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Abstract
Motricity is the most commonly affected ability after a stroke. While many clinical studies attempt to predict motor symptoms 
at different chronic time points after a stroke, longitudinal acute-to-chronic studies remain scarce. Taking advantage of recent 
advances in mapping brain disconnections, we predict motor outcomes in 62 patients assessed longitudinally two weeks, 
three months, and one year after their stroke. Results indicate that brain disconnection patterns accurately predict motor 
impairments. However, disconnection patterns leading to impairment differ between the three-time points and between left 
and right motor impairments. These results were cross-validated using resampling techniques. In sum, we demonstrated that 
while some neuroplasticity mechanisms exist changing the structure–function relationship, disconnection patterns prevail 
when predicting motor impairment at different time points after stroke.
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Introduction

Stroke is one of the most significant disorders worldwide 
both in terms of mortality and long-term disabilities (Fei-
gin et al. 2021). Despite considerable research into the risks 
and treatments of cerebrovascular diseases (Gurol and Kim 
2018), every 3 s, someone suffers a stroke, resulting in vari-
ous cognitive and motor dysfunctions (www. world- stroke. 

org). Motricity is understood as a motor impulse sent effer-
ently down a nerve toward a muscle. This motor function 
is the most commonly affected ability after stroke (~ 88%, 
Aqueveque et al. 2017). Motor deficits post-stroke occur 
secondary to a vascular rupture (haemorrhage) or an occlu-
sion (ischemia) leading to decreased blood flow in one of 
the arteries that supply the motor network in the brain. This 
network includes the primary motor and somatosensory cor-
tices, premotor regions in the frontal and parietal cortex, 
and the basal ganglia. The main outflow tract is the cor-
ticospinal tract (CST, Bhuiyan et al. 2014) that descends Stephanie J. Forkel and Michel Thiebaut de Schotten have 
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from the cortex through the internal capsule, the cerebral 
peduncle, the brainstem down into the spinal cord. Post-
stroke motor deficits such as partial paralysis or muscular 
weakness (hemiparesis) of the upper (e.g. hands, arms) or 
lower extremities (e.g. legs, foot) are present in about 88% 
of stroke patients at the acute stage. Longitudinally, merely 
12% of patients demonstrate a full functional recovery after 
rehabilitation (Aqueveque et al. 2017). Although several 
rehabilitation programmes have been developed (e.g., The 
Queen Square Upper Limb (QSUL) Neurorehabilitation pro-
gramme, Kelly et al. 2020), at present, there is no reliable 
prediction of recovery. This absence of reliable predictions 
can lead to frustration and reduced motivation in patients 
and family members, which is unfavourable to rehabilitation 
success (Kusec et al. 2019). Since proper and early interven-
tions are crucial for a successful recovery (Coleman et al. 
2017), early recovery prediction will likely help clinicians 
adjust their rehabilitation efforts to significantly improve 
motor functioning after a stroke. Hence, accurate predic-
tions may result in a more efficient and successful recovery 
of patients long-term.

Using various types of biomarkers, a wealth of clinical 
studies attempted to predict motor symptoms at the acute 
(first seven days), subacute (between one week and three 
months), and early and late chronic phases (after three 
months) after stroke (Boyd et al. 2017; Connell et al. 2018; 
Stinear 2017; Lin et al. 2018). This body of work showed 
that the quality of motor abilities after stroke is associated 
with i) the severity in the clinical behavioural baseline scores 
assessed at the acute stage (Nijland et al. 2010), ii) the pres-
ence and amplitude of motor evoked potentials triggered 
with transcranial magnetic stimulation (TMS, Feys et al. 
2000), iii) the volume and location of the lesion calculated 
with structural magnetic resonance imaging (Schiemanck 
et al. 2006), iv) the structural integrity of the cortico-spinal 
tract detected with diffusion-weighted imaging (DWI, Puig 
et al. 2011; Stinear 2017), task-related cortical activity and 
resting-state functional connectivity measured with func-
tional MRI (fMRI, Rehme et al. 2011; Thiel and Vahdat 
2015; Carter et al. 2010, 2012). Although most of these stud-
ies demonstrate a strong statistically significant relationship 
between behavioural motor scores and distinct biomarkers 
that can explain up to 96% variance of the data (Granziera 
et al. 2012), they do not validate the results of their mod-
els in an independent sample of patients which reduces the 
ecological validity and generalisability of these results. A 
systematic review (Kim and Winstein 2017) showed that 
only 8 out of 71 studies aiming to predict motor outcomes 
performed a resampling technique (e.g. k-fold cross-valida-
tion) to evaluate their models. These methods fight against 
a common problem in machine learning known as overfit-
ting. A model perfectly describes the known data—training 
set, but it performs poorly on new observations—testing set 

(Ying 2019). Those algorithms that demonstrate the perfect 
ability to capture the variability in data without applying 
resampling methods may fail to generalise as a universal 
model to predict recovery (Heil et al. 2021). Thus, testing 
the model for out-of-sample predictions is crucial for trans-
lating the knowledge from research to a clinically useful tool 
to maximise patient benefits. As such, the absence of exter-
nally validated models makes their performances unreliable 
in predicting motor outcomes of new individual patients 
(Berrar, 2019) and further high-quality statistic studies are 
required to identify reliable brain markers for motor deficits 
after a stroke.

Many efforts have been dedicated to studying lesion 
localisation and associating it with motor disabilities (see 
review Schiemanck et al. 2006). It is undeniable that these 
symptoms can also occur with lesions to the white matter 
(Catani and ffytche 2005; Carrera and Tononi 2014; Thie-
baut de Schotten and Foulon 2018; Thiebaut de Schotten 
et al. 2008). For example, in spinal cord disconnections, the 
information processed in the intact motor cortex cannot be 
conducted to the relevant part of the body, causing motor 
paralysis (Tidoni et al. 2015). In the nineteenth century, 
this type of interruption of motor function distant from a 
lesioned region was discussed by a pioneering neurolo-
gist, Constantin von Monakow (1853–1930, von Monakow 
1914), and referred to as diaschisis cerebrospinalis (Finger 
et al. 2004). However, a proper statistical measure of this 
theoretical concept was not possible thus far.

Advanced neuroimaging methods, including DWI that 
measures water displacement in brain tissue, opened a new 
avenue into exploring white matter connections (Moura et al. 
2019; Catani and Thiebaut de Schotten 2008). Nowadays, 
the lesion load (the proportion of destruction) in the CST is 
one of the most popular predictors of motor disabilities and 
is interpreted as a measure of diaschisis (Carrera and Tononi 
2014; Koch et al. 2021). However, lesion load in the CST does 
not account for the dysfunction of other distant brain regions. 
In other words, lesion load analysis is not an accurate opera-
tionalisation of diaschisis (Thiebaut de Schotten et al. 2014). 
Limiting our analysis to the lesion location and neglecting pos-
sible interruptions of functions in other brain structures might 
miss valuable information to understand behavioural outcomes 
after stroke. The disconnection analysis has been proposed 
recently as a possible solution to this problem (Foulon et al. 
2018; Kuceyeski et al. 2013). Disconnection analyses consider 
a probability of dysfunctions in other brain areas. For example, 
if a patient has a lesion in a subcortical region (e.g. posterior 
limb of the internal capsule), the disconnection analysis will 
provide us with a probability of interruption of the white mat-
ter connection (e.g. CST) that links the subcortical (internal 
capsule) and cortical regions (e.g. primary motor cortex). 
When comparing those methods, the disconnection analysis 
often explains more variance in data than lesion load analysis 
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(Corbetta et al. 2015; Hope et al. 2016). The disconnection 
analysis (Conrad et al. 2022; Hajhajate et al. 2022; Forkel et al. 
2022; Souter et al. 2022; Silvestri et al. 2022; Sperber et al. 
2022) is different from the lesion network symptom mapping 
methods that estimate from a normative dataset the functional 
connectivity impaired by a lesion (Boes et al. 2015; Bowren 
et al. 2022; Cotovio et al. 2022). Thus, prediction studies may 
benefit from the redirection of the focus in clinical research 
from lesion localisation analysis to the analysis of the discon-
nections where remote alterations of a focal damage to distant 
regions can also be considered as a contributor to a network 
of structures and functions.

Another issue in the literature that may downplay the full 
potential of predicting motor symptoms is the considerable 
variation in motor assessments. Each clinical test utilised in 
symptom prediction studies focuses only on one aspect of 
motor dysfunction (Kim and Winstein 2017), which is not 
capturing the whole complexity of motor disabilities (Cheung 
et al. 2012), making both the prediction and comparisons 
between studies challenging. Corbetta et al. (2015) partially 
overcame this limitation by applying a principal component 
analysis that explained a great majority of variability (77%) 
across all motor tasks and patients with just two components 
(i.e. left and right side of the body). Extracting common pat-
terns of motor outcomes from different assessments and elimi-
nating the redundancy in the data should increase the perfor-
mance of predictive models in the future (Corbetta et al. 2015).

Recent work considered the main limitations outlined 
above and conducted a ridge regression model that penalizes 
weights of the predictors by applying second-order penalty 
terms (i.e. L2-normalisation) to avoid overfitting. This model 
explained up to 37% and 42% of the variability in motor out-
comes at 2 weeks for left motor recovery (i.e. right hemisphere 
lesion) and right motor recovery (i.e. left hemisphere lesion), 
respectively (Salvalaggio et al. 2020). While these results are 
encouraging, the predictions reported are limited to 2 weeks 
after stroke and do not extend to the long-term prognosis of 
motor abilities.

This study aimed to predict motor outcomes in 62 stroke 
patients two weeks, three months, and one year after stroke 
from the lesion defined at the early subacute stage (two weeks 
post stroke). Using a cross-validation longitudinal study design 
and a disconnection analysis should overcome the limitations 
of current predictive models in stroke. We modelled the pattern 
of brain disconnections based on the Disconnectome (Thiebaut 
de Schotten et al. 2020), which characterises brain disconnec-
tions along 46 anatomical dimensions. The predictions were 
calculated using ridge regression models with nested cross-
validation resampling and yielded medium to large effect sizes.

Methods

Participants

Sixty-two patients (age: M = 53.7, SD = 10.7, range 
22–83 years; 34 males; 57 right-handed, see Table 1) met 
the inclusion criteria: All patients were older than 18 years, 
presented with first-ever ischemic (90%) or haemorrhagic 
(~ 10%; 6 patients) stroke and behavioural deficits as 
assessed by a neurological examination. Patients who had 
a history of neurological or psychiatric presentations (e.g. 
transient ischemic attack), multifocal or bilateral strokes, 
or had MRI contraindications (e.g. claustrophobia, ferro-
magnetic objects) were excluded from the analysis (n = 131 
patients, see the enrollment flowchart in the supplementary 
materials from Corbetta et al. 2015). We further limited our 
analysis to the patients whose motor functions were sys-
tematically assessed at 2 weeks, 3 months, and 1 year after 
stroke for an optimal longitudinal comparison. This study 
was approved by the Washington University in Saint Louis 
Institutional Review Board and all participants gave their 
signed informed consent.

Motor abilities assessment

Motor functions were examined for the upper and lower 
extremities. For the upper extremities, active range of 
motion against gravity was measured by a goniometer at 
shoulder flexion and wrist extension (Dreeben 2008). Dur-
ing the examination of shoulder flexion, patients are asked 
to raise their arm against gravity as high as possible. The 
movement amplitude is recorded as the angle between the 
goniometer centred on the shoulder and the lateral torso. 
The wrist extension examination requires patients to sit with 
their arm on the table in a resting position with their palms 
down, and they are asked to bend back their wrist against 
gravity. Wrist extension is measured as the angle between 
the goniometer centred on the wrist and the forearm.

Grip strength was measured using a dynamometer 
(Demeurisse et al. 1980). Each patient's examined arm was 
placed with the elbow flexed at 90°. Their fingers flexed for 
a maximal contraction over the dynamometer handle, while 

Table 1  Demographics of patients

SD standard deviation

Statistic Min Max

Age (mean/SD) 53.73/10.66 22 83
Education (mean/SD) 13.66/2.76 5 20
Handedness (% right-handed) 91.94
Sex (% female) 45.16
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the forearm and wrist were kept in a neutral position. The 
patients were asked to take a breath while exerting the maxi-
mum grip effort during three consecutive trials. The strength 
score is recorded in kilograms, and the total score is calcu-
lated as the average over three trials (Fess and Moran 1981).

The patients’ dexterity and bimanual coordination were 
measured with the 9-Hole Peg Test (pegs/second) assess-
ing gross movements of arms, hands, and fingers, and fine 
motor extremity. The test includes a one-piece board with a 
concave folded dish containing nine pegs next to a 9-holes 
matrix for the pegs. The task instructions require patients to 
place and remove the nine pegs one at a time and in random 
order as quickly as possible (Mathiowetz et al. 1985; Oxford 
Grice et al. 2003). The final score is calculated as the time in 
seconds elapsed from the touch of the first peg to when the 
last peg is placed back into the dish.

The Action Research Arm Test (ARAT, van der Lee et al. 
2001) assesses the ability to perform purposeful movements 
with the upper limb extremities. Patients had to grasp, grip, 
pinch objects of different weights and shapes and perform 
gross motor movements. The ARA T’s four subtests have 
19 items in total. Each item is rated on a four-point scale 
(0–3) where higher scores indicate better performance. If the 
patient scores < 3 on the first item, the examiner advances to 
the second item (the most accessible item). If the score for 
the second item is 0, the rest of the items will automatically 
be scored as 0 and the test is stopped. If the patients score is 
< 3 on the first item but > 0 on the second item, the remain-
ing items are administered (Lyle 1981).

For lower extremities, a combined walking index (Kem-
pen et al. 2011; Perry et al. 1995), left/right total motricity 
index, ankle dorsiflexion goniometry for left/right active 
range of motion against gravity was recorded (Dreeben 
2008).

MRI acquisition and preprocessing

MRI scan acquisition

Neuroimaging was performed on a Siemens 3T Tim-Trio 
scanner at the School of Medicine of Washington University 
in St. Louis. All structural scans were collected 2 weeks after 
the stroke and included (1) a sagittal MP-RAGE T1-weighted 
image (repetition time = 1950 ms, echo time = 2.26 ms, 
flip angle = 9 degrees, voxel size = 1.0 × 1.0 × 1.0  mm, 
slice thickness = 1.00 mm); (2) a transverse turbo spin-
echo T2-weighted image (repetition time = 2500  ms, 
echo time = 435 ms, voxel-size = 1.0 × 1.0 × 1.0 mm, slice 
thickness = 1.00 mm); and (3) a sagittal FLAIR (fluid-
attenuated inversion recovery) (repetition time = 7500 ms, 
echo time = 326 ms, voxel-size = 1.5 × 1.5 × 1.5 mm, slice 
thickness = 1.50 mm).

Lesion segmentation (native space)

Lesions were manually segmented on the T1-weighted MRI 
images using the Analyze biomedical imaging software system 
(Robb and Hanson 1991). Two board-certified neurologists 
(Drs Corbetta and Carter) reviewed all segmentations blinded 
to the individual behavioural data.

Spatial normalisation (MNI152)

To align T1-weighted MRI scans of patients to a standard ster-
eotaxic space (Montreal Neurological Institute space, MNI152 
Grabner et al. 2006), it is necessary to first address the issue of 
space deformation caused by brain lesions during spatial nor-
malisation (Brett et al. 2001; Ripolles et al. 2012; Volle et al. 
2013). An enantiomorphic approach was implemented in the 
current data analysis: the native-space lesions were replaced 
with healthy tissue of the same region of the contralateral 
hemisphere (Nachev et al. 2008). Subsequently, affine and dif-
feomorphic deformations were applied to co-register scans and 
lesions to the MNI152 space using the Advanced Normaliza-
tion Tool (ANTS, Avants et al. 2011; Klein et al. 2009). These 
analyses are available as part of the ‘Normalisation’ toolbox 
implemented in the BCBtoolkit (Foulon et al. 2018; http:// 
toolk it. bcblab. com).

Generation of disconnection maps

Methodological details are available from Thiebaut de Schot-
ten et al. (2020). In brief, each lesion serves as the input for 
the BCBtoolkit’s Disconnectome tool that computes maps 
of white matter pathway disconnection probabilities and its 
impact on loss of function (Foulon et al. 2018; http:// toolk 
it. bcblab. com). Probabilities of white matter pathways were 
derived from a normative population of 163 healthy controls 
(44.8% males) using a diffusion-weighted imaging dataset 
acquired on a 7T scanner as part of the Human Connectome 
Project (Vu et al. 2015). The pattern of brain areas that were 
disconnected in each stroke was subsequently characterised 
by measuring the average level of disconnection in subcortical 
areas and areas derived from a multimodal atlas of the brain 
surface (Glasser et al. 2016). Subcortical structures were man-
ually defined by MTS and included the thalamus, the putamen, 
the pallidum, the hippocampus, the caudate nucleus, and the 
amygdala. Hence, for each of the 62 patients in this study, the 
disconnection probability of 372 grey matter structures (186 
structures in each hemisphere: 180 cortical and 6 subcortical) 
was obtained.

http://toolkit.bcblab.com
http://toolkit.bcblab.com
http://toolkit.bcblab.com
http://toolkit.bcblab.com
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Dimensionality reduction with principal component 
analysis

Behavioural components

To summarise behavioural measurements while keeping as 
much variability as possible and minimising noise, behav-
ioural components were extracted as described in Corbetta 
et al. (2015). In brief, an oblique rotation principal com-
ponent analysis was applied to the motor scores obtained 
with different neuropsychological tests as described above. 
Two components (left and right side of the body) resulted 
from the analysis explaining 77% of the observed vari-
ance in the data. The analysis was computed in Matlab 
(MathWorks Inc.).

Disconnection map components

The Disconnectome consists of 46 components, where 33 
components have already been shown to capture more than 
90% of the variance in the distribution of disconnection 
maps in stroke (Thiebaut de Schotten et al. 2020). These 
components were derived from an independent normative 
dataset of 1333 disconnection maps of ischemic stroke 
patients (M = 63.89, SD = 15.91, range 18–97 years; 56.1% 
males) fully described in Xu et al. (2018) and Thiebaut de 
Schotten et al. (2020).

Estimation of the component’s scores

We used the Disconnectome 46 components to describe 
the disconnection patterns in our sample of 62 patients. 
Linear regression with the Disconnectome components 
(i.e. 46 independent variables: predictors: matrix of 372 
regions × 46 components) was performed in RStudio 
(v.1.3.1093; RStudio Team, 2020) to predict the discon-
nection pattern (i.e. the dependent variable: matrix of 372 
regions × 1 patient) for each patient. In total, 62 linear 
regression were performed. In doing so, unstandardised 
beta coefficients for each predictor corresponded to the 
component's scores of each patient (see Supplementary 
material Fig. 1 for the workflow). Adjusted r-squared val-
ues represented the percentage of each patient’s disconnec-
tion pattern variance explained by the 46 components. The 
linear regression analysis demonstrated that the Discon-
nectome (46 principal components) was able to capture 
the variance in the disconnection pattern of each patient 
from the longitudinal dataset. The mean adjusted r-squared 
across the group is 0.94, with a standard deviation of 0.076 
(https:// github. com/ lidul yan/ Estim ate_ CompS core_ lm).

Statistical analysis

The analyses for the anatomical prediction of the motor 
outcome were carried out in RStudio (v.1.3.1093; RStudio 
Team, 2020). Backward/forward hierarchical linear regres-
sions, backward/forward stepwise regressions, ridge and 
lasso regressions were performed and the results between 
different approaches were compared. Each regression used 
the patients’ estimated scores of each component (i.e. beta 
coefficients from the linear regression) to predict two prin-
cipal components of motor scores (the left and right side of 
the body, n = 2) at two weeks, three months, and one year 
after the stroke (n = 3 time points) resulting in 6 regression 
models per regression type.

This procedure is available as supplementary code with 
the manuscript (see https:// github. com/ lidul yan/ Hiera rchic 
al- Linear- Regre ssion-R- and https:// github. com/ lidul yan/ 
Stepw ise- Lasso- Ridge).

Backward/forward hierarchical linear regressions

In the backward hierarchical linear regressions (bHLR), 
predictors were eliminated one by one, starting from the 
last one. If the comparison between two consecutive mod-
els was statistically significant then the eliminated predictor 
was retained in the model. For example, a model with com-
ponents 1–46 is compared with a model with components 
1–45. If the comparison is not significant then we remove 
component 46 from the model. The goodness of fit of con-
secutive linear models was compared statistically using an 
F-test. The process was repeated until no significant dif-
ference could be identified between the two consecutive 
models.

In the case of the forward hierarchical linear regressions 
(fHLR), the predictors were added one by one, starting from 
the first one. The last comparison is the optimised model vs. 
the optimised model without Component#1.

To avoid inflation of the significance of our results (i.e. 
overfitting), the hierarchical linear regression analyses were 
performed on 78% of the original dataset (training set), and 
the model accuracy on the testing set (22% from the original 
dataset) was assessed with R.

Backward/forward stepwise regressions

In the backward stepwise regressions, the least significant 
predictors were iteratively removed from the model until the 
model contains only statistically significant predictors. In 
the case of the forward stepwise regressions, the most sig-
nificant predictors were iteratively added to the model until 
the model contains only statistically significant predictors.

The allowed maximum number of predictors to be 
included in the model was varied from 1 to 46. The optimal 

https://github.com/lidulyan/Estimate_CompScore_lm
https://github.com/lidulyan/Hierarchical-Linear-Regression-R
https://github.com/lidulyan/Hierarchical-Linear-Regression-R
https://github.com/lidulyan/Stepwise-Lasso-Ridge
https://github.com/lidulyan/Stepwise-Lasso-Ridge
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hyperparameter value was selected on the training set (80% 
of data: 50 patients) based on the results of the leave-one 
(patient)-out cross-validation (LOOCV) procedure: (train on 
59, test on 1). The model with the smallest prediction error 
(root-mean-square error (RMSE) value) was considered as 
the best model and it was tested on the unseen during the 
training procedure data (20% of data: 12 patients). Model 
accuracy on the testing set was assessed with R.

Lasso regressions

Lasso regression is another type of linear model that per-
forms variable selection with L1-regularisation which 
results in the shrinkage of the model where some coefficients 
become 0, and resulting in elimination from the model. The 
larger the penalty (L1-regularisation: λ1), the more coef-
ficient values are 0.

The optimal hyperparameter value (λ1) was selected 
on the training set (80% of data: 50 patients) based on 
the results of the leave-one (patient)-out cross-validation 
(LOOCV) procedure: (train on 59, test on 1). The model 
with the smallest prediction error [root-mean-square error 
(RMSE) value] was considered the best model and was 
tested on the unseen data from the training procedure data 
(20% of data: 12 patients). Model accuracy on the testing set 
was assessed with R.

Ridge regressions

Similar to Lasso, ridge regression penalises the less impor-
tant model coefficient values to prevent the model from over-
fitting the data, however, it never makes them 0.

L1- regularisation (λ2) is a hyperparameter in the ridge 
regression and it was tuned on the training set (80% of data: 
50 patients) based on the results of the leave-one (patient)-
out cross-validation (LOOCV) procedure: (train on 59, test 
on 1). The model with the smallest prediction error [root-
mean-square error (RMSE) value] was considered the best 
model and it was tested on the unseen data from the training 
(20% of data: 12 patients). Model accuracy on the testing set 
was assessed with R.

The most representative predictive model

The analyses described above were repeated 1000 times (in 
the case of fHLR and bHLR, 5000 times since it is a less 
computationally heavy analysis) with different data splits 
by varying the seed randomly to control the potential error 
induced by the split. A mode from the R-squared distribu-
tion, derived from the most representative model, was used 
to describe model fitness (see Fig. 2 in the supplementary 
materials for the analysis flow). The top 3 most important 
Disconnectome components (https:// ident ifiers. org/ neuro 

vault. colle ction: 7735) were displayed using Surfice (https:// 
www. nitrc. org/ proje cts/ surfi ce/). See Table 2 from the Sup-
plementary material for the component names and thresh-
olds used to display them.

Anatomy

The white matter was identified and labelled manually by 
expert anatomists (MTS/SJF) according to the Atlas of 
Human Brain Connections (Rojkova et al. 2016; Thiebaut 
de Schotten et al. 2015).

Results

Lesion characteristics (location, overlay)

Patients’ lesions and disconnection maps from the dataset 
(N = 62) were distributed bilaterally with 67% of lesions 
in the right hemisphere (Fig. 1). The most common site 
of damage was observed in the right subcortical regions 
(n = 27; other areas n < 15), including the thalamus, puta-
men, caudate, pallidum, hippocampus, amygdala, nucleus 
accumbens, insula, subcallosal cingulate, paracingulate, and 
parahippocampal areas. The disconnection maps generated 

Fig. 1  Distribution of a lesions and b disconnection maps in 62 
stroke patients in the MNI152 space (z coordinate indicated on each 
slice, neurological view: left = left). The colour bars represent a the 
number of overlapping lesions and b the probability of disconnection. 
L: left hemisphere; n: number

https://identifiers.org/neurovault.collection:7735
https://identifiers.org/neurovault.collection:7735
https://www.nitrc.org/projects/surfice/
https://www.nitrc.org/projects/surfice/
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with the individual lesions mirrors this bilateral but right 
prevalent pattern of disconnection with the highest overlap 
involving the ventral visual pathways, internal capsule, and 
perisylvian white matter (Catani and Thiebaut de Schotten 
2012).

Behavioural characteristics (motor impairment)

Figure 2 indicates that a significant portion of patients in our 
sample presented with motor impairments (motor score < 0). 
The proportion of patients with motor disabilities reduced 
from two week to one year after the stroke in line with previ-
ous findings (Hatem et al. 2016).

Prediction of the motor outcomes

Linear regressions used the patients’ estimated scores of 
each component to predict motor scores’ components (the 
left and right side of the body, n = 2) two weeks, three 
months, and one year after the stroke (n = 3 time points). 
We performed different linear algorithms (backward/forward 
hierarchical regressions, backward/forward stepwise regres-
sion, lasso and ridge regressions) to select the most impor-
tant components that are able to explain as much variance 
in new data as possible. Each regression was repeated 1000 
times (5000 times in the case of the hierarchical regressions) 
with different training and testing dataset splits.

In comparison to other algorithms, the predictions of the 
ridge regression are not superior at any time point (2 weeks, 
3 months, 1 year) for the left-side motor impairments. How-
ever, it demonstrated robust prediction power for the right 
side motor impairments (Figs. 3, 4).

The ridge regression does not eliminate predictors from 
the model. However, some component coefficients that are 
considered to be less important become close to 0 due to the 
L2-regularisation penalty. Here we demonstrated the top 3 
most important components in predicting individual motor 
scores at three time points (Fig. 5).

The disconnection of the component corresponding to the 
right frontal gyrus was a significant contributor in explain-
ing the variance for the left motor impairments starting 
from 2 weeks to 1 year after stroke. The involvement of the 
premotor cortex was prominent at 2 weeks and 1 year. At 
3 months it was surpassed by more subcortical regions such 
as the thalamus and cerebellar peduncle, although it was 
still present in the top-10 contributing components in the 
ridge regression model (see Fig. 5 from the Supplementary 
materials for the predictor importance plots). Contrary to 
expectations, the left superior longitudinal fasciculus III was 
in the top 3 components that predict left motor impairment 
at 3 months.

Correspondingly, right motor predictions at 3-time points 
were mainly driven by the disconnection of left inferior fron-
tal gyrus together with the superior temporal gyrus, and the 
supramarginal gyrus disconnection. The disconnection of 
the orbitofrontal regions together with the superior longitu-
dinal fasciculus III and the uncinate significantly predicted 
individual motor scores 3 months after the stroke and were 
replicated 1 year after stroke.

Discussion

In this study, we predicted motor impairments across dif-
ferent time points based on the pattern of acute brain dis-
connections two weeks after a stroke. Our analysis reveals 
three primary results. First, brain disconnection patterns can 
accurately predict motor impairment. Second, the disconnec-
tion patterns leading to impairment are not the same at two 
weeks, three months, and one year after a stroke. Third, the 
predictions were replicable, to some extent, in the cross-val-
idation analysis. Overall, the results indicate that while some 
plasticity mechanisms exist changing the structure–function 
relationship, early disconnection patterns prevail when pre-
dicting motor impairment at different times after the stroke.

Prediction of behavioural impairments based on 
brain data has been one of the early goals of clinical 

Fig. 2  The distribution of motor 
scores across two weeks, three 
months, and one year after 
stroke. a Overall distribution 
of the score, b Proportion of 
patients with a motor score < 0
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Fig. 3  The comparison of different model predictions (R2) on unseen data at 2 weeks, 3 months, and 1 year for the left (top panel) and right-
sided (bottom panel) motor impairments. Dotted lines indicate reference to ridge regression

Fig. 4  Prediction accuracy (R2) 
of the ridge regression models 
in the testing set (20% of the 
data, 12 patients), based on the 
mode of R distribution (1000). 
Left and right indicate motor 
scores (see Fig. 3 from the 
Supplementary materials for the 
predictions of other approaches 
implemented in the study)
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neuropsychology. Pioneer scientists analysed neuropsy-
chological impairments of single cases and tried to link 
them with brain lesions (e.g. patient Leborgne with a 
lesion in the left inferior frontal gyrus and loss of articu-
lation). While this approach has offered fruitful discus-
sions on the link between a specific region in the brain 
and a cognitive function (i.e. localisationism), it is hard to 
use this approach to accurately predict individual patients 
in the clinic because of differences in lesion character-
istics and individual brain variations. These structural 
and functional differences in healthy brains add extra 
variability and, therefore, are an additional challenge to 
generalise a single case to the whole patient population 
(Smith et al. 2019). Another extremity of analysing lesion-
symptom relationships is group-level analysis, where all 
data is averaged to a common space. This diminishes the 
role of interindividual variability (Forkel et al. 2021), 
and inference about an individual based on group-level 
data analysis leads to a potential error, known in the lit-
erature as "ecological fallacy" (Portnov et al. 2007; Rob-
inson 1950). Therefore, predictions based on these two 
approaches could be misleading. With the availability of 
big datasets and the development of new statistical tools, 
it became possible to advance from single cases and 
group-level studies toward an integrative approach that 
accounts for interindividual variations but generalises to 

the group-level. This integration allows researchers to 
make personalised and individual predictions like in the 
present study.

Preliminary attempts used different machine-learning 
approaches to predict motor impairment. However, most 
of the studies fall into one of the following pitfalls. The 
models are not validated on an independent dataset. They 
also focus on the lesion location, statistically ignoring the 
remote effects of a lesion on distant brain regions. Finally, 
they only consider a few aspects of motor functions inde-
pendently rather than the entire pattern of motor abilities. 
Akin to Salvalaggio et al. (2020), we considered these 
issues that may downplay the potential power of predic-
tion motor symptoms based on neuroimaging data. We 
applied the resampling method to validate the results. We 
used behavioural data that includes excellent variability of 
neuropsychological tests that capture motor disorders from 
different angles. We applied disconnection analysis that 
is a more accurate statistical measure of the theoretical 
concept of diaschisis. However, in contrast to Salvalaggio 
and colleagues' (2020) work, we used the Disconnectome 
(Thiebaut de Schotten et al. 2020) developed on an inde-
pendent and much larger cohort of stroke patients dataset 
(n = 1333) to model the profile of disconnection of indi-
vidual patients. The Disconnectome allowed increasing the 
predictive power for motor impairments from 37 to 49% 

Fig. 5  Top-3 contributing components in ridge regression at three 
time points after stroke onset (two weeks, three months, and one year) 
for motor impairments. SLF Superior longitudinal fasciculus, IFg 
Inferior frontal gyrus, SMg supramarginal gyrus, Ag Angular gyrus, 

STg Superior temporal gyrus, vmPFC ventro-medial prefrontal cor-
tex, ILF Inferior longitudinal fasciculus, FP frontal pole, UF Unci-
nate fasciculus, LO Lateral occipital gyrus, CC corpus callosum
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(right hemisphere lesion) and from 42 to 81% (left hemi-
sphere lesion) at 2 weeks. These progresses are indicative 
of the importance of the disconnectome in the prediction 
of neuropsychological impairment and a significant step 
forward personalised prognosis in clinical neuropsychol-
ogy. Additionally, we compared the results of our approach 
with a previously established method such as lesion load 
analysis of cortico-spinal tract and our algorithm proved to 
explain more variance (see Fig. 7 from the Supplementary 
materials).

In addition, it is worth noting that in the current study, 
we predict long-term symptoms at one year. A long-term 
prediction at one year based on acute brain imaging is chal-
lenging as additional factors may interact with the recovery 
(e.g., intensive rehabilitation, plasticity), which will have to 
be studied further before this work can be routinely incor-
porated into a clinical routine. For instance, in the current 
study, we observed a drop in the model's ability to capture 
the variance in right-sided motor scores of patients from 
81% (2 weeks) to 67% (1 year). This might be due to the 
variability of brain plasticity capacities and functional cop-
ing strategies across patients. Additional factors such as, for 
example, patients’ demographics (e.g. age, education) might 
increase the model’s accuracy for long-term symptom pre-
dictions in future research.

Studying motor impairments longitudinally allowed us to 
indirectly assess plasticity mechanisms over time. We dem-
onstrated different patterns of disconnections responsible for 
motor impairments at two weeks, three months, and one year 
after a stroke. Particularly some components that initially 
were less responsible for the motor impairment (two weeks 
after the stroke) play a greater role later in recovery. For 
instance, left-sided motor deficits become well predicted by 
cingulum and precuneus after 1 year. Those regions were 
previously linked with a modulatory effect on motor areas 
i.e., on the primary motor cortex (Wenderoth et al. 2005). 
In addition, our result is consistent with the finding of Tak-
enobu and collegaures (2014) where the fractional anisot-
ropy value in the cingulum was positively correlated with 
motor function recovery after stroke (Takenobu et al., 2014). 
Another research group demonstrated that contralateral cin-
gulate cortex and cerebellar activation are associated with 
improved motor function which is in line with the results 
of our study as well (Tong et al. 2016). It seems that the 
recruitment of regions beyond the motor cortex could be 
one of the plasticity mechanisms of recovery from a stroke 
that damages primarily a part of cortico-spinal tract. The 
inferior frontal gyrus could be another example. It was one 
of the main contributors in the prediction of motor impair-
ment both for the left and right-sided lesions. Tang et al. 
(2015) demonstrated that the focal motor pathway stroke 
extends to regions beyond traditional motor-related net-
works such as the inferior frontal gyrus since they found 

a decreased inter-hemispheric connectivity in the inferior 
frontal gyrus and middle temporal gyrus in patients after 
stroke (> 3 months) in comparison to healthy controls (Tang 
et al. 2015).

Although the current study allowed us to predict motor 
outcomes of patients at different time points after a stroke, 
the model based on ridge regression still requires improve-
ments, when predicting long-term symptoms. We believe 
that adding other factors (e.g. demographic, clinical, socio-
economic variables) that likely interact with the recovery of 
patients and using a larger sample size can help us increase 
the model’s predictive power. For example, there is evidence 
that a multimodal approach can outperform single-modality-
based algorithms in the discrimination of patients (Lu et al. 
2018). In this instance, different modalities complement and 
confirm each other and thus, this redundancy coming from 
various sources allows the algorithm to better estimate the 
prediction. Adding age, sex, lesion volume, or resting-state 
functional MRI data as an additional modality, for example, 
could provide valuable information to the algorithm's pre-
diction accuracy during training. Despite these advantages, 
multimodal prediction algorithms are rarely clinically feasi-
ble and often too expensive for large-scale longitudinal stud-
ies in terms of acquisition, computing powers, and analysis 
time. Further the purpose of this investigation was to assess 
the sole contribution of brain disconnection to the prediction 
of motor performance longitudinally after a stroke, not the 
contribution of other factors to build the model that best fits 
(but see Fig. 6 from the Supplementary materials where we 
included age and total lesion load as additional predictors).

We applied different linear methods (i.e. stepwise, hier-
archical, Lasso, Ridge) to predict long-term motor scores in 
patients (see Fig. 4 from the Supplementary materials) and 
we observed that retained components varied across differ-
ent models. For example, comparing stepwise and hierar-
chical regressions, both backwards and forwards, demon-
strated poor consistency: only a few (less than 3 usually) 
components were retained in the final models between the 
different approaches (see Table 3 from the Supplementary 
materials). The possible reason is the existence of correlated 
components. Stepwise and hierarchical regression models 
do not account for the multicollinearity problem that exists 
in our data in comparison to ridge and lasso regressions 
that use regularisation techniques. In the case of the Lasso 
regression, only one of the highly collinear predictors usu-
ally stays in the model. This solution to the multicollinearity 
problem is not suitable for our task and the final model might 
be misleading in interpretation. For example, if a compo-
nent that includes motor regions is highly correlated with 
a component that includes cortico-spinal-tract, then only 
one of them will be retained in the final lasso regression 
model. Nevertheless, we need to know that both of them 
play an important role in predicting motor impairments and 
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by dropping one of them will make our interpretation of the 
brain region involvement incomplete.

By contrast, ridge regression appeared to be the most 
reliable and suitable method to predict motor outcomes in 
our dataset since (1) it accounts for multicollinearity, (2) 
it did accurately predict longitudinal right motor impair-
ments better than other methods, and (3) it demonstrated 
the consistency of the important components with Lasso 
regression and across time (2 weeks, 3 months, 1 year). 
For example, out of the top 20 important components in 
the ridge regression model, 16 components were coincid-
ing with the components retained in the lasso regression 
for the right motor impairment at 2 weeks (see Fig. 5 from 
the Supplementary materials). Another possible reason for 
the inconsistency in the retained components is the small 
sample size. This has been one of the major problems in 
the application of machine learning algorithms on small 
datasets. However, the nested cross-validation technique 
must have diminished the biased effect and led to a higher 
consistency across the results (Vabalas et al. 2019).

Another potential limitation of the study is that the dis-
connection maps of 6 haemorrhagic stroke patients (~ 10% 
of the dataset) were described with the Disconnectome 
that was developed only on ischemic stroke patients. 
However, the Disconnectome was able to explain the vari-
ance in those 6 patients’ disconnection maps as well (R2: 
M = 0.983, SD = 0.011). Thus, the inclusion of 6 patients 
with haemorrhagic strokes did not influence our results.

Overall, we managed to increase the model’s predic-
tion quality two weeks after a stroke using the Discon-
nectome developed in an independent cohort of patients. 
This is a big step toward creating a clinical tool that will 
be able to complement the prognosis of motor symptoms 
recovery in individual patients. We believe that using a 
multimodal approach in future studies (e.g. the inclusion 
of additional factors) and increasing the cohort size will 
allow the model to make more accurate long-term per-
sonalised predictions which, in turn, will inform tailored 
rehabilitation pathways. This achievement would only be 
possible within an open science framework capitalising 
on an effort to form collaborations between neurological 
centres to pool data.
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tary material available at https:// doi. org/ 10. 1007/ s00429- 022- 02589-5.
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