
Vol.:(0123456789)1 3

Brain Structure and Function (2023) 228:651–662 
https://doi.org/10.1007/s00429-023-02613-2

ORIGINAL ARTICLE

Comparing models of information transfer in the structural brain 
network and their relationship to functional connectivity: diffusion 
versus shortest path routing

Josh Neudorf1 · Shaylyn Kress1 · Ron Borowsky1

Received: 6 July 2022 / Accepted: 16 January 2023 / Published online: 1 February 2023 
© The Author(s) 2023

Abstract
The relationship between structural and functional connectivity in the human brain is a core question in network neuroscience, 
and a topic of paramount importance to our ability to meaningfully describe and predict functional outcomes. Graph theory 
has been used to produce measures based on the structural connectivity network that are related to functional connectivity. 
These measures are commonly based on either the shortest path routing model or the diffusion model, which carry distinct 
assumptions about how information is transferred through the network. Unlike shortest path routing, which assumes the 
most efficient path is always known, the diffusion model makes no such assumption, and lets information diffuse in parallel 
based on the number of connections to other regions. Past research has also developed hybrid measures that use concepts 
from both models, which have better predicted functional connectivity from structural connectivity than the shortest path 
length alone. We examined the extent to which each of these models can account for the structure–function relationship of 
interest using graph theory measures that are exclusively based on each model. This analysis was performed on multiple 
parcellations of the Human Connectome Project using multiple approaches, which all converged on the same finding. We 
found that the diffusion model accounts for much more variance in functional connectivity than the shortest path routing 
model, suggesting that the diffusion model is better suited to describing the structure–function relationship in the human 
brain at the macroscale.
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Introduction

Graph theory analyses of structural brain connectivity have 
been vital to providing breakthroughs in our understanding 
of how the underlying structure of the brain can influence 
the patterns of coordinated functional activity (see Avena-
Koenigsberger et al. 2018 for a review; see also Goñi et al. 
2014; Neudorf et al. 2020a, b, 2022). Defining this relation-
ship between structural and functional connectivity using 
advanced techniques including graph theory has recently 
been highlighted as an important frontier in neuroscience 
(Suárez et  al. 2020). When it comes to choosing graph 

theory measures of connectivity, important assumptions 
must be made about how information is transferred through 
the structural network, and the effectiveness of these meas-
ures for predicting functional connectivity is dependent on 
the accuracy of these assumptions about the human brain. 
Two primary graph theory models of information transfer 
in the brain include shortest path routing and diffusion. 
The shortest path routing model relies on the calculation 
of the shortest path to the destination region. This model is 
straightforward to calculate and underlies many useful graph 
theory measures that have been helpful in describing brain 
networks and networks in general (e.g., characteristic path 
length, Watts and Strogatz 1998; global efficiency as an indi-
cator of small-worldness, Latora and Marchiori 2001; nodal 
and local efficiency, Latora and Marchiori 2001; van den 
Heuvel and Sporns 2013; etc.). One problem with the short-
est path routing model when it comes to brain networks is 
that it assumes each region has whole-brain level knowledge 
about the most efficient path to use (Avena-Koenigsberger 
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et al. 2019; Seguin et al. 2018, 2022; Zamani Esfahlani et al. 
2022).

An alternative graph theory model has been proposed that 
does not assume whole-brain knowledge about the shortest 
path but instead assumes that information diffuses along ran-
dom paths in the network influenced by the relative weight-
ing of each path. Under these model assumptions, informa-
tion propagates through the network as a “random walker” 
that is constrained by the structural architecture. Further-
more, information can be transferred in parallel, whereas 
shortest path routing describes information traveling along 
a single path to the destination (Fornito et al. 2016a).

Novel graph theory metrics combining both diffusion 
and shortest path routing models have been developed for 
use in brain research and applied to the task of predicting 
functional connectivity from the underlying structural con-
nectivity (Goñi et al. 2014). Search information was devel-
oped as a measure of how many distractor paths may lead 
a random walker away from the shortest path, while path 
transitivity measures how likely a random walker on a detour 
will end up back on the shortest path. While these measures 
were more successful than the shortest path length alone 
at predicting functional connectivity from structural con-
nectivity, there are other graph theory measures of connec-
tivity that consider the full range of possible paths based 
on a diffusion model, rather than hinging on what happens 
around the shortest path during information transfer. One 
such measure of diffusion efficiency is the mean first pas-
sage time (Wang and Pei 2008), which calculates the number 
of steps it takes a random walker on average to travel from 
region A to region B. This measure has been used to show 
that biological brain networks typically display a balance 
between diffusion efficiency and global efficiency (sensitive 
to shortest path length; Goñi et al. 2013). Another meas-
ure relying on the diffusion model of information transfer 
is communicability (Estrada and Hatano 2008), which takes 
into consideration all possible walks from region A to region 
B. Walks with less edges, n, are weighted much higher than 
those with more, with walks weighted by the factor 1/n!. 
Communicability is described as reflecting the capacity for a 
network to transfer information in parallel assuming a diffu-
sion model of information transfer (Fornito et al. 2016a, b). 
This measure has been useful in distinguishing patients from 
controls, including stroke (Crofts et al. 2011) and multiple 
sclerosis (Li et al. 2013).

Considering past success with the hybrid measures com-
bining the diffusion and shortest path routing models of 
information transfer (Goñi et al. 2014), this research will 
apply the exclusively diffusion-based measures of mean 
first passage time and communicability as well as the short-
est path routing measure of shortest path length to struc-
tural connectivity, and the results will be used to predict 
functional connectivity to determine to what extent these 

measures are able to account for variance in functional con-
nectivity. Crucially, this research will extend past research 
that has examined the ability of multiple graph theory com-
munication measures to predict functional connectivity from 
structural connectivity (Betzel et al. 2022; Vázquez-Rod-
ríguez et al. 2019; Zamani Esfahlani et al. 2022) and bench-
marking the ability for different communication measures 
to predict functional connectivity (Seguin et al. 2018, 2020, 
2022), by directly comparing two commonly used models 
(diffusion and shortest path routing) using multiple linear 
regression analyses, partial least squares regression, and 
principal components analysis to determine which graph the-
ory model is most important in this relationship. Research 
suggests that brain networks (at both the macroscale and 
microscale) typically demonstrate a balance of diffusion 
efficiency and global efficiency (Goñi et al. 2013), while 
also suggesting that this balance may lean more towards 
dominance of diffusion efficiency in human brains, in which 
case we expect that the diffusion measures examined here 
will be more relevant than shortest path length to the struc-
ture–function relationship in the brain.

Methods

Dataset

MRI data for 998 subjects from the Human Connectome 
Project (HCP; Van Essen et al. 2013) were used includ-
ing diffusion tensor imaging (DTI) and resting state func-
tional magnetic resonance imaging (rsfMRI). We used the 
preprocessed version of the rsfMRI data. This data has 
been preprocessed using FSL FIX (Salimi-Khorshidi et al. 
2014). The DTI data used was also preprocessed. The HCP 
pipelines for preprocessing are described by Glasser et al. 
(2013). The Automated Anatomical Labelling 90 region 
atlas (AAL; Tzourio-Mazoyer et al. 2002) was used as well 
as the Brainnetome 246 region atlas (Fan et al. 2016). Acti-
vation at each rsfMRI acquisition was used to calculate the 
mean activation for the atlas regions. The rsfMRI sessions 
were standardized using a z-score for the regions for each 
session separately. The activation in these regions was then 
submitted to bandpass filtering (separately for each session) 
allowing only frequencies within 0.01 Hz and 0.1 Hz (see 
Hallquist et al. 2013).

Connectivity measures

To calculate the functional connectivity measures for each 
combination of regions, we calculated the Pearson cor-
relation coefficient using all of the 4800 acquisitions. To 
calculate the structural connectivity measures, DSI Studio 
(http:// dsi- studio. labso lver. org) was used with quantitative 

http://dsi-studio.labsolver.org
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anisotropy (Yeh et al. 2013) as the termination index to cal-
culate the streamline count. Generalized q-sampling (Yeh 
et al. 2010) was used, and tracking used 1 million fibers, 75° 
maximum angular deviation, and a 20 mm minimum and 
500 mm maximum fiber length. To calculate the structural 
connectivity matrix containing the number of streamlines 
for each cell, a whole brain seed was used. The connectivity 
values for structural and functional connectivity were aver-
aged using the mean for all subjects. The weighted structural 
connectivity density (the sum of connection weights divided 
by the total possible connection weights, where each weight 
has a maximum of 1.0) was 0.016 for the AAL atlas and 
0.004 for the Brainnetome atlas.

Graph theory structural connectivity measures of mean 
first passage time (Wang and Pei 2008) and communicabil-
ity (Estrada and Hatano 2008) were calculated as diffusion 
model measures (also discussed in Fornito et al. 2016a, b). 
Mean first passage time was calculated as

where I is the identity matrix, i is the starting node, j is 
the destination node, and N is the number of regions in the 
network, and

but with the jth row set to zero so that a random walker is 
unable to enter j. W is the weighted structural connectivity 
adjacency matrix, and

with sn representing the strength (weighted number of con-
nections) of region n. Communicability was calculated as

where eS−1∕2WS−1∕2 is the matrix exponential of S−1∕2WS−1∕2 , 
the reduced structural connectivity adjacency matrix (see 
Crofts et al. 2011). Long walks are weighted more weakly 
(by a factor of n! where n is the number of steps) in this 
formula as the series expansion equates to

Shortest path length was calculated as the shortest path 
routing model measure using the NetworkX python library 
(Hagberg et al. 2008; function shortest_path_length, using 
the Dijkstra algorithm described by Dijkstra 1959, and given 
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the inverse value of structural connectivity edges so that the 
edges represent resistance in the network).

Permutation testing was performed using 500 null models 
created from the structural connectivity following the gener-
alized Maslov–Sneppen (Maslov and Sneppen 2002) rewir-
ing algorithm developed by Rubinov and Sporns (2011) for 
use with weighted networks to control for node strength and 
degree while randomizing the connection weights. Permuta-
tion p-values were calculated as the number of null models 
resulting in the same or better variance accounted for in the 
models as a proportion of the total number of null models.

Results

AAL

Linear regression models

Linear regression models were computed for each log-
transformed independent variable (mean first passage time, 
communicability, and shortest path length) with functional 
connectivity as the dependent variable using the lm function 
from the lme4 library (Bates et al. 2015) in R (R Core Team 
2018). Mean first passage time demonstrated an inverse rela-
tionship with functional connectivity, whereby a high mean 
first passage time was associated with poorer functional 
connectivity, as expected, R(4003) = −0.376, p < 0.001 (null 
model permutation p = 0.044; see Fig. 1A). Communicability 
demonstrated a positive relationship with functional connec-
tivity, whereby high communicability was associated with 
better functional connectivity, as expected, R(4003) = 0.316, 
p < 0.001 (null model permutation p = 0.014; see Fig. 1B). 
Shortest path length demonstrated an inverse relationship 
with functional connectivity, whereby a high shortest path 
length was associated with poorer functional connectivity, as 
expected, R(4003) = −0.379, p < 0.001 (null model permu-
tation p < 0.002; see Fig. 1C). The magnitude of the struc-
ture–function relationship for each of these measures was 
relatively comparable, so additional multiple linear regres-
sion approaches were also taken to determine which meas-
ures are primarily driving the relationship between structural 
and functional connectivity.

Multiple linear regression models

Multiple linear regression models were then investigated 
starting with mean first passage time and shortest path length 
included in the model as independent variables, with func-
tional connectivity as the dependent variable. These mod-
els were again calculated in R using the lm function from 
the lme4 library, as well as spcor from the ppcor library to 
calculate the semi-partial correlation (Kim 2015) and vif 
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from the car library to calculate the variance inflation fac-
tor (Fox and Weisberg 2019). Prior to this, the correlation 
matrix of these measures was examined, which indicated 
that there were no extreme correlations (e.g., greater than 
0.9) between the independent variables, with the highest 
value being R = 0.841 between mean first passage time and 
shortest path length (see Table 1). This correlation is theo-
retically interesting though, as it indicates there is a high 
level of redundancy between mean first passage time and 
shortest path length, suggesting that information in the dif-
fusion model naturally follows paths that are similarly effi-
cient when compared to the shortest path. This potential for 
decentralized information transfer strategies to take advan-
tage of the shortest paths in the network has been noted in 
past research (Avena-Koenigsberger et al. 2017; Goñi et al. 
2014; Seguin et al. 2018; Vézquez-Rodríguez et al. 2020). 
As seen in Table 2, mean first passage time and shortest path 

length both produced significant effects, with the shortest 
path length having a slightly larger semi-partial correlation 
(see Fig. 2A for predicted vs. empirical functional connectiv-
ity). However, when adding communicability to the model as 
seen in Table 3, the overall variance accounted for increased, 
and the semi-partial correlation of shortest path length was 
greatly reduced (though still significant), while the diffusion-
based measures of mean first passage time and communica-
bility had a much larger combined magnitude of semi-partial 
correlation. This model accounted for more variance than 
any of the measures independently (R2 = 0.165; see Fig. 2B 
for predicted vs. empirical functional connectivity). It should 
be noted that the variance inflation factor (VIF) for the short-
est path length in model 2 was greater than 5 (VIF = 5.567), 
indicating that multicollinearity between the independent 
variables may have affected the variance of the shortest path 
length coefficient. To address this, we also examined these 
variables using partial least squares regression, which is 
robust against multicollinearity.

Partial least squares regression

A partial least squares regression analysis was conducted 
with a dependent variable of functional connectivity and 
independent variables of mean first passage time, commu-
nicability, and shortest path length, using the plsr function 
from the pls library in R (Mevik and Wehrens 2007). The 

Fig. 1  AAL linear regression models with functional connectivity as 
the independent variable and dependent variables of: A mean first 
passage time (MFPT; log transformed), Radj = –0.376; B communi-

cability (COM; log transformed), Radj = 0.316; C and shortest path 
length (SPL; log transformed), Radj = –0.379

Table 1  AAL independent variable correlation matrix

Variables include mean first passage time (MFPT), communicability 
(COM), and shortest path length (SPL)

Variable MFPT COM SPL

MFPT 1 –0.236 0.841
COM –0.236 1 –0.491
SPL 0.841 –0.491 1

Table 2  AAL multiple linear 
model 1, with dependent 
variable functional connectivity. 
R2 = 0.157, Radj

2 = 0.157 (null 
model permutation p = 0.012)

SPC semi-partial correlation, VIF variance inflation factor

Effects SPC Estimate Std. Error t-value p-value VIF

Intercept 0.845 0.023 36.577  < 0.001
log(MFPT) –0.117 –0.060 0.007 –8.051  < 0.001 2.927
log(SPL) –0.127 –0.067 0.008 –8.745  < 0.001 2.927
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independent variables were log transformed and standard-
ized to have a mean of 0 and a standard deviation of 1. To 
validate the model and check for overfitting a k-fold cross-
validation scheme was used with 10 folds. The number of 
components to include was decided when additional com-
ponents no longer substantially decreased the root mean 
squared error of prediction. With 2 components included, 
the root mean squared error of prediction reached its mini-
mum of 0.161, so 2 components were used. Cross-validation 
determined that the model was able to account for 16.3% 
(R2 = 0.163, Radj

2 = 0.162) of the variance in functional 
connectivity of novel validation samples, while the model 
accounted for 16.5% (R2 = 0.165, Radj

2 = 0.164) of the vari-
ance in functional connectivity when predicting the data for 
all connections (null model permutation p = 0.012). These 
cross-validation results indicate that over-fitting is mini-
mal. Finally, by investigating the coefficients for each of 
the independent variables, the pattern of results seen in the 
multiple linear regression model can be confirmed. For dif-
fusion measures, mean first passage time had a coefficient 
of −0.037, communicability had a coefficient of 0.018, and 
shortest path length had a coefficient of −0.025. Note that 
the negative relationship between structure and function 

for mean first passage time and shortest path length was 
expected, as a higher value for these structural measures 
indicates weaker connectivity, while a positive relationship 
was expected for communicability as higher values indi-
cate stronger connectivity. These coefficients support what 
was observed for the multiple linear regression, indicating 
that the effects of the diffusion model-based measures were 
greater in combined magnitude than that of the shortest path 
length.

Principal components analysis

The principal components analysis for functional connectiv-
ity, mean first passage time, communicability, and shortest 
path length shown in Fig. 3 demonstrates the unique com-
ponent space occupied by each measure. This analysis was 
conducted using the prcomp function of the core stats library 
in R. To aid the interpretation of the principal component 
loadings of each variable, mean first passage time and short-
est path length were multiplied by −1 so that larger values 
indicate better connectivity for all measures. In particular, 
Principal Component 1 seems to be sensitive to the variance 
in common between functional connectivity and the graph 

Fig. 2  AAL multiple linear regression models with empirical functional connectivity as a function of the predicted functional connectivity, for A 
model 1 and B model 2

Table 3  AAL multiple linear 
model 2, with dependent 
variable functional connectivity. 
R2 = 0.165, Radj

2 = 0.165 (null 
model permutation p = 0.016)

SPC semi-partial correlation, VIF variance inflation factor

Effects SPC Estimate Std. Error t-value p-value VIF

Intercept 0.851 0.023 36.960  < 0.001
log(MFPT) –0.138 –0.075 0.008 –9.592  < 0.001 3.229
log(COM) 0.089 0.012 0.002 6.184  < 0.001 2.493
log(SPL) –0.031 –0.022 0.010 –2.112 0.035 5.567
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theory measures, as these all have loadings in the same 
direction (Fig. 3A and Table 4). Conversely, functional con-
nectivity loads strongly onto Principal Component 2, while 
the graph theory measures load weakly and in the opposite 
direction, suggesting that this component identifies variance 
in functional connectivity that is not well accounted for by 
the graph theory measures (Fig. 3A and Table 4). Finally, 
functional connectivity and shortest path length load very 
weakly onto Principal Component 3, while the loadings for 
mean first passage time and communicability are strong 
and in opposite directions, suggesting that this component 
speaks to the unique position in the component space of 
these diffusion model measures (Fig. 3B and Table 4).

Brainnetome

Linear regression models

Using the Brainnetome atlas, there was again an inverse 
relationship between mean first passage time and functional 
connectivity, a positive relationship between communicabil-
ity and functional connectivity, and an inverse relationship 
between shortest path length and functional connectivity. 
Again, the magnitude of the structure–function relationship 
for each of these measures was relatively comparable (see 
Table 5 and Fig. 4).

Multiple linear regression models

Multiple linear regression models were also investigated for 
the Brainnetome atlas, demonstrating that the semi-partial 
correlation for the shortest path length was much less than 
the combined magnitude for the diffusion-based measures of 

Fig. 3  AAL principal components analysis with data points and vari-
able loadings as vectors. Variables considered were functional con-
nectivity (FC), mean first passage time (MFPT; log transformed and 

multiplied by −1 so that more positive values indicate better connec-
tivity), communicability (COM; log transformed), and shortest path 
length (SPL; log transformed and multiplied by −1 as with MFPT)

Table 4  AAL principal components analysis loadings for all 3 princi-
pal components

Variables considered were functional connectivity (FC), mean first 
passage time (MFPT; log transformed and multiplied by −1 so that 
more positive values indicate better connectivity), communicability 
(COM; log transformed), and shortest path length (SPL; log trans-
formed and multiplied by −1 as with MFPT)

Variable PC1 PC2 PC3

FC –0.359 –0.926 0.112
–1*log(MFPT) –0.529 0.113 –0.671
log(COM) –0.501 0.274 0.728
–1*log(SPL) –0.583 0.232 –0.086

Table 5  Brainnetome linear regression analyses

Dependent variable was functional connectivity, and independent 
variables considered were mean first passage time (MFPT; log trans-
formed), communicability (COM; log transformed), and shortest path 
length (SPL; log transformed)

Variable R Radj p-value permutation p-value

log(MFPT) –0.232 –0.231  < 0.001 0.014
log(COM) 0.270 0.270  < 0.001  < 0.002
log(SPL) –0.250 –0.250  < 0.001  < 0.002
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mean first passage time and communicability (see Tables 6, 
7 and 8 and Fig. 5).

Partial least squares regression

The partial least squares regression again demonstrated that 
the combined magnitude of the coefficients for the diffusion 
model measures of mean first passage time and communi-
cability were much greater than the shortest path routing 
model measure of shortest path length (see Table 9).

Principal components analysis

The principal components analysis was again conducted, but 
this time for the Brainnetome atlas. This analysis replicated 

Fig. 4  Brainnetome linear regression models with functional connec-
tivity as the independent variable and dependent variables of: A mean 
first passage time (MFPT; log transformed), Radj = –0.231; B commu-
nicability (COM; log transformed), Radj = 0.270; C and shortest path 
length (SPL; log transformed), Radj = –0.250. With outlier clusters 

removed from A by excluding cases with log(MFPT) > 8 and C by 
excluding cases with log(SPL) > 5.33 the correlation remains signifi-
cant, with R = –0.207 for log(MFPT) and R = –0.224 for log(SPL). 
These outlier clusters are due to more isolated regions of the atlas that 
take more steps to reach than most other regions

Table 6  Brainnetome independent variable correlation matrix

Variables include mean first passage time (MFPT), communicability 
(COM), and shortest path length (SPL)

Variable MFPT COM SPL

MFPT 1 −0.087 0.824
COM −0.087 1 −0.342
SPL 0.824 −0.342 1

Table 7  Brainnetome multiple 
linear model 1, with dependent 
variable functional connectivity. 
R2 = 0.067, Radj

2 = 0.067 (null 
model permutation p = 0.002)

SPC semi-partial correlation, VIF variance inflation factor

Effects SPC Estimate Std. Error t-value p-value VIF

Intercept 0.614 0.008 73.783  < 0.001
log(MFPT) –0.067 –0.025 0.002 –12.024  < 0.001 2.275
log(SPL) –0.116 –0.052 0.002 –20.796  < 0.001 2.275

Table 8  Brainnetome multiple 
linear model 2, with dependent 
variable functional connectivity. 
R2 = 0.090, Radj

2 = 0.090 (null 
model permutation p < 0.002)

SPC semi-partial correlation, VIF variance inflation factor

Effects SPC Estimate Std. Error t-value p-value VIF

Intercept 0.558 0.008 65.877  < 0.001
log(MFPT) –0.112 –0.044 0.002 –20.383  < 0.001 2.534
log(COM) 0.152 0.015 5.442 ×  10–4 27.643  < 0.001 2.702
log(SPL) 0.034 0.022 0.004 6.107  < 0.001 4.969
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the pattern of results seen for the AAL atlas (see Fig. 6 and 
Table 10).

Supplementary analyses

Individual‑level analyses

Individual-level analyses were performed that mirrored 
the mean-level analyses, demonstrating that the variance 
accounted for was reduced but significant in all cases, with 
the same pattern of results as in the mean-level analyses (see 
Supplementary Tables 1 through 10). These analyses utilized 
the upper triangle of each connectivity matrix, reshaped to 
a single dimensional array for each individual and then 
concatenated across all individuals into a single large array 
for each of the mean first passage time, communicability, 

shortest path length, and functional connectivity measures. 
These arrays were used as variables in the statistical analyses 
in the same way as for the mean-level data.

Split‑half analyses

Half of the data was used as a training set to train the models 
and the other half was used as a test set to test the models on 
novel data to demonstrate the predictability of out-of-sample 
data. In all cases, the test sets were predicted with compa-
rable accuracy (see Supplementary Tables 11 through 18).

PCA null models

Null models were used to produce a null distribution for 
loadings of each of the 4 variables on the 3 Principal Com-
ponents, and demonstrated that there was a significant dis-
tance between the null and empirical PC loadings (see Sup-
plementary Tables 19 and 20).

Discussion

This investigation and comparison of graph theory structural 
connectivity measures based on two different theories of 
how information passes from one region to another in the 
brain has highlighted the importance of the diffusion model 
relative to the more straightforward but less biologically 
plausible shortest path routing model. Diffusion measures 
of mean first passage time and communicability as well as 
the shortest path routing measure of shortest path length 
were calculated from the brain structural connectivity, and 

Fig. 5  Brainnetome multiple linear regression models with empirical functional connectivity as a function of the predicted functional connectiv-
ity, for A model 1 and B model 2

Table 9  Brainnetome partial 
least squares (PLS) regression

Dependent variable was func-
tional connectivity, and inde-
pendent variables considered 
were mean first passage time 
(MFPT; log transformed), 
communicability (COM; log 
transformed), and shortest path 
length (SPL; log transformed). 
Variance accounted for was 
R2 = 0.087, Radj

2 = 0.087, null 
model permutation p < 0.002

Variable Coefficient

log(MFPT) −0.015
log(COM) 0.035
log(SPL) −0.003
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these measures were related to functional connectivity. In 
isolation, each of these measures were comparable in the 
level to which they were related to functional connectivity. 
When analysed as hybrid models with each of these meas-
ures included, more variance was accounted for than any 
measure on its own, supporting past research suggesting that 
a hybrid/balance of both the diffusion and shortest path rout-
ing models is appropriate for describing the structure–func-
tion relationship (Goñi et al. 2013, 2014). However, when 
analysed together in multiple linear regression, partial least 
squares regression, and principal components analysis, 
it was clear that the diffusion model and the ideas it can 
express capture more of the variance in functional connec-
tivity than shortest path routing, suggesting that the diffusion 
model may be closer to describing how information travels 
from one region to another in the structural connectivity 

network to produce the observed patterns of functional con-
nectivity. These findings suggest that shortest path routing 
may be somewhat redundant when diffusion models are able 
to travel along similarly efficient routes in the brain and that 
diffusion models are able to additionally tap into aspects of 
functional connectivity that are not considered by shortest 
path routing. These results are not surprising, given that dif-
fusion models are more biologically plausible than shortest 
path routing as there is no evidence to suggest that regions 
have global network knowledge about what path would be 
the shortest (Avena-Koenigsberger et al. 2019; Seguin et al. 
2018, 2022; Zamani Esfahlani et al. 2022). Past research has 
demonstrated that both diffusion models and shortest path 
routing models are important frameworks for understanding 
the architecture of brain networks (Goñi et al. 2013, 2014), 
but this work has taken an important next step in distinguish-
ing the greater relative ability for the diffusion measures to 
accurately predict function from the underlying structural 
connectivity.

Limitations and future directions

While diffusion and shortest path routing models are the 
most commonly discussed in network neuroscience, other 
models have been suggested that may add a unique perspec-
tive on how information travels in the brain. One such pro-
posed theory for how information may transfer is greedy 
navigation, in which the Euclidean (three dimensional) or 
geodesic (two-dimensional flattened surface of cortex) dis-
tance between regions is used to travel through the network 

Fig. 6  Brainnetome principal components analysis with data points 
and variable loadings as vectors. Variables considered were func-
tional connectivity (FC), mean first passage time (MFPT; log trans-
formed and multiplied by −1 so that more positive values indicate 

better connectivity), communicability (COM; log transformed), and 
shortest path length (SPL; log transformed and multiplied by −1 as 
with MFPT)

Table 10  Brainnetome principal components analysis loadings for all 
3 principal components

Variables considered were functional connectivity (FC), mean first 
passage time (MFPT; log transformed and multiplied by −1 so that 
more positive values indicate better connectivity), communicability 
(COM; log transformed), and shortest path length (SPL; log trans-
formed and multiplied by −1 as with MFPT)

Variable PC1 PC2 PC3

FC –0.288 –0.954 –0.074
–1 × log(MFPT) –0.520 0.194 –0.710
log(COM) –0.532 0.087 0.700
–1 × log(SPL) –0.603 0.211 0.030
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to whichever region is closest to the target region. This 
model has been investigated in simulated networks, which 
have shown that greedy navigation is able to successfully 
send information between regions without getting stuck (i.e., 
ending up at a node that is closer than all neighbours to the 
destination but unconnected to the destination) when there is 
a balance between clustered connections of proximal nodes 
and a power-law like distribution whereby clusters are con-
nected by a small number of highly connected hub nodes 
(Boguñá et al. 2009). The pattern of navigation under these 
conditions is such that the path tends to travel to a nearby 
hub node, travel a long distance to another hub node, then 
travel to a low-degree node in a cluster close to the destina-
tion. This pattern has also been demonstrated in the macaque 
brain network (Harriger et al. 2012) and in C. elegans (Towl-
son et al. 2013). Research using this theory in the human 
brain has demonstrated the prediction of functional connec-
tivity from structural connectivity (Seguin et al. 2018, 2020). 
Future research should implement a model of greedy naviga-
tion to replicate that the path length of a greedy navigator 
predicts functional connectivity, and additionally investigate 
whether the pattern of paths resembles that seen in simulated 
models and animal models.

Internet and computer analogies have also been proposed 
for application to brain networks, with encouraging results 
(Graham and Rockmore 2011; Mišić et al. 2014). Infor-
mation flow in computer networks (such as the internet) 
is limited by bandwidth, which represents the amount of 
information that can travel in a certain amount of time (e.g., 
bits/s). Information can be transmitted via packet switching, 
which breaks messages into packets that are labeled with 
the intended destination. These packets traverse the network 
efficiently by utilizing connections at separate times and 
buffering in a node if a connection is full, with the down-
side that if the node buffer is full then the information is 
lost. The structural connectivity of the macaque has been 
used to simulate a message-switched variant of this model of 
information flow, showing that compared to other networks 
there was more message loss, lower throughput, but faster 
transit times (Mišić et al. 2014). This suggests that under 
the model assumptions speed would be optimized in the 
macaque brain over maintaining the integrity of each indi-
vidual signal. Future research should work on also apply-
ing a packet switching simulation model using the human 
brain to uncover whether similar signatures of information 
flow are seen between human and macaque networks, and 
whether the time taken for information to travel between 
regions is predictive of functional connectivity measures.

As another example of further work to be done in the 
field, brain network analysis of the cat brain has found that 
regions with similar connectivity profiles (connect to the 
same or similar regions) tended to correspond with groups 
of regions performing similar tasks (Zamora-López et al. 

2010). One measure of the similarity between connectiv-
ity profiles of regions is cosine similarity, which has been 
used to demonstrate that functionally similar regions in 
the macaque brain also had high cosine similarity, and that 
regions with high cosine similarity were also likely to be 
connected and located close together (Song et al. 2014). 
This measure has recently been investigated along with 
many other measures in the context of the human brain 
(Zamani Esfahlani et al. 2022), and more research should 
be done to investigate whether human brain regions with 
similar connectivity profiles are more likely to be con-
nected, to what extent this pattern differs between func-
tionally similar clusters and core hub regions, and to what 
extent the structural cosine similarity is able to predict the 
functional connectivity and functional cosine similarity.

Finally, a recent line of research has investigated the 
potential of hybrid models of information transfer that 
allow for regional heterogeneity in the navigation strategy 
applied. This is an extension of research that has shown 
differences in structure–function coupling when looking at 
unimodal vs. transmodal regions, and the development of 
these patterns with age (Baum et al. 2020). These models 
allow for different regions to apply unique strategies of 
information transfer, and have shown promising findings 
(Avena-Koenigsberger et al. 2019; Vázquez-Rodríguez 
et al. 2019; Zamani Esfahlani et al. 2022). This is a prom-
ising line of research that we expect will continue improv-
ing our understanding of how information is propagated 
throughout the structural connectivity network of the 
brain.

Conclusion

Although the models described here do not claim to be 
a fully accurate and comprehensive description of how 
information is transferred in the brain, especially consider-
ing that the nature of the structure–function relationship 
will inevitably vary as the scale of interest goes from the 
macroscale to the microscale, by examining the diffusion 
and shortest path routing models together, this research 
has demonstrated that diffusion models are better suited 
to describing the relationship between structural and func-
tional connectivity at the macroscale. In the future, alter-
native models discussed here could be examined together, 
to contribute to a fuller picture of which aspects of these 
theoretical models are able to best approximate the ground 
truth of information transfer in the human brain network.
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