per session (2x ~ 10 min), while no stimulus 
was presented during the first four (dummy) scans. Each 
scan consisted of 36 slices measured in ascending order, 
resulting in a voxel size of 2 × 2 × 3 mm3 (field of view of 
256 × 256 × 108 mm3).

Preprocessing

The analysis of the MR data was performed using the soft-
ware SPM12 (Statistical Parametric Mapping, Welcome 
Department of Cognitive Neurology, University College, 
London, UK) running under Matlab 2019a (The MathWorks 
Inc., Massachusetts, USA). After the removal of the first 
four images, which served as dummy scans, temporal correc-
tion of the consecutively acquired slices was first performed 
(slice-time correction). Subsequently, the 246 dynamic 
recordings were realigned by back-rotation and back-trans-
lation to correct for subject motion during recording. One 

session was excluded from the further analysis in one sub-
ject due to strong head movements during data acquisition 
(> 5 mm in x, y, or z). To transform the MR images into 
the normalized MNI space, the functional images were first 
coregistered to the high-resolution structural image. Subse-
quently, the structural images were decomposed into gray 
matter, white matter, cerebrospinal fluid, bone, and soft tis-
sue (segmentation). The deformation field calculated during 
the segregation was then used to normalize the functional 
(and coregistered) data. Finally, the functional images were 
spatially smoothed using a Gaussian kernel (full width at 
half maximum: 6 × 6 × 6 mm3) to normalize the error dis-
tribution, improve the signal-to-noise ratio and adjust for 
inter-individual variations.

General linear model

To investigate the effective connectivity of brain regions 
during non-lexical MC decoding, the brain regions that are 
critically involved in processing must be identified first. To 
identify these core regions, a univariate analysis was per-
formed in the statistical framework of a general linear model 
implemented in SPM12. The resulting clusters were subse-
quently labeled using the Automated Anatomical Labelling 
III atlas (https://​www.​gin.​cnrs.​fr/​en/​tools/​aal/) and visual-
ized using the SPM toolboxes bspmview (http://​www.​bobsp​
unt.​com/​bspm-​view/).

During the first-level analysis, the individual events were 
first modeled as box-car functions and convolved with the 
hemodynamic response to find a model that best explained 
the data. As events, the correctly identified stimulus types 
(words, nonwords, control) were modulated separately 
between stimulus offset and the subject's response. If sub-
jects responded before the stimulus offset (possible only 
for control tones), a stick function was used for modeling 
(instead of a box-car function). The time window between 
offset and response was chosen, as this period allows the 
identification of core brain regions related to both, language 
decoding and word comprehension (for details, see Junker 
et al. 2020). However, to keep the analysis simple, no addi-
tional time window was analyzed here. Nevertheless, the 
period while the stimuli were presented (onset-offset), the 
SOS signal, as well as all unidentified stimuli were modeled 
to exclude an effect on the implicit baseline. Furthermore, 
the individual rotation and translation parameters calculated 
during preprocessing (realignment, see “Preprocessing”) 
were used as additional covariates of no interest. After esti-
mating the model, the individual conditions (words, non-
words, control) were contrasted against the implicit baseline 
for the subsequent second-level model.

Second-level group analyses were performed using cor-
rectly identified words, nonwords, and control tones only. 
To identify brain regions involved in the conversion of MC 

https://www.gin.cnrs.fr/en/tools/aal/
http://www.bobspunt.com/bspm-view/
http://www.bobspunt.com/bspm-view/
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letters (sublexical system) and the subsequent storage and 
assembly of the resulting phonemes (phonological buffer), 
words and nonwords were compared against the control 
tone using a conjunction contrast ([words > control] ^ [non-
words > control]). Although the retrieval of semantic mean-
ing was not crucial to perform the lexical-decision task, the 
data were analyzed and discussed in the context of semantic 
processing, since reaction times during lexical decisions are 
influenced by semantics. For example, lexical processing 
speeds are influenced by various semantic richness measures 
such as the number of semantic neighbors, the number of 
semantic features, or contextual dispersion (Pexman et al. 
2008). This influence of semantic properties on processing 
speeds suggests that semantic representations are involved 
in lexical processing and are retrieved automatically (Balota 
1983), although semantic retrieval was not required to per-
form the lexical-decision task. Therefore, words were con-
trasted against nonwords to identify brain regions involved 
in representing phonological and semantic features of known 
stimuli (words > nonwords; lexicality effect). Whole-brain 
analysis was performed with an initial significance level 
of pVoxel < 0.001, corrected for multiple comparisons at the 
cluster-level (family-wise error correction, pCluster < 0.05).

From these results, five different left-hemispheric peak 
activations were selected. Subsequently, a sphere (radius: 
6 mm) centered on the selected peak voxel was created, 
serving as ROIs for the effective connectivity analysis. The 
opercular part of the inferior frontal cortex (IFC—ROI 1) 
as well as the supramarginal gyrus (SMG—ROI 2) were 
engaged during word and nonword decoding, suggesting an 
involvement in the sublexical system or phonological buffer. 
We especially selected peak activations within the IFC and 
inferior parietal lobule (SMG), as these regions are most 
commonly described in the literature for non-lexical lan-
guage decoding (see “Discussion”). In contrast, the angu-
lar gyrus (AG—ROI 3), as well as the anterior cingulate 
cortex (ACC—ROI 4) and precuneus (PC—ROI 5) were 
exhibited while decoding words only, suggesting a partici-
pation in representing phonological (phonological lexicon) 
and semantic (semantic system) features on known stimuli. 
Although only two cognitive components were expected, 
all three areas were nevertheless used for subsequent mod-
eling, since the AG, ACC, and PC are likely to represent one 
functional network (default mode network). If multiple peak 
activations were found within one region (as found within 
the ACC, AG, and IFC), the peak with the highest statisti-
cal z-value was selected. Although additional regions were 
also involved in non-lexical decoding (e.g., insular cortex) 
and word comprehension (e.g., posterior middle temporal 
cortex), we restricted the subsequent effective connectivity 
analysis to five regions to keep the models simple (for more 
details, see “Limitations”).

Dynamic causal modeling

Effective connectivity analyses were performed using DCM 
implemented in SPM12 (version 12). DCM aims to esti-
mate various model parameters, describing how activity in 
an area is affected by intrinsic and latent static connections 
(A matrix) as well as modulatory experimental influences 
(C matrix). Additionally, the direct influence of experimen-
tal influences on the effective connectivity between regions 
can be estimated (B matrix). Bilinear DCM was applied on 
mean-centered data using one state per region (inhibitory 
and excitatory effects combined) and no stochastic effects 
(e.g., state-dependent processes such as short-term plastic-
ity). All models were first created for each subject before 
the connectivity strengths (A, B, and C matrix) and their 
probabilities were estimated.

To identify the most likely individual model architecture 
across all subjects, Bayesian Model Selection was performed 
assuming fixed effects, taking into account both model per-
formance and complexity (Stephan and Friston 2010). In 
contrast to random effects, where various cognitive strate-
gies could be assumed to perform the same task (e.g., lexi-
cal and non-lexical decoding), fixed effects were expected 
since only non-lexical decoding strategies could be applied 
after learning single letters in MC. Therefore, differences 
in log-evidence (difference in log-evidence to worst model) 
are reported, where a difference of three can be interpreted 
as strong evidence (Stephan and Friston 2010). In addition 
to the individual model comparison, Bayesian Model Selec-
tion was applied across groups of models based on their 
feature membership (families) to compare specific hypoth-
eses against each other. For model families, differences in 
summed log-evidence (sum across all models of one fam-
ily) compared to the worst family are reported. However, no 
Bayesian model averaging was performed across families of 
similar features, since we were interested in the most likely 
model and the corresponding brain mapping. Finally, all 
connectivity parameters (A, B, and C matrix) as well as their 
probabilities of the most likely model were averaged across 
subjects using Bayesian parameter averaging.

As described above, only a reduced time window had 
been investigated in the GLM (stimulus offset to button 
press), since this processing phase allows the investigation 
of brain activations related to language decoding and com-
prehension (for detailed information, see Junker et al. 2020). 
However, since we cannot determine exactly when the com-
prehension network becomes involved in processing, we 
modeled the entire processing time window (stimulus onset 
to button press) for the subsequent DCM analysis. In this 
way, we could ensure to capture both, the early initialization 
of MC decoding and the later transition to word comprehen-
sion, allowing us to test specific hypotheses and models.
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The models tested here arose from the observations in 
dyslexic patients as well as from computational models of 
language decoding and criticisms thereof, e.g., lack of top-
down connections. The following assumptions were made: 
(1) Different processes involved in language decoding are 
represented in distinct brain regions, as suggested by neuro-
imaging of healthy subjects and dyslexic patients. (2) The 
brain regions responsible for sublexical conversions (sub-
lexical system) and phonological working memory (buffer) 
are involved in decoding words and nonwords. (3) These 
regions are serially connected (one after the other), involving 
either unidirectional (bottom-up) or bidirectional (bottom-
up and top-down) connections (criticisms of computational 
models). (4) Words additionally modify the connectivity 
from the phonological buffer to the phonological lexicon, 
which subsequently interacts with the semantic system to 
enable word comprehension (see Fig. 1c). Based on these 
assumptions, 12 different models were tested, which can be 
divided into three feature families (see Fig. 2).

Family 1: Words and nonwords serving as modulatory 
input to the non-lexical decoding network (C matrix) via the 
SMG (Family 1.1—6 models) or IFC (Family 1.2—6 mod-
els). While Family 1.1 reflects an involvement of the SMG in 
the sublexical system and the IFC in the phonological buffer, 
Family 1.2 represents the opposite hypothesis.

Family 2: The sublexical system and phonological buffers 
communicate via unidirectional (Family 2.1—6 models) or 
bidirectional connections (Family 2.2—6 models; A matrix). 
As suggested by the ‘word superiority effect’ in nonwords, 
non-lexical decoding might involve additional top-down 
connections, which are not included in the DRC or CDP 
model. This hypothesis is represented by Family 2.2, while 
Family 2.1 reflects pure unidirectional bottom-up connec-
tions within the decoding network.

Family 3: Words additionally modulate the connection 
from the phonological buffers to the AG (Family 3.1—4 
models), ACC (Family 3.2—4 models), or PC (Family 
3.3—4 models; B matrix). Each subfamily represents the 
hypothesis that the phonological lexicon is localized in 
either the AG, ACC, or PC, respectively.

Results

Behavior

Overall, subjects correctly identified 70% of all words 
and nonwords presented in MC. Since recognition perfor-
mances and response times were not normally distributed 
for most stimuli types, only non-parametric statistical tests 
were applied. Stimulus-specific differences in recogni-
tion performance were found (pKruskal–Wallis < 0.001), with 
the control tone (98%) being recognized more frequently 
than words (pMann-Whitney-U < 0.001; 54%) and nonwords 
(pMann-Whitney-U = 0.001, 86%; see Fig. 3a). Furthermore, 
nonwords were identified more often as nonwords than 
words were identified as words (pMann-Whitney-U < 0.001). 

Fig. 2   DCM models. All 12 DCM models tested, sorted by family. 
Words and nonwords served as modulatory input to the sublexical 
system (light blue; C matrix), located either in the SMG (Family 1.1) 
or IFC (Family 1.2). The sublexical system connects to the phonolog-
ical buffer (medium blue; A matrix) involving unidirectional (Fam-
ily 2.1) or bidirectional connections (Family 2.2). Words additionally 
influence the effective connectivity (dashed line; B matrix) between 
the phonological buffer and phonological lexicon (blue) within the 
AG (Family 3.1), ACC (Family 3.2), or PC (Family 3.3). The phono-
logical lexicon interacts with brain regions involved in the semantic 
system (dark blue)

Fig. 3   Behavioral results. Behavioral recognition performance (a) 
and reaction time (b) for words (dark), nonwords (medium), and con-
trols (light). Significant differences were marked (*p < 0.001). The 
standard error of mean is shown as error bar
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In addition, differences in response times were identi-
fied (pKruskal–Wallis < 0.001). While the control tone (0.7 s) 
was recognized faster than words (pMann-Whitney-U < 0.001; 
2.3  s.) and nonwords (pMann-Whitney-U < 0.001; 2.4  s), no 
difference was found comparing words and nonwords 
(pMann-Whitney-U = 0.428; see Fig. 3b). Furthermore, word 
frequency (based on a German word corpus including lit-
erature from 2000 to 2010) was correlated with recogni-
tion performance (p[Spearman] = 0.002, r = 0.477), but missed 
a significant influence on reaction time (p[Spearman] = 0.053, 
r = − 0.308).

General linear model

Decoding words and nonwords elicited stronger activa-
tions compared to the control tone in left hemispheric brain 
regions, including the inferior frontal cortex (IFC; pars 
opercularis), the insular cortex and precentral cortex, the 
supramarginal gyrus (SMG) and superior parietal lobule, 
as well as the ventral occipitotemporal cortex. In addition, 
activation was found within the right frontal cortex (see 
Fig. 4a). When comparing words against nonwords (lexical-
ity effect), enhanced activation of the left anterior cingulate 
cortex (ACC), the angular gyrus (AG) and precuneus (PC) 
were found (see Fig. 4b). Furthermore, left posterior middle 
temporal and subcortical activity was increased during word 
decoding. Vice versa, no enhanced activation for nonwords 
was found. For further information regarding peak activa-
tions, see Tables 1 and 2.

Dynamic causal modeling

To identify common model features related to specific 
hypotheses, all 12 models were compared based on their 
feature families. Strong evidence was found for models that 
involved modulatory input of words and nonwords on the 

SMG (Family 1.1, posterior probability > 0.99; where higher 
values indicate the probability for the corresponding family 
or model) when being compared against models that sug-
gest the IFC as input stage for words and nonwords (Fam-
ily 1.2, posterior probability < 0.01). In addition, models 
involving bidirectional connections between the sublexical 
system and the phonological buffer (Family 2.2, posterior 
probability = 0.72) were favored over models with unidirec-
tional connections (Family 2.1, posterior probability = 0.28). 
Furthermore, Bayesian model selection preferred models 
involving additional modulation while decoding meaning-
ful words onto the connection toward the AG (Family 3.1, 
posterior probability = 0.80) rather than a modulation on the 
connection toward the ACC (Family 3.2, posterior probabil-
ity = 0.14) or PC (Family 3.3, posterior probability = 0.06). 
For details, see Table 3.

As expected from the family comparison, the most likely 
model (posterior probability = 0.66, difference in log-evi-
dence: 33.6) involved modulatory input of words and non-
words to left supramarginal activity, which connected to the 
IFC in a bidirectional manner (see Fig. 5b). Furthermore, 
words modulated the connectivity from IFC to AG. In this 
model, most connections (except for intrinsic SMG connec-
tion, posterior probability = 0.5) as well as all modulatory 
inputs were significant (posterior probability > 0.95). For 
details, see Fig. 5.

Discussion

In the present study, we used Morse code (MC) and fMRI 
to probe the non-lexical route in reading followed by a 
lexical decision. Common brain activations related to non-
lexical decoding of words and nonwords were found within 
the left SMG and adjacent superior parietal lobule, as 
well as the left IFC, while meaningful words additionally 

Fig. 4   GLM results. Statistical parametric maps of cortical brain activation during non-lexical decoding of words and nonwords vs. a control 
tone (a) as well as words against nonwords (b)
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recruited the AG, ACC, and PC. We employed DCM 
to further disentangle the interaction of activated brain 
regions. This way, we tested various models of non-lexical 
decoding and word comprehension taking into account 
the DRC and CDP models for reading, attributing specific 
functions to the SMG, the IFC, and the AG (see Fig. 5c).

The winning DCM model that explains the measured 
BOLD signal best suggests modulation of SMG activity by 
the word and nonword condition. The SMG interacts with 
the opercular part of the IFC via bidirectional (bottom-up 
and top-down) connections. Furthermore, the word condi-
tion additionally modulated the connection from the IFC 

Table 1   GLM of words and 
nonwords

MNI-coordinates of peak voxels and corresponding z-values of significant clusters (initial significance 
level of pVoxel < 0.001, FWE-corrected on cluster-level) for shared activations during words and nonwords 
decoding compared to the control tone. Additionally, cluster size (in number of voxels), hemisphere (L left; 
R right), and ROI number (if selected) are shown

Size Lable L/R x y z z-value ROI

2141 Insular cortex L – 30 22 – 7  > 8 –
Inferior frontal cortex (pars opercularis) L – 42 8 29 6.9 #1
Inferior frontal cortex (pars triangularis) L – 42 28 17 4.9 –

1406 Superior parietal lobule L – 22 – 72 50 5.9 –
Superior parietal lobule L – 28 – 54 47 5.1 –
Supramarginal gyrus L – 48 – 38 47 4.6 #2

596 Insular cortex R 40 22 – 7 7.5 –
Insular cortex R 32 26 2 6.4 –
Inferior frontal cortex (pars opercularis) R 48 16 5 4.2 –

470 Supplementary motor area R 2 14 53 5.6 –
Superior frontal cortex (medial) R 0 22 44 5.4 –
Anterior cingulate cortex (supracallosal) R 8 36 20 4.7 –

337 Inferior occipital cortex L – 44 – 68 – 13 5.9 –
Inferior temporal cortex L – 52 – 54 – 13 5.1 –
Inferior temporal cortex L – 46 – 46 – 16 4.6 –

155 Inferior frontal cortex (pars opercularis) R 44 10 26 4.9 –

Table 2   GLM of words versus 
nonwords

MNI-coordinates of peak voxels and corresponding z-values of significant clusters (initial significance level 
of pVoxel < 0.001, FWE-corrected on cluster-level) for different activation during words compared to non-
words decoding. Additionally, cluster size (in number of voxels), hemisphere (L left; R right), and ROI 
number (if selected) are shown

Size Lable L/R x y z z-value ROI

2564 Anterior cingulate cortex (pregenual) L − 4 48 14 6.1 #4
Anterior cingulate cortex (pregenual) L – 2 48 5 6.1 –
Superior frontal cortex (medial) L − 6 44 26 6 –

581 Angular gyrus L − 42 − 66 38 4.9 #3
Angular gyrus L − 48 − 62 32 4.7 –
Middle temporal cortex L − 56 − 62 23 4.1 –

429 Middle cingulate cortex L − 6 − 42 38 4.5 –
Precuneus L − 4 − 54 14 4.3 #5
Middle cingulate cortex L − 2 − 22 38 4.1 –

185 Olfactory cortex L − 14 6 − 13 5.2 –
Ventral striatum L − 10 14 − 1 4.9 –
Hippocampus L − 14 − 4 − 13 4.9 –

123 Amygdala R 14 6 − 13 4.7 –
Substantia nigra (pars reticulata) R 8 − 6 − 13 4.5 –

97 Middle temporal cortex L − 60 − 48 − 4 4.6 –
Middle temporal cortex L − 64 − 38 − 4 3.6 –
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(pars opercularis) to the AG. The AG was then connected 
with both ACC and PC. Our analyses provide evidence that 
the SMG, rather than the IFC, serves as an input channel to 
the non-lexical decoding network, supporting the hypothesis 
of left SMG involvement in sublexical letter conversions 
(system) and left opercular part of the IFC involvement in 
phonological working memory (buffer; Family 1.1). Infor-
mation flow, as suggested by DCM, proceeds in a bidirec-
tional manner between the SMG and IFC (Family 2.2). To 
enable comprehension of meaningful words, the IFC con-
nects to the left AG (only in the word condition), suggesting 
an involvement in the phonological lexicon (Family 3.1). 
Finally, the AG interacts with the ACC and PC, presumably 
reflecting the access to semantic memory representations. 

As such, our analyses support the notion that the left SMG 
and IFC (pars opercularis) host components of the non-lex-
ical decoding network, i.e., grapheme to phoneme conver-
sion and phoneme assembly, respectively. Furthermore, the 
AG seems to serve as a bidirectional interface between the 
non-lexical decoding network and the semantic network, 
accessed when a word is identified as such.

At the behavioral level, the lack of difference in RT 
between words and nonwords suggests that no lexical decod-
ing strategy was applied. At the same time, meaningless 
nonwords were identified more frequently than meaningful 
words. Increased recognition performance for nonwords can 
be explained by potential translation errors during decoding. 
The combination of the three letters learned in the current 

Table 3   DCM model 
comparison

Difference in log-evidence comparing individual models against the worst model (a). For model families, 
log-evidences were first summed across each family before the difference was calculated compared to the 
worst family. A difference in log-evidence of “0” represents the worst model or family. Posterior prob-
abilities for individual models and model families (b), where higher values indicate the probability for the 
corresponding model or family
↑ Unidirectional connection (bottom-up)
↑↓ Bidirectional connection (bottom-up and top-down)

a: Difference in log-evidence b: Posterior probability

SMG → IFC IFC → SMG Family 3 SMG → IFC IFC → SMG Family 3

↑ ↑↓ ↑ ↑↓ ↑ ↑↓ ↑ ↑↓

AG 32.0 33.6 2.0 3.4 8.5 0.134 0.666  < 0.001  < 0.001 0.800
ACC​ 32.0 29.3 0.0 1.1 0.0 0.134 0.009  < 0.001  < 0.001 0.140
PCC 29.7 30.9 0.9 3.1 2.1 0.013 0.043  < 0.001  < 0.001 0.060
Family 2 0.0 4.8 0.0 4.8 0.280 0.720 0.280 0.720
Family 1 176.9 0.0  > 0.999  < 0.001

Fig. 5   DCM results. Cognitive model for non-lexical decoding (a) 
with connectivity strengths of the most likely DCM model (b) and 
resulting brain mapping (c; ROIs shown as circles). Connectivities 
are shown within each circle (self-connectivity; A matrix), as con-
tinuous lines (static connectivity; A matrix), as dotted lines (modula-

tory experimental influences; C matrix), or as stitched lines (experi-
mental influences on the effective connectivity; B matrix). Significant 
connections were marked (*posterior probability > 0.95; **posterior 
probability > 0.99)
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experiment can yield 89 German words and 1639 nonwords. 
Therefore, a translation error leads to an 18.4 times higher 
chance of transforming a word into a nonword (than vice 
versa), explaining how differences in recognition perfor-
mance between both stimuli types might have originated. 
In addition, word recognition performances were correlated 
with frequencies, showing that more frequently used words 
were recognized more often than less frequent words. A rela-
tionship between word frequency and decoding behavior is 
often observed in reading and can be related to phonological, 
lexical or semantic stimulus representations (Graves et al. 
2010). However, the lack of difference in RT between words 
and nonwords suggests that no accelerated lexical decoding 
strategy was applied. Hence, decoding meaningful words 
benefits from more robust phonological and semantic mem-
ory representations, allowing a more reliable stimulus iden-
tification (Desai et al. 2020). For a more detailed discussion 
of MC decoding behavior, see Junker et al. 2020.

Decoding words and nonwords elicited brain activations 
and changes in effective connectivity within and between 
the SMG and IFC, brain regions typically associated with 
language decoding. Studies using different stimulus types 
(DeMarco et al. 2017), linguistic properties (Graves et al. 
2010; Protopapas et al. 2016), or orthographies (Mei et al. 
2014; Rueckl et al. 2015) provide strong evidence, that 
both regions are critically involved in non-lexical decod-
ing. However, since the sublexical system and phonologi-
cal buffer are equally affected by these factors, the exact 
role of the IFC and SMG during decoding remains to be 
fully elucidated. Letter-selective activations have been found 
within the left SMG (Joseph et al. 2003, 2006), suggesting a 
specific role of the SMG in the sublexical system. Further-
more, anodal transcranial direct-current stimulation over the 
left inferior parietal lobule (including the SMG) interferes 
with the acquisition and maintenance of novel grapheme-
phoneme mappings, which is heavily based on the perfor-
mance of the sublexical system (Younger and Booth 2018). 
Repetitive transcranial magnetic stimulation (rTMS) over 
the left pars opercularis of the IFC impairs phonological 
working memory (Nixon et al. 2004). By contrast, rTMS 
over the pars triangularis interferes with semantic process-
ing (Whitney et al. 2011) rather than phonological working 
memory (Nixon et al. 2004). This dissociation of posterior 
(BA44, precentral) and anterior frontal brain regions (BA45) 
involved in phonological and semantic processing, respec-
tively, is further supported by multiple studies investigating 
brain function (Liakakis et al. 2011) and effective connectiv-
ity (Heim et al. 2009). During non-lexical decoding, stronger 
effective connectivity toward posterior frontal regions can 
be observed. Vice versa, lexical decoding of irregular words 
led to enhanced effective connectivity toward anterior frontal 
regions (Mechelli et al. 2005), a process that is supported 
by semantics (Boukrina and Graves 2013). Although these 

studies demonstrated direct connectivity from the fusiform 
gyrus to the IFC, their results still support a functional seg-
regation within the IFC. Interestingly, our DCM analysis 
favored models including additional top-down connec-
tions between IFC (pars opercularis) and SMG, a connec-
tion found to be positively correlated with reading skills 
in healthy children that more strongly rely on non-lexical 
decoding (Cao et al. 2008). This bidirectional information 
flow might be enabled via the third branch of the superior 
longitudinal fasciculus (Frey et al. 2008), allowing for fast 
communication between the sublexical system (SMG) and 
phonological buffer (opercular part of the IFC).

Furthermore, activations during word as compared to 
nonword decoding were found in the left AG, ACC, and 
PC, key regions of the DMN. The DMN is one of the most 
robust resting-state networks that is associated with higher 
cognitive functions, such as episodic and semantic memory, 
prospection, and theory of mind (Spreng and Grady 2009). 
During periods of rest, the regions of the DMN are function-
ally and effectively connected, with the AG serving a driving 
role (Sharaev et al. 2016). In contrast, the DMN is deacti-
vated during tasks (task-negative network), presumably to 
suppress internal thoughts (Barber et al. 2017) and to guide 
goal-directed behavior (Daselaar et al. 2009). This deacti-
vation, however, is reduced during semantic processing of 
e.g., written words, indicating an involvement of the DMN 
in representing semantic rather than perceptual or phono-
logical stimulus features (Wirth et al. 2011). Accordingly, 
brain regions of the DMN are more strongly engaged while 
processing meaningful words compared to meaningless non-
words (Lin et al. 2016), independent of the phonology and 
orthography of a language (Dehghani et al. 2017). In addi-
tion to semantics, the DMN is involved in the formation of 
episodic memory (Baldassano et al. 2017). Episodic mem-
ory is enhanced by the semantic richness of an event (Craik 
and Lockhart 1972) and therefore intertwined with semantic 
memory (for review, see Renoult et al. 2019). Overall, the 
here identified comprehension network overlaps extensively 
with the DMN, a brain network that hosts semantic memory 
functions required to process highly abstract features that are 
independent of the sensory modality (Xu et al. 2017).

Our DCM analysis suggests a distinct role of the AG, 
possibly serving as a bidirectional interface between pho-
nological working memory (IFC) and the semantic system 
(as accessed through the phonological lexicon). Activa-
tions within the AG seem to be driven by both phonological 
and semantic features (Kim 2016). Interestingly, Barbeau 
et al. (2017) found a correlation between AG activation 
and reading speed of a newly acquired language suggesting 
that enhanced phonological representations facilitate word 
recognition during non-lexical decoding. At the same time, 
the left AG represents one of the most reliably activated 
brain regions in imaging studies on the neural correlates of 
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the semantic system (Binder et al. 2009), and some authors 
have even suggested functional subdivisions of the AG 
involved in searching (dorsal) and mapping (medial/ven-
tral) of semantic representations (Seghier et al. 2010). The 
parallel processing of phonological and semantic features 
within the AG is further supported by Taylor et al. (2013), 
suggesting an involvement in the phonological lexicon as 
well as the semantic system. In this way, the left AG might 
link assembled phonology to prior knowledge via phono-
logical representations, making it important for reading 
acquisition, especially in the early phase when non-lexical 
decoding is still the leading strategy. As orthographic experi-
ence increases over time, processing shifts from non-lexical 
toward lexical decoding, allowing a direct mapping of word 
orthography onto semantic representations, bypassing pho-
nology. This reduction in non-lexical decoding goes along 
with reduced activity of the AG (Seghier 2013), although the 
AG maintains a driving role at least during periods of rest 
(Sharaev et al. 2016). However, how exactly orthographic 
and semantic representations interact during lexical decod-
ing remains to be fully elucidated.

Although the effects found here are consistent with lit-
erature examining language decoding and word comprehen-
sion, the results represent only part of the story. First, the 
models used here include only those aspects that are spe-
cific to language decoding. Other aspects, such as attention, 
cognitive control, and error monitoring are not part of the 
model but are important for decoding as well. Accordingly, 
brain activities that are not specific to language decoding 
are also to be expected. Second, we identified additional 
brain regions involved in MC decoding (insular and ven-
tral occipitotemporal cortex) and comprehension (posterior 
middle temporal cortex). Although the involvement of the 
insular cortex in various linguistic processes was found 
(Borowsky et al. 2006), it is still under debate whether the 
insular cortex plays a crucial role in decoding since patients 
with insula lesions usually recover from initial reading defi-
cits quickly (within weeks or months) (Uddin et al. 2017). 
Furthermore, although the ventral occipitotemporal cortex 
is associated with the ventral visual stream and visual lan-
guage decoding (e.g., Lerma-Usabiaga et al. 2018; Taylor 
et al. 2019), studies in blind persons show recruitment of the 
ventral occipitotemporal cortex also while decoding tactile 
Braille (Dzięgiel-Fivet et al. 2021). In addition, we identified 
stronger engagement of the posterior middle temporal cortex 
(MTC) while decoding words compared to nonwords, but 
did not include this region in our DCM analysis. The MTC 
represents one core region of the semantic system (Binder 
et al. 2009), which is involved in the processing of spoken 
and written language (Rueckl et al. 2015), as well as in the 
processing of gestures (Papeo et al. 2019). In general, the 
MTC can be divided into anterior and posterior subregions, 
involved in semantic representation and control, respectively 

(Jackson 2021). Disruption of left posterior MTC activity 
leads to an impairment of demanding semantic associations 
(e.g., salt—grain), but not of automatic semantic associa-
tions (salt-pepper) or non-semantic controls (Whitney et al. 
2011). Thus, the left posterior MTC (as identified here) plays 
a crucial role in semantic control, but may not be central 
to semantic representation. Therefore, none of these brain 
regions were included in the DCM analysis to keep the anal-
ysis comparable to the cognitive model for language decod-
ing. Third, we interpreted the effects observed here only 
with regard to the cognitive model of reading. For instance, 
the AG is also involved in a variety of tasks that involves 
the processing and manipulation of concepts, including the 
semantic processing of words (Rueckl et al. 2015) and sen-
tences (Ettinger-Veenstra et al. 2016). Hence, the AG resem-
bles a heteromodal hub involved in integrating semantics 
across various sensory modalities (for review, see Seghier 
2013), rather than just an interface between the non-lexi-
cal reading network and the semantic system. In addition, 
besides evidence for semantic processes (Kozlovskiy et al. 
2012; Zhao et al. 2017), the ACC is often associated with 
domain-general processes such as cognitive control (Blanco-
Elorrieta and Pylkkänen 2016), where stronger activations 
can be observed during demanding conditions (Aben et al. 
2020). Increased cognitive control is also necessary when 
processing meaningful words, as these require more elabo-
rate and demanding processing compared to meaningless 
nonwords due to their additional phonological and semantic 
representations. However, the study design did not allow 
us to distinguish semantic processes from domain-general 
processes such as demanding cognitive control.

Limitations

Some limitations regarding the decoding behavior and 
stimulus material must be mentioned. Overall, our sam-
ple revealed a large variance in recognition performance, 
especially for words. While some subjects learned the 
Morse code very well (high-performers, word perfor-
mance ≥ 55%), the learning success of others is question-
able (low-performers, word performance < 55%). When 
comparing high- and low-performers, however, no differ-
ences in eigenvariates while decoding words can be found, 
neither in the IFC (p > 1), SMG (p > 1), AG (p = 0.254), 
PC (p > 1) nor ACC (p > 1; see Supplementary Fig. 1). 
Therefore, we decided to analyze all subjects together, 
regardless of their word performance in the lexical-deci-
sion task. However, future studies should establish an 
additional learning criterion after the completion of all 
audiobook lessons, which must be achieved by the sub-
jects to be included in the final study population. In this 
way, further effects could be observed, which might have 
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been missed here due to the heterogeneous population. In 
addition, future studies might use a more homogeneous set 
of words in which, for example, words with low frequen-
cies are avoided. This selection would also have a positive 
influence on the performance in the lexical-decision task, 
since especially low frequency words were identified less 
often by the subjects. However, since we aimed to mini-
mize the amount of content to be learned (only 12 different 
letters) as well as the involvement of working memory 
while decoding (only stimuli consisting of 3 letters), we 
had to rely on a heterogeneous stimulus set here. Further-
more, the nonwords used here contained 10 unpronounce-
able nonwords and 30 pronounceable pseudowords. Since 
unpronounceable nonwords could already be identified 
earlier due to their usage of illegal GPC, complete non-
lexical processing cannot be guaranteed for those stimuli. 
However, the influence on the results is to be considered 
small, as no faster processing speed was found for real 
nonwords (2.5 s) compared to regular pseudowords (2.3 s; 
pMann-Whitney-U = 0.082).

Conclusion

In this study, DCM was used to map conceptually adapted 
computational models for reading (DRC, CDP) onto brain 
regions showing robust activations during non-lexical 
decoding and word comprehension of MC. We considered 
interactions between five different brain regions and sug-
gested an involvement in the serial letter conversion (SMG), 
phonological working memory (opercular part of the IFC) 
as well as in representing phonological (AG) and semantic 
features of known words (AG, ACC, PC). Overall, the AG 
seems to play a specific role, as it enables the interaction 
between the non-lexical decoding network (SMG, IFC) and 
the semantic memory system. As such, the AG is likely to 
host phonological and semantic representations and to serve 
as a bidirectional interface between the external (task-posi-
tive network) and the internal world (task-negative network).
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