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Abstract
Consumer wearables and health monitors, internet-based health and cognitive assessments, and at-home biosample (e.g., 
saliva and capillary blood) collection kits are increasingly used by public health researchers for large population-based 
studies without requiring intensive in-person visits. Alongside reduced participant time burden, remote and virtual data 
collection allows the participation of individuals who live long distances from hospital or university research centers, or 
who lack access to transportation. Unfortunately, studies that include magnetic resonance neuroimaging are challenging to 
perform remotely given the infrastructure requirements of MRI scanners, and, as a result, they often omit socially, economi-
cally, and educationally disadvantaged individuals. Lower field strength systems (< 100 mT) offer the potential to perform 
neuroimaging at a participant’s home, enabling more accessible and equitable research. Here we report the first use of a 
low-field MRI “scan van” with an online assessment of paired-associate learning (PAL) to examine associations between 
brain morphometry and verbal memory performance. In a sample of 67 individuals, 18–93 years of age, imaged at or near 
their home, we show expected white and gray matter volume trends with age and find significant (p < 0.05 FWE) associations 
between PAL performance and hippocampus, amygdala, caudate, and thalamic volumes. High-quality data were acquired in 
93% of individuals, and at-home scanning was preferred by all individuals with prior MRI at a hospital or research setting. 
Results demonstrate the feasibility of remote neuroimaging and cognitive data collection, with important implications for 
engaging traditionally under-represented communities in neuroimaging research.

Keywords Brain MRI · Remote data collection, aging · Dementia · Low-field MRI · Web-based cognitive assessment · 
Diversity in health research

Introduction

Neuroimaging has provided salient information on the 
changing brain tissue macro and micro-structure, cortical 
and sub-cortical morphology and morphometry, and func-
tional connectivity across the lifespan. Studies of volumet-
ric change describe a non-linear pattern characterized by 
rapid growth of the brain’s white and gray matter through-
out infancy and childhood, peaking in the second to fourth 
decades of life, followed by a slow but progressive decline 
throughout adulthood (Westlye et al. 2010; Taki et al. 2011; 
Terribilli et al. 2011; Goodro et al. 2012; Long et al. 2012; 
Ziegler et al. 2012; Narvacan et al. 2017; Bethlehem et al. 
2022). Tissue-wise and regional differences exist, with corti-
cal gray matter reaching its maximal value during adoles-
cence while global white matter volume is maximal between 
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30 and 40 years of age (Taki et al. 2011; Ziegler et al. 2012; 
Bethlehem et al. 2022). Subcortical structures, similarly, fol-
low differential growth trajectories, with peak values occur-
ring throughout the second decade of life (Long et al. 2012; 
Narvacan et al. 2017). Overall, patterns are generally pre-
served between males and females (Bethlehem et al. 2022; 
Lenroot et al. 2007), though absolute volume is, on average, 
greater in males in large part due to their larger physical 
body and head size.

Patterns of brain change across the lifespan have further 
been associated with emerging and receding cognitive skills 
and abilities. Volume reductions in memory-related regions 
(e.g., hippocampus) have been associated with age-related 
memory changes among otherwise healthy older adults, as 
well as in mild cognitive impairment and Alzheimer’s dis-
ease (Fox et al. 1996; Shi et al. 2009; Aljondi et al. 2019; 
Armstrong et al. 2020). More generally and beyond mem-
ory function, global and regional brain volumes have been 
associated with differential executive functioning skills 
(Aljondi et al. 2019; Elderkin-Thompson et al. 2008; Elder-
kin-Thompson et al. 2009), processing speed (Anstey et al. 
2007; Walhovd and Fjell 2007), and general intelligence 
(Fling et al. 2011; Cox et al. 2019).

Despite the utility of neuroimaging to the study of healthy 
aging and neurodegenerative disorders, MRI studies are 
expensive and often limited to specialized university imag-
ing centers or larger research hospitals. As consequence, 
they typically have relatively small sample study sizes 
(n < 30) and rely on populations of convenience, i.e., geo-
graphically proximal participants who are able to travel inde-
pendently or have nearby family members or other support. 
These factors can bias the study population toward particular 
sociodemographic phenotypes (e.g., higher socioeconomic 
and/or educational backgrounds, individuals living indepen-
dently with lower disease burden, etc.) that may affect the 
generalizability of findings and conclusions. Large-scale 
neuroimaging initiatives such as the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) (Weiner et al. 2013), the 
Human and Lifespan Connectome Projects (Bookheimer 
et al. 2019; Elam et al. 2021), and the UK Biobank (Alfaro-
Almagro et al. 2018) aim to provide study sizes large enough 
to avoid potential biases (or enable direct modeling of them). 
These large studies, however, are financially expensive and 
logistically complex, and still require participating individu-
als to travel to centralized imaging and research centers.

Over the past 5–10 years, internet and tablet-based tools 
have made scalable and remote cognitive assessments fea-
sible (Hooyman et al. 2021; Thompson et al. 2022; Tsiakiri 
2022). This trend toward remote assessment has been further 
accelerated by the COVID-19 pandemic, which forced many 
research and healthcare centers to seek reliable and repro-
ducible online alternatives to traditional in-person visits and 
assessments (Thompson et al. 2022; Geddes et al. 2020; Hill 

et al. 2021). These tools offer the potential to reach beyond 
the traditional study populations and include participants 
from a wide range of geographic, demographic, and socio-
economic backgrounds.

MindCrowd (Talboom et al. 2019, 2021; Huentelman 
et al. 2020; Rodrigo et al. 2021) is one such accessible and 
easy-to-use web-based platform for cognitive and demo-
graphic assessment, designed specifically to overcome chal-
lenges with small sample-size studies and to increase inclu-
sive and diverse participation. Participants over 18 years of 
age can anonymously provide general background personal 
information (e.g., age, biological sex, education attainment), 
as well as more specific and granular sociodemographic and 
health history data (e.g., race, ethnicity, number of daily 
prescription medications, and first-degree family history of 
dementia). Participants can optionally provide identifiable 
name and residential address information, and indicate a 
preference or willingness to provide biosample collections 
and participate in ancillary studies. Cognitive assessment on 
MindCrowd consists of simple visual reaction time (svRT) 
and paired-associates learning (PAL) tasks–quick and sen-
sitive tests of processing speed and associative episodic 
memory function, respectively. Past work has shown these 
cognitive functions are often affected in the earliest stages of 
cognitive impairment and Alzheimer’s Disease (AD) (Phil-
lips et al. 2013; Andriuta et al. 2019; Baker et al. 2019), and 
also reflect the general decline in cognitive performance in 
healthy aging (Lowndes et al. 2008; Jackson et al. 2012). 
The ability to capture data from hundreds of thousands of 
participants at a relatively low cost and without intensive 
in-person visits has allowed the team behind MindCrowd 
to investigate the impact of diverse family, medical history, 
and genetic factors on cognitive performance across the 
adult lifespan (Talboom, et al. 2019, 2021), and to identify 
potential cases of previously undiagnosed cases of cognitive 
impairment and dementia (Rodrigo et al. 2021).

While reliable remote and internet-based cognitive 
assessments are becoming increasingly common, remote 
collection of MRI data has been impracticable due to 
the size and weight of common 1.5 and 3 Tesla (T) sys-
tems, as well as their electrical requirements, and helium 
and maintenance needs. Though semi-trailer 18-wheeler 
mounted 1.5 T systems are broadly available throughout 
North America, Europe, and Asia, they share the size, 
weight, and electrical needs of their sited brethren, and 
are designed for institutional use as adjuncts to static sys-
tems installed at hospitals or clinics, or as semi-permeant 
solutions for smaller institutions. These systems require 
specially installed concrete parking pads and high voltage 
electrical supplies and are not designed for use at a par-
ticipant’s home. However, advancements in MRI systems 
that operate at lower magnetic field strength (i.e., less 
than 100mT) with permanent or resistive magnet arrays 
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present an alternative to conventional systems with the 
possibility of enabling “residential MRI”—truly remote 
neuroimaging performed at a participant’s home, assisted 
living facility, or other convenient and nearby location 
(e.g., library, shopping center, etc.) (Deoni et al. 2022a). 
While lower field systems are not replacements for higher 
field strength scanners, and currently offer a limited rep-
ertoire of imaging contrasts and methods, they do allow 
for high-quality anatomical imaging (Deoni et al. 2022b) 
and have shown replication of developmental patterns 
observed at higher field strength (Deoni et al. 2021).

As much of the past work with low-field scanners 
has focused on clinical applications (e.g., identification 
of pediatric hydrocephalus (Sien et al. 2022), multiple 
sclerosis (Arnold et al. 2022), stroke (Yuen, et al. 2022), 
and other indications (Campbell-Washburn et al. 2019)), 
its utility in neuroscience research, such as associations 
between brain morphology and cognitive performance, 
remains unknown. Like remote cognitive assessments, the 
ability to reliably collect high-quality and information-rich 
MRI data at a participant’s home could bring new oppor-
tunities to the study of aging, cognitive decline, cognitive 
impairment, and dementia. Remote MRI would allow the 
inclusion of participants with mobility challenges or who 
lack transportation options, those who live long distances 
away from research centers and outside traditional recruit-
ment areas, and those with competing family, work, or 
other time commitments. The reduced expense of low-
field strength MRI may further allow for increased study 
population size, improving statistical power and generaliz-
ability of study findings.

To this end, in this study we sought to determine the 
feasibility of combining remote cognitive assessment via 
MindCrowd with mobile low field MRI in a modified Ford 
Transit cargo “scan van” equipped with a 64mT MRI scan-
ner (Deoni et al. 2022c) to (1) Determine the feasibility 
of collecting reliable remote MRI and cognitive data in 
adults and elderly individuals; and (2) Replicate previ-
ously reported associations between regional brain vol-
umes and cognitive performance with an established cog-
nitive assessment, PAL, with substantial normative data 
against which to compare.

Methods

This study was performed in accordance with ethics 
approval and oversight by WCG IRB and the Rhode Island 
Hospital Institutional Review Board. All volunteers pro-
vided informed consent for both the MRI and neurocognitive 
assessment components.

Participants

A total of 75 individuals (42 female, 56%) between 18 and 
94 years of age were recruited to participate in this study. 
Community recruitment was performed using print adver-
tisements throughout the Providence area and to older mem-
bers of families involved in other ongoing studies at our lab. 
Word-of-mouth quickly became the primary recruitment 
mechanism, with 47 participants learning about the study 
from a friend who was already enrolled. Six participants 
enrolled “at their doorstep” after noticing the van on their 
street and inquiring about the study. In total, recruitment 
and data collection required three weeks to reach a study 
population size that would be sensitive to medium effect 
sizes (r ~ 0.35) for correlations between imaging and cogni-
tive measures.

Of the 75 recruited, 67 (39 female) completed the web-
based cognitive assessments within 1 week of scanning 
and had high-quality MRI. 3 individuals did not complete 
the MindCrowd assessments in a timely fashion and 5 had 
poor quality or incomplete MRI (i.e., they were positioned 
too low in the coil). Included participants completed all 36 
MindCrowd trials (described in more detail below), sug-
gesting they understood the task. Participant demographics 
are provided in Table 1. The mean age of the final study 
population was 54.2 ± 19.7 years. In addition to providing 
age and biological sex, participants were also asked to indi-
cate their education attainment on a 5-item scale (1 = Some 
High School, 2 = High School Diploma, 3 = Some College, 
4 = College Degree, and 5 = Graduate Degree).

Recruitment, MRI scanning, and online assessment col-
lection for this study were performed over a 3 week span. 
Scanning was performed either at the participant’s home or 
at a community center ‘pop-up’ event. Total imaging time, 
including set-up, was ~ 20 min per subject. Set-up time was 
slightly longer for individuals who required help into the van 
and onto the scanner bed. At the pop-up events, 2–3 scans 
were performed per hour with 8–12 individuals consented 
and scanned over a ~ 6 h afternoon.

Cognitive assessments

At enrollment and in follow-up emails after the study visit, 
participants were provided with login details and instruc-
tions to perform the PAL memory test on MindCrowd 
(mindcrowd.org). For participants without personal internet 
access, a MacBook Pro laptop or cellular internet-connected 
iPad tablet was made available for them. The PAL task is a 
type of episodic memory and learning task that requires a 
set of associations (e.g., a pair of words) be learned over 
several trials. The objective is to reduce errors with each 
trial. Individuals with higher cognitive functioning have 



496 Brain Structure and Function (2023) 228:493–509

1 3

increased PAL scores (i.e., they learn and remember the set 
of associations quicker).

As part of the registration process, participants were 
invited to provide general demographic details (age, biologi-
cal sex, education attainment, spoken and written languages, 
country of residence, and zip code), as well as more specific 
sociodemographic, health history, and lifestyle information 
(e.g., race, ethnicity, handedness, number of daily prescrip-
tion medications, as well as identifying if they have a first-
degree family history of dementia, suffer or have suffered 
seizures, dizzy spells, loss of consciousness for more than 
10 min, if they smoke, and if they have high blood pressure, 
diabetes, heart disease, cancer, stroke, alcohol/drug abuse, 
brain disease and/or memory problems).

For the online implementation of the PAL task, par-
ticipants are first provided with an initial practice/example 
phase in which they are shown 3 word-pairs (e.g., apple | 
green, swim | suit, water | grass) for 2 s each. Then they are 
presented with the first word of each pair and are asked to 
use their keyboard to type (i.e., recall) the missing paired 
word. After the initial practice session, participants are then 
presented with 12 word-pairs with each pair presented for 
2 s. The bank of word-pairs includes pairs with differing 
levels of difficulty (e.g., apple-pen, black-night), and does 
not include the pairs used for the practice session. Imme-
diately following the presentation of pairs, participants are 
presented with the first word of each pair and are asked to 
use their keyboard to type (i.e., recall) the missing paired 
word.

This learning-recall procedure is repeated for two addi-
tional trials (3 trials in total). Word-pairs are presented in 
different random orders during each learning and each recall 
phase. The same word pairs and order of presentation is used 

for all participants. The dependent variable/criterion used in 
this study was the total number of correct word pairs entered 
across the 3 trials A perfect score is 36, with all 12 word-
pairs remembered correctly on all 3 trials. Past work has 
shown that PAL scores are reduced in individuals with very 
early Alzheimer’s disease as well in normative ‘healthy’ 
aging (Baker et al. 2019; Lowndes et al. 2008).

Neuroimaging

MRI was performed on a commercial 64mT Hyperfine 
(Guilford, CT) Swoop system installed in a purpose-modi-
fied Ford Transit “scan van” (Sien et al. 2022) at each partic-
ipant’s residence or nearby location (e.g., library or grocery 
store), Fig. 1. The Swoop system is the first commercially 
available and FDA-certified low-field MRI system for human 
imaging. Available since 2018, the system provides 4 main 
acquisition sequences: T1-weighted inversion-prepared (IR-) 
Fast Spin Echo (FSE), T2-weighted FSE, T2-weight Fluid 
Attenuated Inversion Recovery (FLAIR), and single direc-
tion diffusion-weighted FSE.

Imaging for this study included a series of anisotropic 
resolution T2-weighted 3D FSE images acquired in each of 
the three orthogonal orientations (axial, sagittal, and coro-
nal) with an in-plane spatial resolution of 1.5 × 1.5 mm and a 
slice thickness of 5 mm. Specific imaging parameters in each 
direction are provided in Table 2. Unlike conventional 1.5 T, 
3 T or other commercial MRI systems, the Swoop does not 
currently allow easy manipulation of imaging parameters, 
acquisition timings (echo, repetition, or inversion times), 
field of view, spatial resolution, or slice thickness.

While T1-weighted contrast is the standard for anatomi-
cal studies at 1.5 and 3 T, we have found the reduced T1 at 

Table 1  General demographic 
details and summary cognitive 
measure statistics for the final 
study cohort

Final study participants (n) Male 39
Female 28

Age (years) Minimum 18
Maximum 94
Average 54.8 (20.5)

Education attainment Minimum 1 (Some high school)
Maximum 5 (Graduate degree)
Average 3.9 (1.2)

Race Caucasian/White 58
Black/African American 3
Mixed race 6

Ethnicity Hispanic/Latino 6
Not Hispanic/Latino 61

Total word Pairs attempted 36
Correct word Pairs (n) Minimum 3

Maximum 36
Average 22.1 (8.5)
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64 mT coupled with the implemented acquisition param-
eters reduces the quality of the T1-weighted images (e.g., 
Fig. 2) and that the T2-FSE images provide improved and 
more consistent tissue contrast across the age span (Deoni 
et al. 2021; Deoni et al. 2022c). Thus, T2-FSE images were 
used for this study.

As part of the pre-scan routine, a main magnetic field 
(B0) field map is acquired for shimming and gradient 
compensation. Electromagnetic interference (EMI) is also 
actively measured by three EMI detectors on the scanner 
and used for retrospective artifact removal similar to Srinivas 
et al. (2022). While temperature was not monitored through-
out each scan, all scanning was performed within the tem-
perature thresholds of the scanner (15–30 C) both to ensure 
consistency across scans as well as for participant comfort.

Overall, the scanning process was well-tolerated by par-
ticipants and their families. Family members were able to 
be in the van during scanning or could wait outside watch-
ing through the van’s sliding door (Fig. 1). Following imag-
ing, participants were asked about their experience, includ-
ing if they were comfortable throughout the exam, if they 

experienced claustrophobia, and if they would recommend 
the study to others. If they had received a 1.5 or 3 T scan 
as part of a past research study or clinical exam, they were 
also asked if they rated this experience as more or less posi-
tive, and which they would prefer. While 8 participants com-
plained about claustrophobia, participants overwhelmingly 
(100% of 43 who had had a past MRI scan) preferred being 
imaged at their home on the low-field system.

All imaging was performed by qualified research assis-
tants who had received training from Hyperfine on use and 
safety monitoring of the system, and who have 2–3 years of 
scanning experience on commercial 3 T systems. The Swoop 
console is tablet-based and requires minimal training to use 
as the system automatically positions the field of view and 
acquisition protocols are not user-changeable.

MRI data processing

For image processing, a super-resolution reconstruction 
approach (Deoni et al. 2022b) was used to combine the 
orthogonal images into a single (1.5 × 1.5 × 1.5)   mm3 

Fig. 1  Example photos of the Scan-Van at participant homes. Participants enter the van from the rear doors. The side door can be opened to 
reduce claustrophobia, allow extra cooling, or just improve the general participant experience

Table 2  Acquisition parameters 
used for each orthogonal  T2-
weighted FSE scan acquired on 
each participant

Axial Sagittal Coronal

FOV (X × Y × Z)  cm3 18.0 × 21.9 × 18.0 18.0 × 21.9 × 18.0 18.0 × 18.0 × 20.0
Matrix (X x Y x Z) 120 × 146 × 36 120 × 146 × 36 120 × 120 × 40
Readout direction Y (AP) Y (AP) Z (SI)
In-plane resolution (mm × mm) 1.5 × 1.5 1.5 × 1.5 1.5 × 1.5
Slice thickness (mm) 5 5 5
TE (ms) 205 245 231
TR (ms) 2000 2000 2000
Echo train length 20 20 20
Acquisition time (min:sec) 4:11 4:00 4:00
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image. A general study template was constructed using 
the ANTs 2.2 (Avants et al. 2011), antsMultivariateTem-
plateConstruction2.sh script using data from 26 study par-
ticipants selected uniformly across the age range (Fig. 3, 
first and second column). The non-linear transformation 
matrix between this template and MNI space was calcu-
lated. Using this transformation, the MNI structural atlas 
(Avants et al. 2011; Rapp et al. 2013) was aligned to the 
study template to provide initial estimates of white matter 
(WM), gray matter (GM), and cerebral spinal fluid (CSF) 
masks. These masks were then used as initial priors for the 
ANTs Atropos tissue segmentation approach to refine the 
WM, GM, and CSF masks (Fig. 3, third column). Masks of 
deep brain structures (right and left hemisphere hippocam-
pus, amygdala, caudate nucleus, thalamus, globus palliu-
dus, and putamen) were also developed by transforming 
the Oxford-Harvard subcortical atlas provided as part of 
FSL (Srinivas et al. 2022) onto the study template (Fig. 3, 
fourth column).

Once the study template and tissue masks were cre-
ated, each study participant’s SR anatomical image was 
aligned using ANTs, and the non-linear transformations 
and the corresponding Jacobean matrices were calculated 
and saved.

Correlation analysis

Following data collection, an initial exploratory voxel-based 
analysis was performed to identify potential associations 
between the collected cognitive measures (word-pair asso-
ciation score and reaction time) and brain gray matter den-
sity. Following non-linear alignment to the study template, 
correction for the effects of the warping on the voxel-wise 
density measures, and subtle blurring with a 4 mm Gauss-
ian kernel, a general linear model was fit at each voxel that 
modeled PAL score (total correct word-pairs) as a function 
of local gray matter density (GM), subject age, and biologi-
cal sex, i.e.,

Recognizing prior demonstrated associations between 
education level and metrics of brain morphometry in healthy 
and cognitively impaired individuals (Rapp et al. 2013; Cox 
et al. 2016), we extended our exploratory analyses to include 
reported education level as an additional model variable,

Education was scored on a 5-point scale ranging from 1 
(high school diploma) to 5 (graduate or professional degree).

Analysis was performed using the Randomise tool of the 
FMRIB Software Library (FSL) (Jenkinson, et al. 2012). 
Threshold-free cluster enhancement (TFCE) (Smith and 
Nichols 2009) was used to control for the multiple voxel-
wise comparisons.

Based on the outcomes of our exploratory analyses, 
hypothesis-based analysis was performed in which we exam-
ined associations between deep brain gray matter structure 
volumes (including right and left hemisphere hippocampus, 
amygdala, caudate nucleus, thalamus, globus palliudus, and 
putamen) and PAL scores. To calculate the deep gray mat-
ter structure volumes, the Oxford-Harvard subcortical atlas 
provided as part of FSL and registered to MNI space (Frazier 
et al. 2005) was aligned to each participant’s image using the 
inverse of their individual- > study template transformations. 
The aligned structure masks were then thresholded at 0.95 
and the volumes of the inscribed regions were calculated.

In addition to sub-cortical gray matter volumes, we also 
used this atlas approach to examine the associations between 
total brain white matter (WM), gray matter (GM), and cer-
ebral spinal fluid (CSF) volume and PAL scores. For these 
tissue volumes, the MNI structural atlas was used as the ref-
erence (Mazziotta et al. 2001; Haegelen et al. 2013). Exam-
ples of individual image quality and tissue mask alignment 
is shown in Fig. 4 for a young and older adult.

We hypothesized that brain regions involved in memory 
and learning networks, i.e., hippocampus, amygdala, caudate 
nucleus, and thalamus would be significantly associated with 

(1)PALi = �
0
+ �

1
Agei + �

2
Sexi + �

3
GMi

(2)
PALi = �

0
+ �

1
Agei + �

2
Sexi + �

3
GMi + �

4
EducationAttainmenti

Fig. 2  Example comparison of standard  T1-weighted IR-FSE and 
 T2-weighted FSE images acquired in three volunteers from across 
the lifespan. Overall, we have found the T2-FSE images provide 
improved and more consistent image quality
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word-pair scores (Mori et al. 1997; Mizuno et al. 2000; Gould 
et al. 2005; Yoon et al. 2012; Pergola et al. 2013; Bauer et al. 
2015; Barnett et al. 2016). This hypothesis was tested using 
a series of linear models that included PAL score and struc-
ture volume, as well as subject age, biological sex, and total 
brain tissue volume (the summation of white and gray matter 
volumes),

The Holm-Bonferroni approach was used to account for the 
15 independent tests.

A simple model omitting the Structural Volume term was 
also fit to the data, allowing us to determine the additional 
variance explained by this variable.

(3)
PALi =�0 + �1Agei + �2Sexi + �3StructureVolumei

+ �4TotalBrainVolume

Results

As a first check of data consistency, we plotted the total 
number of correct word pairs against subject age (Fig. 5), 
showing a decrease in performance as a function of age in 
agreement with past findings showing a decrease of 1–2 
word-pairs per decade (Talboom, et al. 2019; Lewis et al. 
2021).

To examine the MRI data, we plotted total brain white 
and gray matter volume percentage versus age (Fig. 6), 
observing the expected quadratic and linear trends for white 
and gray matter, respectively.

Figure 7 contains the results of our exploratory voxel-
based analyses, highlighting brain areas with significant 
(p < 0.05 FWE) associations between gray matter density 

Fig. 3  Developed study template and regional tissue and sub-cortical 
structural masks. A custom study template was created using 26 study 
participants chosen uniformly cross the age range from 20 to 94 years 
of age and evenly split by male and female. White matter (green), 
Gray matter (blue) and CSF (red) masks were developed using the 
MNI structural atlas as priors and refined using ANTS Atropos. Sub-

cortical deep brain masks were also constructed using the Oxford-
Harvard subcortical atlas with Thalamus (yellow with red outline), 
Putamen (light blue), Globus Pallidus (dark blue), Caudate nucleus 
(purple with blue outline), Hippocampus (green) and Amygdala 
(white with pink outline)
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and PAL test scores. Modeling the association between local 
gray matter density and PAL performance, controlling for 
participant age, biological sex, and education attainment, we 

found significant associations predominately in left hemi-
sphere regions, including hippocampus, parahippocampal 
gyrus, inferior temporal gyrus, thalamus, putamen, frontal 

Fig. 4  Example data collected from a 25 and 78 year-old participant, including aligned tissue and deep brain structure masks

Fig. 5  The number of correct word pairs as a function of participant age with and without adjusting for education level. The dotted lines corre-
spond to the 95% confidence interval
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pole and orbital cortex, caudate, and Broca’s area. In addi-
tion, right hemisphere precentral gyrus was also identified. 
These results did not substantively differ from the model that 
only included age and biological sex as additional variables 
of non-interest.

Table 3 contains the results of the linear modeling of 
regional subcortical gray matter volumes and PAL test 
scores, with representative plots of predicted vs. actual test 
scores as a function of regional volume, which are shown 
in Figs. 8, 9.

Results of the regional analyses build on the exploratory 
outcomes, showing hippocampus, amygdala, caudate, and 
thalamic volumes, as well as whole-brain white and gray 
matter, were significant predictors of PAL performance after 
correction for multiple comparisons (Table 3). In addition, 
right and left hemisphere putamen showed a trend toward 
significance. In each of these cases, the addition of the 
regional volume measure explained an additional 10 to 20% 
of the total variance in PAL performance. These numeri-
cal results are graphically represented in Figs. 8, 9, which 
show (Fig. 6) the measured PAL scores for each individual 

and predicted PAL by the linear model based on regional 
volumes as a function of age. The relationship between the 
measured and predicted PAL scores is shown in Fig. 9. As 
expected, we observe stronger correlations for brain regions 
where regional volume was a significant predictor of perfor-
mance (e.g., white and gray matter vs. CSF volume).

Discussion

Here we have presented the first preliminary reports examin-
ing the practical use of a van-based portable low-field MRI 
scanner and web-based cognitive assessment to investigate 
changing total and regional brain volumes associated with 
cognitive performance. Results agree with prior reported 
outcomes, replicating the established general trends of white 
and gray matter change with age and identifying significant 
brain volume associations with memory performance in 
previously reported subcortical gray matter volumes. From 
our exploratory analyses, we found significant positive asso-
ciations between improved PAL performance and increased 

Fig. 6  Representative plots of percent white and gray matter volume as a function of individual age with and without adjusting for education 
level. The dotted lines correspond to the 95% confidence interval
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local gray matter density in left hemisphere deep brain 
regions (hippocampus, thalamus, caudate, and putamen) as 
well as the left parahippocampal gyrus, frontal pole, and 
Broca’s area (Brodmann area 44), and right precentral gyrus 
(Brodmann area 4). These regions have known functional 
associations with language processing, memory, and learn-
ing. While the precentral gyrus is not directly related to these 

neurological functions, it is involved in movement and may 
reflect individual differences in tablet use or ability during 
the MindCrowd assessment. These results were confirmed 
in a follow-up regional analysis, which identified significant 
brain-PAL associations in the bilateral hippocampus, amyg-
dala, thalamus, and caudate, controlling for subject age, sex, 
educational attainment, and total brain volume. Although the 

Fig. 7  Exploratory voxel-based morphometry analysis examining 
associations between gray matter density and PAL score, controlling 
for subject age, biological sex, and education attainment. Highlighted 

regions denote significant associations (corrected for multiple com-
parisons using threshold-free cluster enhancement)

Table 3  Results of our general 
linear model analyses showed 
significant (p < 0.05 corrected 
associations between individual 
brain tissue and subcortical 
gray matter structure volumes 
and assessed PAL performance 
controlling for age, biological 
sex, and total brain volume

Measures in bold denote significant associations after correction for multiple comparisons

Brain region Coefficient Unadjusted p value Corrected p value Additional 
explained vari-
ance

Whole brain WM 0.0012 0.0105 0.0197 0.1250
Whole brain GM 0.0006 0.0067 0.0168 0.1250
CSF  < 0.0001 0.9772 0.9772 0.0000
Left amygdala 0.0749 0.0004 0.0054 0.2053
Right amygdala 0.0713 0.0120 0.0199 0.1087
Left caudate 0.0170 0.0059 0.0168 0.1287
Right caudate 0.0268 0.0135 0.0203 0.1052
left Hippocampus 0.0225 0.0053 0.0168 0.1318
right Hippocampus 0.0284 0.0061 0.0168 0.1278
Left pallidum 0.0160 0.2235 0.2394 0.0268
Right Pallidum 0.0307 0.0770 0.0889 0.0751
Left putamen 0.0096 0.0398 0.0543 0.0903
Right putamen 0.0127 0.0465 0.0582 0.0874
Left thalamus 0.0052 0.0023 0.0168 0.1547
Right thalamus 0.0049 0.0089 0.0191 0.1170
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putamen associations did not survive FWE correction (with 
corrected p values of approximately ≃ 0.05) they do show a 
strong trend toward significance.

These results carry important implications for future 
opportunities and directions in neuroscience research. 
The combination of mobile at-home neuroimaging and 
web-based remote assessment presents an important new 
opportunity to engage individuals from socially, economi-
cally, and educationally disadvantaged communities that 
are often under-represented in clinical and public health 
research (Yoon et al. 2012; Pergola et al. 2013). Moreover, 
some clinical and pre-clinical populations (e.g., individuals 
in their 30 or 40 s with a family history of Alzheimer’s dis-
ease but without personal memory or cognitive complaints) 
are often difficult to recruit and/or retain in long-term lon-
gitudinal trials and studies because of family and work time 
commitments. By bringing the scanner to them at home or 

work, and allowing cognitive assessments to be performed 
on their time, involving these important cohorts may be 
less challenging. Though our study sample was predomi-
nately from higher educational (~ 34% reported a college or 
post-graduate degree) and non-Latino/Hispanic Caucasian 
(86%) backgrounds, there is nothing that fundamentally 
limits our approach from reaching broader individuals and 
communities.

While memory changes are experienced by most, but not 
all, individuals as they age, worsened associative memory 
performance can also be indicative of emerging cognitive 
impairment and dementia (Andriuta et al. 2019; Barnett 
et al. 2016; Fowler et al. 2002; Haynes et al. 2017). Neu-
roanatomical correlates of reduced performance on vari-
ous episodic memory tests, including associative memory, 
include reduced total gray matter volume and regional reduc-
tions in the hippocampus, thalamus, and putamen. Alongside 

Fig. 8  Results of the regional volume analysis. For each region, we plot the measured PAL scored vs. age as well as the predicted PAL score cal-
culated from the estimated regression model
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these functionally related changes, progressive volume loss 
in the entorhinal cortex, frontal lobe, and temporoparietal 
cortical areas have been implicated in mild cognitive impair-
ment (MCI) (Apostolova and Thompson 2008). Increased 
rates of volume loss in these regions are potentially predic-
tive of progression from MCI to Alzheimer’s disease (Jack 
et al. 2000).

A recent report on the state of study needs in aging 
research (Watson et al. 2014) has estimated that nearly 
100,000 participants will need to be recruited into the exist-
ing set of US-based observational and clinical trials for 
prospective preventative or therapeutic AD treatments. The 
authors further estimate that achieving this level of enroll-
ment will require screening upwards of 1 million potential 
participants and their families. As with other scientific and 
clinical health research, research in aging and AD has suf-
fered from under-representation of individuals from racial 

and ethnic minorities, and economically disadvantaged com-
munities (Karlawish et al. 2008)—despite these groups hav-
ing a higher potential risk for dementia (Tang et al. 2001). 
A further missing gap is individuals who are free of clini-
cal symptoms but at risk for AD, since initiating pathology 
may appear 2 or 3 decades before overt memory loss or 
other symptoms become apparent (Beason-Held et al. 2013). 
This necessitates recruitment and longitudinal retention of 
30 to 50 year-old individuals. These individuals, however, 
often have busy family, work, and social schedules, which 
inhibits participation in research studies. To address these 
challenges, Watson et al. (Watson et al. 2014) highlight the 
need to consider and accommodate the location and time 
needs of participants and their families (or study partners) 
by conveniently locating study sites or, ideally, performing 
study visits at the participant’s home.

Fig. 9  Results of the regional volume analysis. For each region, we plot the measured PAL scored vs. the predicted PAL score calculated from 
the estimated regression model
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The results presented here highlight the potential to per-
form participant screening, enrollment, and at-home study 
visits, even in the context of neuroimaging studies. While we 
have presented MindCrowd as an effective tool for remote 
cognitive assessment, it can also be envisaged and utilized 
as a screening tool, allowing the identification of individuals 
willing to participate in research studies, and with important 
clinical and/or sociodemographic phenotypes. Beyond cog-
nitive and health and family history information, participants 
can also provide biological samples from at-home collec-
tions (e.g., saliva samples for genomic analyses) allowing 
genetic phenotypes to also be screened. We purposefully 
designed our Scan-Van on a 2021 Ford Transit Van base 
(high roof and extended length 2500 model with a 9500lbs 
gross vehicle weight rating) to achieve three functional aims: 
1. Ability to travel on local and dirt roads to allow access 
to rural communities and not rely on truck or high weight 
capacity routes. 2. To be driven by anyone with a regular 
driver’s license (i.e., not require a commercial CDL license). 
And 3. Have access to a large national network of mainte-
nance and repair facilities with ready access to parts and 
service. In addition, we also designed the system to use an 
EGO Power + 3000 W portable power station that provides 
more than 6 h of continuous scanning from 4 rechargeable 
(with additional batteries able to be hot swapped to allow 
longer scanning), and for the ability to load and unload the 
scanner for imaging in or outside the vehicle.

While 5 scans were rejected due to poor subject position-
ing in the coil (all collected on the same day of scanning), 
this error was corrected and no further scans were rejected 
for this or other quality reasons (e.g., motion artifacts, noise, 
poor contrast, etc.). As all scans for this study were per-
formed in the van, which required participants to be mobile 
enough to walk up 2 steps (~ 18 inches) into the van and then 
onto a 30″ high massage bed. For larger scale studies, the 
scanner can be removed from the van to accommodate par-
ticipants with mobility challenges and unable to get into the 
van. To allow the scanner to be used in the fall and winter 
months (in New England) and avoid participant discomfort 
or operating outside of the scanner’s recommended range 
(5–30 C), a heating system was built into the van that could 
be complemented with a portable electric heater (also run 
from the portable battery station). In the summer months, 
operating with the rear doors open and an oscillating fan 
provides sufficient comfort for the short scan duration with-
out impacting scan quality. In cases of extreme heat, a roof-
mounted air-conditioning unit can also be used.

While most prior studies in aging and AD, including the 
original ADNI protocol (Jack et al. 2008), focused on struc-
tural and morphology changes, more recent investigations 
have included assessment of tissue micro-structure (diffu-
sion tensor imaging, DTI), cerebral perfusion, and struc-
tural and functional connectivity. Currently, the Hyperfine 

system is capable of four structural image contrasts (T1, T2, 
T2-FLAIR, and single-axis DWI). As more research groups 
gain access to these portable and lower field strength sys-
tems, it is likely we will see steady improvements in acquisi-
tion techniques, including DTI, relaxometry, and potentially 
perfusion imaging.

In this work, we used T2-weighted data as opposed to 
the more conventional T1-weighted acquisitions that are the 
mainstay of 1.5 and 3 T adult neuroimaging. This decision 
was based on the current limitations of the Hyperfine system 
(noted above and in the Methods) and our ongoing experi-
ence with Hyperfine T1 and T2 data quality (e.g., Fig. 2). 
It is expected that as additional improvements are made to 
the acquisition techniques, specifically the development of 
rapid steady-state based acquisitions (e.g., spoiled or bal-
anced steady-state gradient echo sequences (Scheffler and 
Hennig 2003)) improved T1 contrast will be possible given 
both the shortening and increased dispersion of tissue T1 
characteristics at lower field strength. However, to inform on 
potential biases introduced by the use of T2 data, we com-
pared total white matter and regional putamen, amygdala, 
and hippocampus volumes collected from low-field T2 and 
high-field T1-weighted MP-RAGE data in 15 individuals (11 
female, 25 ± 17 years of age) not drawn from the current 
study sample. MP-RAGE data was collected using the ADNI 
protocol (Jack et al. 2008). Ad-hoc results, shown in Fig. 10, 
derived using the same atlas-based approach for both image 
contrasts, showed agreement between the measures without 
significant non-zero bias.

A potential source of variability that was not directly 
accounted for here is the type and size of the device used 
for the MindCrowd assessment. Participants were provided 
either a 13″ MacBook Pro or a 10.9″ iPad Air to complete 
the online cognitive assessments at the van. Participants who 
completed the assessments at home may have used a differ-
ently sized laptop/desktop computer, tablet, or mobile phone. 
These differences in screen size and keyboard size and type 
(physical vs. virtual touch screen) may have impacted PAL 
performance and added additional variability to PAL perfor-
mance. While further investigation is needed to understand 
this potential variability (and accurately account for it), we 
do not believe it will substantively alter the presented results. 
For the PAL assessment, individuals are allowed 10 s to 
begin their response and are allowed ample completion time 
before the system moves on to the next word-pair. Thus, 
challenges with a smaller or unfamiliar keyboard should not 
significantly reduce their total score.

A general challenge with online unassisted assessment 
is knowing when low scores are accurate reflections of an 
individual’s ability or are the result of them not paying atten-
tion during the assessment or not understanding/follow-
ing instructions. For example, in our cohort, 4 individuals 
under 45 years of age reported PAL scores of less than 10. 
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These scores are more than 3 standard deviations below the 
expected mean for healthy individuals of their age (Talboom 
et al. 2021). As an ad-hoc analysis, we repeated our regional 
volume analyses excluding these individuals as outliers. The 
results of this analysis did not differ from those presented 
in Table 3, with the exception that right putamen volume 
remained a significant predictor after Holm-Bonferroni cor-
rection for the multiple tests.

In summary, the work described here demonstrates the 
feasibility of coupling mobile neuroimaging and web-based 
cognitive assessments. With this approach, we replicate 
known effects of aging on associative memory performance 
as well as highlight neuroimaging-based changes in learning 
and memory-based regions of the brain with performance. 
We propose that the combination of a mobile neuroimaging 
laboratory with on-demand web-based cognitive assessment 
has significant potential for the future study of many types of 
disadvantaged and understudied populations, including race-
ethnic, socioeconomic, time-constrained, and geographically 
distanced groups. More work is necessary to refine our 
approach and appropriately tailor recruiting and retention 
practices to ensure success with such groups, however, we 

propose that our work demonstrates the significant potential 
for these efforts.

Conclusions

In this study we sought to (1) Determine the feasibility of 
collecting remote MRI and cognitive data in adults and 
elderly individuals; and (2) Replicate previously reported 
population-based associations between regional brain vol-
umes and cognitive performance with an established cogni-
tive assessment, PAL. Overall, this initial report of at-home 
MRI has suggested that the collection of MRI data on a 
portable low-field MRI system is possible and offers time 
efficiency, convenience, and accessibility to participants who 
might otherwise not be able to participate. Indeed, individu-
als in our study who have had a prior MRI at a clinical or 
research setting all preferred the at-home approach as well 
as the open nature of the low-field system. Collected data 
and results align with past reports of brain-memory function 
in aging adults, highlighting associations between the hip-
pocampus, thalamus, and caudate nucleus and PAL perfor-
mance. While further work is required to firmly establish the 

Fig. 10  Blad-Altman plots showing the differences in whole-brain 
white and regional left-hemisphere putamen, amygdala, and hip-
pocampus volumes measured from T2-weighted low-field data and 

conventional T1-weighted 3 T data in 15 adult individuals. No signifi-
cant non-zero bias is observed between the sets of measures



507Brain Structure and Function (2023) 228:493–509 

1 3

utility of low-field MRI in neuroscience and neurocognitive 
research, this preliminary work provides a foundation and 
support for this potential new direction in MRI research.
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