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Abstract
Mild cognitive impairment (MCI) is known as an early stage of cognitive decline. Amnestic MCI (aMCI) is considered as the 
preliminary stage of dementia which may progress to Alzheimer’s disease (AD). While some aMCI patients may stay in this 
condition for years, others might develop dementia associated with AD. Early detection of MCI allows for potential treatments 
to prevent or decelerate the process of developing dementia. Standard methods of diagnosing MCI and AD employ structural 
(imaging), behavioral (cognitive tests), and genetic or molecular (blood or CSF tests) techniques. Our study proposes network-
level neural synchronization parameters as topographical markers for diagnosing aMCI and AD. We conducted a pilot study 
based on EEG data recorded during an olfactory task from a group of elderly participants consisting of healthy individuals 
and patients of aMCI and AD to assess the value of different indicators of network-level phase and amplitude synchronization 
in differentiating the three groups. Significant differences were observed in the percent phase locking value, theta-gamma 
phase-amplitude coupling, and amplitude coherence between the groups, and classifiers were developed to differentiate the 
three groups based on these parameters. The observed differences in these indicators of network-level functionality of the 
brain can help explain the underlying processes involved in aMCI and AD.

Keywords  Neural synchronization deficit · Alzheimer’s disease · Topographical biomarker · Olfactory stimulation · Mild 
cognitive impairment · Electroencephalogram

Introduction

Neural synchronization refers to the simultaneous activity 
of neuronal groups in the brain. Repetitive spiking activi-
ties of neural populations form an oscillatory behavior at 
frequency ranges from slow delta waves (0.5–3 Hz) to fast 
gamma waves (> 30 Hz) which can be different from the 
firing rates of single neurons (Timofeev et al. 2012). Neu-
ral synchronization is known to play a role in communi-
cation between different regions of the brain (Bonnefond 
et al. 2017), as well as being involved in the brain’s high 

order processes such as attention (Womelsdorf and Fries 
2007), working memory (Reinhart and Nguyen 2019), and 
consciousness (Valencia and Froese 2020). In the process 
of neurodegenerative disorders such as Alzheimer’s disease 
(AD), synchronization between brain’s neuronal networks 
is disrupted (Aron and Yankner 2016; Sedghizadeh et al. 
2020). This deficiency is also observed in other brain disor-
ders (Babiloni et al. 2020; Quiñones-Camacho et al. 2021) 
in the form of hyper-synchronization or de-synchronization, 
and may occur in different oscillatory bands. We refer to this 
dysfunction as neural synchronization deficit (NSD).

The current study proposes a method based on employing 
effective indicators of NSD which can serve as biomark-
ers for detecting AD in its early stage and differentiate AD 
patients from individuals suffering from mild cognitive 
impairment (MCI). We assess the possibility of using the 
brain synchronization parameters in response to olfactory 
stimulation to derive topographical markers for AD and 
MCI. Beta-amyloid (Aβ) deposition has been reported to 
occur in early stages of AD in the medial temporal lobe 
(Mattsson et al. 2019), which contains neural paths involved 
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in olfactory processing. Several studies have suggested 
olfactory deficit as a biomarker for the early diagnosis of 
AD (Talamo et al. 1989; Mesholam et al. 1998), and for pre-
dicting the progress of MCI to AD (Devanand et al. 2000). 
The perception of odors has been reported to be impaired 
due to AD (Silva et al. 2018; Zou et al. 2016; Sedghizadeh 
et al. 2020), and the olfactory bulb circuitry projects through 
the hippocampus and amygdala (Mouly and Sullivan 2010) 
which are reported to be affected by AD. Moreover, deficit 
in spatial synchronization in the beta and gamma oscilla-
tory activity in response to olfactory stimulation has been 
reported as a biomarker for early stages of AD (Sedghizadeh 
et al. 2020).

We conducted a pilot study on a group of elderly par-
ticipants with mild AD, amnestic MCI (aMCI), or normal 
aging conditions to characterize the quality of the brain’s 
oscillations in response to olfactory stimulation, aiming to 
extend the neurophysiological understanding of these disor-
ders and to derive topographical markers related to deficit in 
the olfactory function which could help with early detection 
of AD and aMCI.

Microglia are the principal immunity cells in the central 
nervous system (CNS). In the process of phagocytosis, the 
microglia cells engulf external particles and become loaded 
with non-reactive cells (Galloway et al. 2019). Dysfunction 
of microglia cells is reported to play a significant role in dis-
eases associated with brain infection, stroke, and dementia 
(Augusto-Oliveira et al. 2019). The effect of microglia in 
controlling the Aβ load in the brain (Lee and Landreth 2010) 
and their functional deficit being associated with AD make 
them potential players in the progress of the disease.

Rhythmic auditory or visual stimulation can induce oscil-
lations in the brain and synchronize the brain networks at 
the entrained frequency (Aron and Yankner 2016; Henao 
et al. 2020). The effect of inducing synchronized oscilla-
tions in the brain through sensory entrainment (particularly 
in the gamma band) on the structural and functional health 
of microglia has been reported (Iaccarino et al. 2016). The 
study reported that after inducing gamma oscillations in the 
brain of mice models of AD, the expression of genes that 
have a role in the function of microglia was significantly 
increased.

Inducing synchronized oscillatory activity in the brain 
by external gamma stimulation has also been reported for 
the treatment of stroke in a recent study (Balbi et al. 2021), 
in which synchronized neural activity was improved due to 
entrainment while morphological enhancements were not 
observed in microglia cells. While it is still premature to 
point to concrete differences between the cellular and syn-
aptic mechanisms in AD and stroke that are involved in the 
oscillatory activity across brain networks based on these 
studies, the causal effect of microglial dysfunction estab-
lished for AD can help explain the synchronization deficits 

caused by AD. Morphological changes and gene expression 
variations in microglia have been linked to neurodegenera-
tive brain disorders and are reported to cause a deficit in 
synaptic pruning which leads to decreased functional con-
nectivity (Zhan et al. 2014). Other recent results also suggest 
that microglia have significant effect on synaptic sculpting 
(Liu et al. 2021) and in the preservation of neuronal con-
nectivity (Jebelli et al. 2015). According to these studies, 
the interaction between microglia and synapses controls the 
neural activity and synchronization of the local neuronal 
population (Akiyoshi 2018). Hence, while more studies are 
needed to reveal and interpret the direct link between NSD 
and AD and the potential cycles of cause and effect involved 
in the progress of the disease, reported studies on the role of 
microglia deficit in AD on the one hand, and other reports 
that link microglia dysfunction to NSD on the other, may 
help inform the processes that lead to the large-scale and 
network-level synchronization deficit as a manifest of syn-
aptic changes that are caused by Aβ accumulation.

MCI is known as a cognitive state between normal 
aging and dementia due to AD. It is a heterogeneous clini-
cal concept that can point to various underlying reasons or 
diseases (Petersen 2016). There are two clinical types of 
MCI: amnestic (aMCI) and non-amnestic (naMCI). Amnes-
tic MCI is considered as the preliminary stage of cognitive 
impairment due to Alzheimer’s disease (Petersen 2016) and 
is more likely to progress to AD compared to naMCI (Jun-
gwirth et al. 2012). Cognitive deficits in aMCI may include 
impairment in learning and recall of recent information, with 
impairment in at least one other domain such as reasoning or 
completing complex tasks, visuospatial abilities, language 
functions and behavior. While some aMCI patients may stay 
in this condition for years, others might develop dementia 
associated with AD (Albert et al. 2011). Early detection of 
aMCI allows for potential treatments to prevent or decelerate 
the process of developing dementia (Hahn and Andel 2011).

According to (Dubois et al. 2014), topographical mark-
ers identify downstream brain changes associated with the 
AD pathology, such as subsequent cognitive and behavioral 
changes. Even though these markers may lack pathologi-
cal specificity for AD, they might be particularly valuable 
in the diagnosis of the disease and monitoring its progress 
(Dubois et al. 2014). To examine the various indicators of 
synchronized neural activity reflecting NSD in the brain 
which can potentially serve as topographical biomarkers 
for aMCI and AD, we extract different temporal and spatial 
synchronization indicators from EEG data recorded in an 
olfactory oddball task.

Previous studies have analyzed Event-Related Potentials 
(ERP) and functional brain connectivity during auditory, 
visual, or olfactory oddball tasks. In Caravaglios (2010), it 
was suggested that the change in the theta power after stimu-
lation during an oddball auditory task is significantly higher 
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in healthy individuals compared to AD patients. Another 
study (Güntekin et al. 2008) reported that the coherence 
of the evoked theta band during a visual oddball task was 
significantly higher across the frontal-parietal channel pairs 
in healthy controls than in AD patients. The theta phase-
locking value following deviant stimulation in a visual 
oddball task was also shown in another study (Yener et al. 
2007) to be significantly higher in healthy controls and AD 
patients treated with cholinesterase inhibitors compared to 
non-treated AD patients. Cross-frequency coupling patterns 
and auditory eventrelated potentials (AERP) were studied in 
aMCI patients during an active counting auditory oddball 
task and the quality of the cross-frequency coupling was 
found to be correlated with the performance in the cognitive 
task (Dimitriadis et al. 2015).

In the following sections of the paper, we first describe our 
experimental protocol for olfactory stimulation in the Meth-
ods section. This section also includes the mathematical deri-
vations of a number of indicators linked to NSD which are 
extracted from EEG data in our study. In the Results section, 
we present the results of monitoring these indicators between 
three groups of healthy controls and patients of aMCI and AD, 
and integrate the various indicators representing temporal and 
spatial synchronization deficit into a flowchart which can be 
employed as an NSD-based topographical biomarker to reli-
ably differentiate the three groups of participants. The sec-
tion Discussion and Limitations summarizes our findings and 
describes the limitations of the current study.

Methods

Participants

This study was approved by the Review Board of Tehran 
University of Medical Sciences (Approval ID: IR.TUMS.
MEDICINE.REC.1398.524). All methods were performed 

in accordance with the relevant guidelines and regula-
tions, and all participants gave their written consent before 
beginning the experiment. The name and date of birth of 
the participants were kept confidential and were not used 
in any of the analyses. The experiment was carried out at 
the Department of Geriatric Medicine of Ziaeian Hospital, 
under the supervision of two expert neuropsychologists.

A total of 44 participants including aMCI and AD 
patients and healthy (normal) individuals were recruited for 
this study. Six participants were removed from the study 
prior to conducting the experiments due to a history of 
stroke, brain injury, or olfactory system dysfunction. Other 
participants diagnosed with Parkinson’s disease, multi-sys-
tem atrophy, and other neurodegenerative diseases (other 
than dementia and AD) were also excluded from the study. 
Given these selection criteria, 35 participants remained 
(age = 70.97 ± 8.58, female = 57.14%) which included 
15 healthy (normal) individuals (age  =  69.27  ±  6.65, 
female  =  53.33%), and 7 aMCI (age  =  66.57  ±  6.85, 
female  =  51.14%) and 13 AD (age  =  75.31  ±  9.90, 
female = 61.54%) patients. Given a statistical power of 
95% and a 5% type I error, at least seven participants were 
required for each group to allow for a statistically valid 
comparison between the normal, aMCI, and AD partici-
pants. Table 1 shows the demographic information of the 
participants.

Prior to the experiment, a mini-mental state examina-
tion (MMSE) test, clock drawing test (CDT), and a verbal 
fluency test were performed by a neurologist to assess the 
cognitive state of the participants. MMSE is a 30-point 
test which assesses different cognitive functions such as 
attention, memory, orientation and language, and allows 
for the evaluation of cognitive impairment. The MMSE 
detailed results are shown in Table 2 along with the age 
range and diagnosed mental state of the participants. The 
mental states of the participants were diagnosed by the 
neurologist based on these tests as well as structural MRI 

Table 1   Demographic information of participants

Mean value and standard deviation of each demographic feature for healthy individuals and AD and aMCI patients are listed

Characteristic Healthy (n = 15) AD (n = 13) aMCI (n = 7) p value

Healthy-aMCI Healthy-AD aMCI-AD

Age (years) 69.27 ± 6.65 75.31 ± 9.90 66.57 ± 6.85 0.391 0.066 0.053
Gender, % female %53.33 %61.54 %51.14 0.875 0.676 0.858
Education (years) 4.93 ± 4.70 3.31 ± 2.95 5.86 ± 6.77 0.713 0.292 0.252
MMSE score 25.73 ± 3.20 16.46 ± 3.20 23.71 ± 2.93 0.172 4.075E−08 9.983E−05
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data. It is noteworthy to mention that the participants were 
classified based on their MMSE scores considering their 
level of education. This literacy level-based adjustment 
is necessary due to the fact that some of the questions of 
the test (Attention and Calculation, Read, and Write; see 
Table 2) correlate with the literacy level of the partici-
pants, and hence a lower value compared to the usual score 
threshold may be used by the neurologist to classify the 
participants with very low literacy levels (see participant 
numbers 2, 4, and 15 in Table 2 as examples).

Task description

Participants performed an oddball olfactory task which con-
sisted of 120 trials, each composed of 2 s of olfactory stimu-
lation followed by 8 s of rest. The entire experiment took 
about 20 min for each participant. Odors were presented in 
a pre-set randomized order, lemon being the standard (fre-
quent) odor presented with a probability of 0.75 and rose as 
the deviant (non-frequent) odor with a probability of 0.25. 
Pure water was presented as the neutral odor during rest. 

Table 2   MMSE scores of the participants and their mental state

The table shows each participant’s age as a range, their diagnosed mental state, and the details of their MMSE score. O Time Orientation to time, 
O Place Orientation to Place, Reg Registration, Att & Calc Attention and Calculation, DR Delayed Recall, Rep Repetition, VS Visuospatial, 
Comm Commands. The bold columns are components of the test that have dependence on the literacy of the participants

Subject 
Number

Mental State Age O place O time Reg Att & Calc Naming Rep Read Write DR VS Comm Total MMSE

1 Normal 65–70 5 5 3 5 2 1 1 1 3 1 3 30
2 Normal 70–75 5 5 3 1 2 1 0 0 2 0 3 21
3 Normal 60–65 5 5 3 5 2 1 1 1 2 1 3 29
4 Normal 65–70 5 5 3 1 2 1 0 0 1 0 3 21
5 Normal 75–80 5 5 3 4 2 1 1 0 2 1 3 27
6 Normal 70–75 5 5 3 3 2 1 1 1 2 1 3 28
7 Normal 55–60 5 5 3 2 2 1 1 1 3 1 3 27
8 Normal 75–80 5 4 3 4 2 1 0 0 2 0 3 23
9 Normal 75–80 5 4 3 3 2 1 1 1 2 0 3 26
10 Normal 70–75 5 5 3 5 2 1 1 1 3 1 3 30
11 Normal 65–70 5 5 3 4 2 0 1 0 2 1 3 26
12 Normal 60–65 5 5 3 3 2 1 1 1 3 1 3 28
13 Normal 75–80 5 4 3 4 2 1 0 0 2 0 3 23
14 Normal 70–75 4 5 3 2 2 1 1 1 3 1 3 26
15 Normal 65–70 4 5 3 1 2 0 0 0 3 0 3 21
16 aMCI 55–60 4 4 3 4 2 0 0 0 2 0 3 22
17 aMCI 70–75 4 4 3 3 2 0 0 1 2 0 3 22
18 aMCI 60–65 5 4 3 1 1 0 1 1 2 0 3 21
19 aMCI 70–75 5 3 3 3 2 0 0 3 1 0 3 21
20 aMCI 70–75 5 5 3 3 2 1 1 1 1 0 3 25
21 aMCI 60–65 5 5 3 4 2 1 1 1 2 0 3 27
22 aMCI 70–75 5 5 3 4 2 1 1 1 2 1 3 28
23 AD 80–85 5 4 3 1 2 0 0 0 0 0 3 18
24 AD 75–80 4 4 3 0 2 1 1 1 0 1 2 19
25 AD 70–75 5 2 3 0 2 0 0 0 0 0 3 15
26 AD 65–70 2 3 3 0 2 0 0 0 0 0 2 12
27 AD 75–80 5 2 3 0 2 1 0 0 2 0 1 16
28 AD 70–75 3 5 3 3 2 0 1 1 0 0 1 19
29 AD 80–85 5 2 3 0 2 0 1 1 0 0 3 17
30 AD 60–65 2 3 3 0 2 0 0 0 0 0 3 11
31 AD 85–90 4 3 3 0 2 1 0 0 0 0 3 16
32 AD 85–90 3 2 3 0 2 1 0 0 0 0 2 12
33 AD 55–60 5 2 3 2 2 1 0 0 2 0 3 20
34 AD 65–70 3 2 3 0 2 1 0 0 3 0 3 18
35 AD 75–80 4 2 3 3 2 1 1 1 0 1 3 21
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The presentation of odors was performed using a computer-
controlled olfactometer described in (Hojjati et al. 2019).

EEG data acquisition and preprocessing

EEG data were acquired during the task using a 19-channel 
standard 10–20 system. Data were referenced to A1 and A2 
due to the minimal electrical activity in these electrodes. 
The impedance of the electrodes was kept under 15 kΩ 
during the experiment. The sampling frequency was set to 
2000 Hz, and was later reduced to 200 Hz through filtering 
and subsampling.

All preprocessing was performed using MATLAB 2018b 
and EEGLab v2021.0 (Delorme and Makeig 2004). The data 
were filtered from 0.5 to 45 Hz using a bandpass filter and 
epoched from 1 s pre-stimulus to 2 s post-stimulus. Artifacts 
were removed by running independent component analysis 
(ICA) using the logistic infomax ICA algorithm (Bell and 
Sejnowski 1995). A maximum of one artifactual compo-
nent was identified as “Muscle”, “Heart”, “Eye”, or “Other” 
by EEGLab, which was removed and only the components 
labeled as “Brain” were kept for further analysis.

Noisy trials were identified by eye and were removed 
from further analysis. Following the methods reported in 
earlier studies (Morgan and Murphy 2002), only the data 
of the Fz, Cz, and Pz channels were used for biomarker 
extraction.

Biomarkers

Different topographical biomarkers were assessed for clas-
sifying normal, aMCI, and AD cases. Since deficits in the 
brain’s functional connectivity have been observed in AD 
patients (Zhao et al. 2020; Wang et al. 2019), different indi-
cators of connectivity and synchronization were studied for 
developing a classification method. These indicators are 
described next.

Percent phase locking

AD is associated with deficits in the phase synchronization 
of gamma oscillations. Several studies have reported on 
the importance of phase synchronization in the oscillatory 
gamma activity in performing memory and attention tasks, 
which is degraded in AD and leads to deficits in memory 
function (Kramer et al. 2007; Knyazeva et al. 2012; Kleen 
et al. 2016).

A method based on Shannon entropy has been proposed 
in (Tass et al. 1998) for assessing the phase locking sta-
tus of EEG signals. Based on this method, an indicator 
named percent phase locking (PPL) has been proposed in 
(Rubino et al. 2006) to quantify the phase locking status of 

brain signals to a stimulus onset. The measurement of this 
indicator is described next according to the review article 
(Liang et al. 2016).

First, the instantaneous phase of the signal is extracted 
using Hilbert transform and is wrapped to the [0–2π] 
interval, which is divided into N  bins. Then, the number 
of instantaneous phase values that lie within each bin is 
calculated. Using these values and Shannon entropy, the 
entropy of the distribution of the instantaneous phase for 
each trial is calculated:

where mk is the number of phase samples that lie within 
the k th bin, and M is the total number of phase samples 
in a trial. The optimal value of N  is set to e0.626+0.4log(M) . 
In this study, we chose the 0–0.7 s post-stimulus inter-
val since the estimated latency of the olfactory response 
is known to be between 600 and 700 ms. The phase of 
gamma oscillations (39–41  Hz) was calculated using 
Hilbert transform for each non-frequent odor trial on the 
Fz, Cz, and Pz channels. It should be mentioned that the 
extracted phase of the signal has valid information only if 
the signal is narrowband (Le Van Quyen et al. 2001), so 
we filtered the signal to contain the target oscillations 
(39–41 Hz) in the gamma band. Choosing the narrow-
band filter around 40 Hz was based on the importance of 
the 40 Hz oscillations which are reported to occur during 
olfactory stimulation (Bouyer et al. 1981; Montaron et al. 
1982) and during inhalation and exhalation (Kay 2015).

Then, the value of PPL for each trial was calculated as 
a percentage value using the following formula:

The total mean of the PPL values over trials was cal-
culated for each channel for each participant. Higher PPL 
values show higher phase locking to the stimulus onset. 
The mean and SEM (standard error of the mean) of the 
resulting PPL values for the three different groups of par-
ticipants are shown in Fig. 1.

Amplitude coherence

Synchronization of the gamma activity between different 
regions of the brain is another network-level mechanism 
that underlies memory and cognition (Jia et al. 2011). 
Amplitude coherence (Srinath and Ray 2014) is an indi-
cator of spatial synchrony, which quantifies the synchro-
nization of the amplitude fluctuations of two given sig-
nals. Amplitude coherence between channels Fz and Cz is 
defined as follows:

s = −

N∑

k=1

mk

M
log

(mk

M

)
,

PPL
n
=

log (N) − s

log (N)
× 100 (PPL for the nth trial).
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where k is the number of trials and Ak is the absolute value 
of the Fast Fourier Transform (FFT) of the data record in 
each trial.

To calculate amplitude coherence, the 0–1 s post-stim-
ulus interval was used and the slow-gamma oscillations 
(35–45 Hz) were extracted for each trial. AkCz

 and AkFz
 

were calculated for each participant and Camp was calcu-
lated for each frequency sample. Next, the values cor-
responding to the 35–45 Hz frequencies were averaged, 
yielding a mean Camp value for each participant. The mean 
and SEM of these values for the three different groups of 
participants are plotted in Fig. 2.

Theta‑gamma phase‑amplitude coupling

Phase-amplitude coupling (PAC) of different frequency 
bands in the brain has been suggested to be involved in the 
underlying mechanisms for different cognitive functions. 
Individuals diagnosed with AD show deficits of phase-
amplitude coupling in their neural activity (Poza et al. 2017). 
It has been shown that the phase of slow oscillations in the 

Camp(f ) =

���
����
�

∑
k(AkCz

(f ) − AmeanCz
(f ))(AkFz

(f ) − AmeanFz
(f ))

�∑
k(AkCz

(f ) − AmeanCz
(f ))2

�∑
k(AkFz

(f ) − AmeanFz
(f ))2

���
����
�

,

brain [theta frequency band (4–8 Hz)] modulate the ampli-
tude of higher frequency bands [slow gamma (35–45 Hz)], 
and that this neural mechanism is involved in performing 
memory-related tasks (Lega et al. 2014).

Several methods have been proposed for calculating the 
theta-gamma PAC. We used a recently introduced method 
called the time–frequency mean vector length (tf-MVL) 
(Munia and Aviyente 2019a, b). Unlike other methods 
that use Hilbert transform for extracting the phase of theta 
oscillations, tf-MVL uses the reduced interference distri-
bution (RID)-Rihaczek method to simultaneously estimate 
the phase of the slow oscillations and the amplitude of the 
higher frequency oscillations. This method provides a more 
accurate estimate of the phase and amplitude of the signal as 
it does not depend on the parameters of filters to extract the 
theta and gamma components (Munia and Aviyente 2019a, 
b).

In this study, we compared the theta-gamma PAC for non-
frequent odor trials on the Fz, Cz, and Pz channels. To this 
end, the data of each channel was normalized as z-score, set-
ting the mean of each channel to zero and its standard devia-
tion to 1. Next, the overall mean of the rest trials for each 
participant was subtracted from the average trial on each 
channel. Using the RID-Rihaczek distribution, the phase 
and amplitude of theta (4–8 Hz) and gamma (39–41 Hz) 

Fig. 1   PPL for healthy controls and aMCI and AD patients. PPL 
was calculated on channels A Fz B Cz C Pz for the non-frequent 
odor trials in the frequency range (39-41  Hz) in the gamma band. 
To assess the phase locking to the stimulus onset, the 0–0.7  s time 
interval after the stimulus onset was selected in each trial. A signifi-

cant difference can be seen between the healthy group and the aMCI 
and AD groups in channels Fz and Cz (ns: not significant; *p < 0.05; 
**p < 0.01; ***p < 0.001. n = 15 Normal, n = 13 AD, n = 7 aMCI were 
used in this bar plot)
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Fig. 2   Amplitude Coherence for healthy controls and aMCI and AD 
patients. Amplitude coherence was calculated between the A Fz–Cz, 
B Fz–Pz, and C Cz–Pz channel pairs for the non-frequent odor trials 
in the frequency range (35–45 Hz) in the gamma band. To measure 
the amplitude coherence, the 0–1  s time interval after the stimulus 

onset was selected in each trial. A significant difference can be seen 
between the AD group and the healthy and aMCI groups  in Fz-Cz 
amplitude coherence (ns: not significant; *p < 0.05; **p < 0.01; 
***p < 0.001. n = 15 Normal, n = 13 AD, n = 7 aMCI were used in 
this bar plot)

Fig. 3   Theta-Gamma Phase Amplitude Coupling (PAC) for healthy 
controls and aMCI and AD patients. Theta (4–8  Hz)-gamma (39–
41  Hz) PAC was calculated on channels A Fz, B Cz, and C Pz for 
the 0–2 s time interval after the stimulus onset in the frequent odor 

trials. A significant difference is observed between the aMCI group 
and both the healthy and AD groups  for all three channels (ns: not 
significant; *p < 0.05; **p < 0.01; ***p < 0.001. n = 15 Normal, n = 13 
AD, n = 7 aMCI were used in this bar plot)



2964	 Brain Structure and Function (2022) 227:2957–2969

1 3

oscillations were extracted and the theta-gamma PAC value 
for each channel was calculated using the following formula:

in which N is the length of the average trial on each chan-
nel, A is the amplitude of the sum of all the values corre-
sponding to the slow-gamma frequency band in the (RID)-
Rihaczek distribution, and � is the angle of the sum of the 
values within the low frequency band in the time–frequency 
distribution.

The theta-gamma PAC was calculated for each participant 
and the mean and SEM of these values for channels Fz, Cz, 
and Pz are plotted in Fig. 3.

Classification

Multiple binary SVM classifiers can be used for classify-
ing data that consists of more than two groups. To classify 
the three groups of participants, two binary SVM classifi-
ers were trained, both using as input the five features intro-
duced in this section (PPL of channel Cz, amplitude coher-
ence between channels Fz and Cz, and three PAC values 
for channels Fz, Cz, and Pz). The features were normalized 
before training the classifiers. One binary SVM classifier 
was trained for classifying healthy individuals and aMCI 
patients, and another for classifying aMCI and AD patients. 
For these two classifications, we separately trained a linear 
SVM classifier and a nonlinear SVM classifier using a radial 
basis function (RBF) kernel. While a nonlinear classifier 
may offer better performance through remapping of the fea-
tures, using a linear classifier can demonstrate the intrin-
sic efficacy of the features regardless of the classification 
method. We also trained two binary Random Forest (RF) 
classifiers, one for classifying healthy individuals and aMCI 
patients, and another for classifying aMCI and AD patients.

Since the data used in these classifications were unbal-
anced, a stratified fivefold cross validation was performed 
to evaluate the performance of the classifiers. This allows 
for maintaining a fixed ratio between the number of posi-
tive and negative samples in all folds. Using this method, 
the mean and standard deviation of accuracy, precision, and 
recall were reported for all SVM and RF classifiers. The 
design of the classifiers and cross validation methods was 
conducted using the Python scikit-learn package1 (Pedregosa 
et al. 2011).

theta − gammaPAC =

|||
|
|
|

1

N

N∑

i=1

Aie
j�i

|||
|
|
|

,

Statistical analyses

All results are expressed as mean ±  �
√
n−1

 , where n is the num-
ber of participants for each group, and � is the standard 
deviation of the variable of interest. All p values were cal-
culated using two-tailed t tests by MATLAB ttest2 function. 
Significance levels of 0.05, 0.01, and 0.001 were examined 
in each comparison.

Results

PPL is significantly higher in healthy participants 
compared to aMCI and AD patients

We used PPL values to compare the phase locking of gamma 
oscillations to the stimulus onset in healthy controls and 
the aMCI and AD patients. Our results show a significantly 
higher phase-locking value in healthy participants com-
pared to both aMCI and AD patients on channels Fz and 
Cz (Fig. 1).

Amplitude coherence is significantly lower in AD 
patients

Amplitude coherence is an indicator of the brain’s func-
tional connectivity as it represents the similarity between the 
amplitude fluctuations of different brain signals, neglecting 
the effect of the phase of the signals. Our results show that 
the amplitude coherence values measured between channels 
Fz and Cz for the AD group are significantly lower com-
pared to the healthy and aMCI groups, whereas the ampli-
tude coherence values between the same two channels are 
not significantly different between the aMCI and healthy 
groups (Fig. 2).

Significant difference is observed in theta‑gamma 
phase‑amplitude coupling between aMCI patients 
and both healthy and AD groups

Comparing the theta-gamma PAC values measured at the 
Fz (Fig. 3A), Cz (Fig. 3B), and Pz (Fig. 3C) channels for 
the three groups shows significant differences between the 
aMCI group and both the healthy and AD groups in all three 
channels. A remarkable observation in the results of all three 
channels is the relatively higher values of the theta-gamma 
PAC in aMCI patients compared to both the healthy and 
AD groups.

1  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​model_​
selec​tion.​Strat​ified​KFold.​html.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
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Healthy individuals, aMCI and AD patients can be 
classified with multiple binary classifiers

Using the indicators of synchronized neural activity as 
input features, we trained two binary SVM classifiers to 
separate the three groups of participants. One SVM clas-
sifier was trained to classify the normal and aMCI groups, 
and another to classify the aMCI and AD groups. Linear 
and nonlinear SVM classifiers were employed to both 
assess the intrinsic efficacy of the features in separat-
ing the groups (linear SVM) and achieve higher perfor-
mance through the additional classification power yielded 
through using a kernel (nonlinear SVM).

For the linear SVM classification, the normal-aMCI 
classifier achieved an accuracy of 0.91 ± 0.11 and the 
aMCI-AD classifier achieved an accuracy of 0.80 ± 0.19. 
By combining these two classifiers, we were able to dis-
tinguish between the healthy individuals, aMCI and AD 
patients with an accuracy of 0.64 ± 0.19.

For the nonlinear SVM classification, the normal-
aMCI classifier achieved an accuracy of 0.87 ± 0.11 
and the aMCI-AD classifier achieved an accuracy of 
0.85 ± 0.12. Through combining these two classifiers, we 
were able to distinguish between the healthy individuals, 
aMCI and AD patients with an accuracy of 0.73 ± 0.21.

For the random forest classification, the normal-aMCI 
and the aMCI-AD classifiers achieved accuracies of 
0.90 ± 0.20 and 0.90 ± 0.12, respectively. Table 3 shows 
the detailed performance statistics of the SVM and ran-
dom forest classifiers.

Discussion and limitations

As dementia is known to disrupt the neural oscillations of 
the brain, it was not unexpected to observe that the phase 
and amplitude of gamma oscillations are more synchronized 
in healthy adults compared to aMCI and AD patients. Our 
results indicate that phase synchronization is disrupted in 
both aMCI and AD groups, whereas the amplitude coher-
ence remains unchanged from normal in aMCI patients. This 
difference may suggest that spatial coherence remains intact 
in aMCI and offers potential hope for preventing the aMCI 
state to progress towards AD through early diagnosis and 
employing interventional therapeutic methods.

PPL

The phase synchronization performance underlying cogni-
tive functions of the brain is disrupted in AD (Knyazeva 
et al. 2008). The PPL values calculated for the gamma oscil-
latory band in this study are in agreement with the reported 
decrease in Global Field Synchronization (GFS) in the 
alpha, beta, and gamma bands in a study by (Koenig et al. 
2005). On the other hand, PPL values are almost identical 
for the AD and aMCI groups. This indicates that the ability 
of gamma oscillations in the frontal areas of the brain to 
maintain a stable phase in time, which is a requirement in 
cognitive functions such as learning, memory, and percep-
tion (Ward 2003), may already be compromised in aMCI 
patients.

Amplitude coherence

The oscillatory patterns of brain signals are known to be 
impacted in patients diagnosed with AD in such a fashion 
that low frequency activity is enhanced and high frequency 

Table 3   Detailed classification 
statistics

The table shows the accuracy, precision, and recall of all classification models

Model Accuracy Precision Recall

SVM (RBF kernel)
 2-class SVM (Normal-aMCI) 0.87 ± 0.11 0.83 ± 0.23 0.80 ± 0.19
 2-class SVM (AD-aMCI) 0.85 ± 0.12 0.88 ± 0.10 0.87 ± 0.11
 Combination of two 2-class SVMs (aMCI-AD + Normal-aMCI) 0.73 ± 0.21 0.73 ± 0.15 0.74 ± 0.19

SVM (linear kernel)
 2-class SVM (Normal-aMCI) 0.91 ± 0.11 0.93 ± 0.10 0.92 ± 0.11
 2-class SVM (AD-aMCI) 0.80 ± 0.19 0.78 ± 0.24 0.78 ± 0.24
 Combination of two 2-class SVMs (aMCI-AD + Normal-aMCI) 0.64 ± 0.19 0.56 ± 0.24 0.60 ± 0.19

Random forest (RF)
 2-class RF (Normal-aMCI) 0.90 ± 0.20 0.93 ± 0.13 0.93 ± 0.13
 2-class RF (AD-aMCI) 0.90 ± 0.12 0.92 ± 0.11 0.92 ± 0.11
 Combination of two 2-class RFs (aMCI-AD + Normal-aMCI) 0.62 ± 0.25 0.56 ± 0.27 0.57 ± 0.24
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oscillations are diminished (Jafari et al. 2020a, b). Our 
results suggest that the amplitude coherence in high frequen-
cies (gamma band) between the frontal and parietal regions 
may not be yet as severely damaged in aMCI compared with 
AD, and the degradations observed in the cognitive func-
tions of aMCI patients may likely be linked to the deficit 
observed in the phase synchronization of gamma oscillations 
in the frontal areas as also reported in (Park et al. 2012).

PAC

Theta-gamma PAC has been reported as a brain mecha-
nism involved in working memory functions (Radiske et al. 
2020), and its deficit has been reported both in rat AD mod-
els and patients diagnosed with AD (Bazzigaluppi et al. 
2017). The low values of theta-gamma PAC observed for 
the AD patients in our study is in alignment with earlier 
reports (Goodman et al. 2018). The observed increase in the 
coupling between the theta and gamma oscillatory activity 
in the aMCI group may be an indication of an attempt by 
the brain’s neuronal networks to maintain regular behavior 
in face of degradations in the synchronization performance 
which have started in conjunction with impaired cognitive 
function (Pusil 2019).

Classification

Given the results observed in this study, we propose a new 
method that could be potentially used as a topographical 
biomarker along with other existing diagnosis measures 
employed by clinicians for diagnosing aMCI and AD. Five 
indicators of brain synchronization which were introduced 
earlier are extracted from EEG data acquired during an odd-
ball olfactory task. Based on these indicators, machine learn-
ing models can be trained to classify the data of a participant 
into one of the healthy, aMCI, and AD groups. Classifica-
tion using the mentioned features offers high accuracy for 
distinguishing between these groups, which is superior to 

the classification results reported in (Rallabandi et al. 2020) 
based on structural MRI data. A flowchart depicting the 
procedures of the proposed diagnosis method can be seen 
in Fig. 4.

Our study suggests a new method for differentiating AD 
and aMCI patients based on a convenient single-session 
EEG data recording procedure, and offers more accurate 
results than the classification results reported earlier. This 
provides a tool that can assist clinicians in distinguishing 
suspected aMCI cases when other diagnostic criteria do not 
provide decisive evidence. The proposed passive olfactory-
based task is suitable for the elderly who may be unable 
to take part in active psychophysical or intense cognitive 
tasks based on visual perception or interpretation. The abil-
ity to differentiate aMCI patients from both healthy and AD 
groups enables the early diagnosis of aMCI, which allows 
for timely intervention to prevent or decelerate its progress 
to AD.

Our study had limitations in its scope and implementation 
in several ways. First, the size of the cohort was limited due 
to the risks and challenges associated with clinical visits by 
the elderly during the COVID-19 pandemic. The size of the 
participant groups hence remained at the minimum required 
through sample size calculations, limiting our investigation 
of the efficacy of the proposed topographical markers of 
aMCI and AD to the scope of a pilot study. Second, the men-
tal states of the participants were diagnosed solely based on 
clinical representation and cognitive performance in addition 
to structural MRI data. More extensive CSF or neuroimaging 
data collection could increase the diagnostic confidence of 
prodromal Alzheimer's disease as well as reveal the correla-
tion between the proposed network-level indicators of syn-
chronization quality and the underlying mechanisms of the 
progression of aMCI towards AD, and should be considered 
in the design of future studies. Third, our study was based on 
a cross-sectional comparison of the three participant groups 
while a longitudinal study is required to draw conclusions 
on how the proposed synchronization indicators evolve over 
time for the aMCI and AD patients as their status progresses 

Fig. 4   Flowchart of procedures for classifying the three groups 
of healthy individuals, and aMCI and AD patients. EEG signal is 
acquired during an oddball olfactory task and data from 3 electrodes 
(Fz, Cz, and Pz) are used in the analyses. The features shown in the 

figure including the PPL, amplitude coherence, and the three theta-
gamma PAC values are extracted from EEG data and two binary clas-
sifiers are used for normal versus aMCI, and aMCI versus AD clas-
sification
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to other stages of the disease. Fourth, we reported results 
based on analyzing data from a limited number of chan-
nels chosen according to earlier reports. A more extensive 
analysis using data of all channels and performing graph-
based analysis could reveal additional insight into the topo-
graphical spread of oscillatory deficits across the brain and 
lead to better diagnosis performance. Due to the mentioned 
limitations, the observations and deductions made in this 
article should be construed as preliminary. Despite these 
limitations, our observations provide hints towards a poten-
tially interesting direction for a more extensive evaluation 
of the network-level changes involved in the progression of 
amnestic MCI to Alzheimer’s disease.

Acknowledgements  The authors wish to thank Ziaeian Hospital in 
Tehran for providing staff time and equipment for data collection in 
this study. We are grateful to the patients and their families who par-
ticipated in this study.

Author contributions  HA conceptualized the work. MJS and HA 
designed the experiments. MJS and ZV collected the data. MJS, 
SNF, and AA analyzed the data. MJS, SNF, AA, and HA wrote the 
manuscript. HA and ZV supervised the work. All authors edited and 
approved the manuscript.

Funding  This work was partially funded by the Cognitive Sciences and 
Technologies Council of Iran and by the Grant G970736 from Sharif 
University of Technology, which covered the cost of data collection. 
The funders had no role in the study conceptualization and design, 
data collection and analysis, decision to publish, or preparation of the 
manuscript. The authors have no other competing interests to declare 
that are relevant to the content of this article.

Data availability statement  Access to the data used to derive the results 
of this study will be provided upon reasonable request.

Declarations 

Conflict of interest  The authors have not disclosed any competing in-
terests.

Compliance with ethical standards  This study was approved by the 
Review Board of Tehran University of Medical Sciences (Approval 
ID: IR.TUMS.MEDICINE.REC.1398.524). All methods were per-
formed in accordance with the relevant guidelines and regulations and 
the ethical standards in the Declaration of Helsinki. All participants 
gave their written consent before beginning the experiment and were 
free to withdraw at any time. The name and date of birth of the partici-
pants were kept confidential and were not used in any of the analyses.

References

Akiyoshi R (2018) Microglia enhance synapse activity to promote local 
network synchronization. eNeuro 5(5)

Albert M et al (2011) The diagnosis of mild cognitive impairment 
due to alzheimer’s disease: recommendations from the national 
institute on aging-alzheimer’s association workgroups on diag-
nostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 
7(3):270–279

Aron L, Yankner BA (2016) Neural synchronization in Alzheimer’s 
disease. Nature 540(7632):207–208

Augusto-Oliveira M et al (2019) What do microglia really do in 
healthy adult brain? Cells 8:1293

Babiloni C et al (2020) Abnormal cortical neural synchronization 
mechanisms in quiet wakefulness are related to motor deficits, 
cognitive symptoms, and visual hallucinations in parkinson’s 
disease patients: an electroencephalographic study. Neurobiol 
Aging 91:88–111

Güntekin B, Saatçi E, Yener G (2008) Decrease of evoked delta, 
theta and alpha coherences in Alzheimer patients during a visual 
oddball paradigm. Brain Res 1235:109–116

Balbi M et al (2021) Gamma frequency activation of inhibitory 
neurons in the acute phase after stroke attenuates vascular and 
behavioral dysfunction. Cell 34:108696

Bazzigaluppi P et al (2017) Early-stage attenuation of phase-ampli-
tude coupling in the hippocampus and medial prefrontal cortex 
in a transgenic rat model of Alzheimer’s disease. Hum Brain 
Mapp 144:669

Bell A, Sejnowski T (1995) An information-maximization approach 
to blind separation and blind deconvolution. Neural Comput 
7:1129

Bonnefond M. Kastner S Jensen O (2017) Communication between 
brain areas based on nested oscillations. eNeuro 4(2)

Bouyer J, Montaron M, Rougeul A (1981) Fast fronto-parietal 
rhythms during combined focused attentive behaviour and 
immobility in cat: cortical and thalamic localizations. Electro-
encephalogr Clin Neurophysiol 51:244

Caravaglios G, Castro G, Costanzo E (2010) Theta power responses 
in mild Alzheimer’s disease during an auditory oddball para-
digm: lack of theta enhancement during stimulus processing. J 
Neural Transm 117:1195–1208

Delorme A, Makeig S (2004) EEGLAB: an open-source toolbox 
for analysis of single-trial EEG dynamics. J Neurosci Methods 
134:9–21

Devanand D et al (2000) Olfactory deficits in patients with mild 
cognitive impairment predict Alzheimer’s disease at follow-up. 
Am J Psychiatry 157(9):1399–1405

Dimitriadis SI et al (2015) A novel biomarker of amnestic MCI based 
on dynamic cross-frequency coupling patterns during cognitive 
brain responses. Front Neurosci 9:350

Dubois B et al (2014) Advancing research diagnostic criteria for 
Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 
13(6):614–629

Galloway DA, Phillips AE, Owen DR, Moore CS (2019) Phagocyto-
sis in the brain: homeostasis and disease. Front Immunol 16:790

Goodman MS et al (2018) Theta-gamma coupling and working mem-
ory in alzheimer’s dementia and mild cognitive impairment. 
Front Aging Neurosci 10:101

Hahn E, Andel R (2011) Nonpharmacological therapies for behav-
ioral and cognitive symptoms of mild cognitive impairment. J 
Aging Health 23(8):1223–1245

Henao D, Navarrete M, Valderrama M (2020) Entrainment and 
synchronization of brain oscillations to auditory stimulations. 
Neurosci Res 156:271–278

Hojjati H et al (2019) An inexpensive and portable olfactometer for 
event-related potential experiments. In: IEEE Austria interna-
tional biomedical engineering conference Vienna

Iaccarino H et  al (2016) Gamma frequency entrainment 
attenuates amyloid load and modifies microglia. Nature 
540(7630):230–235

Jafari Z, Kolb BE, Mohajerani MH (2020a) Neural oscillations 
and brain stimulation in Alzheimer’s disease. Prog Neurobiol 
194:101878

Jafari Z, Kolb B, Mohajerani M (2020b) Neural oscillations and brain 
stimulation in Alzheimer’s disease. Prog Neurobiol 194:101878



2968	 Brain Structure and Function (2022) 227:2957–2969

1 3

Jebelli J, Su W, Hopkins S, Pocock J, Garden GA (2015) Glia: guard-
ians, gluttons, or guides for the maintenance of neuronal con-
nectivity?. Ann N Y Acad Sci 1351(1):1–10

Jia X, Smith M, Kohn A (2011) Stimulus selectivity and spatial 
coherence ofgamma components of the local field potential. J 
Neurosci 31(25):9390–9403

Jungwirth S et al (2012) The validity of amnestic MCI and non-
amnestic MCI at age 75 in the prediction of Alzheimer’s demen-
tia and vascular dementia. Int Psychogeriatr 24(6):959–966

Kay LM (2015) Olfactory system oscillations across phyla. Curr 
Opin Neurobiol 31:141–147

Kleen JK et al (2016) Oscillation phase locking and late erp compo-
nents of intracranial hippocampal recordings correlate to patient 
performance in a working memory task. Front Hum Neurosci 
10:287

Knyazeva MG et al (2008) Topography of EEG multivariate phase 
synchronization in early Alzheimer’s Disease. Neurobiol Aging 
37(7):1132–1144

Knyazeva MG, Carmeli C, Khadivi A (2012) Evolution of EEG 
synchronization in early Alzheimer’s disease. Neurobiol Aging 
34(3):694–703

Koenig T et al (2005) Decreased EEG synchronization in Alzhei-
mer’s disease and Mild cognitive impairment. Neurobiol Aging 
26(2):165–171

Kramer MA et al (2007) Synchronization measures of the scalp elec-
troencephalogram can discriminate healthy from alzheimer’s 
subjects. Int J Neural Syst 17(2):61–69

Le Van Quyen M et al (2001) Comparison of Hilbert transform and 
wavelet methods for the analysis of neuronal synchrony. J Neu-
rosci Methods 111(2):83–98

Lee D, Landreth G (2010) The role of microglia in amyloid clear-
ance from the AD brain. Basic Neurosci Genet Immunol 
117(8):949–960

Lega B, Burke J, Jacobs J, Kahana MJ (2014) Slow-theta-to-
gamma phase-amplitude coupling in human hippocampus sup-
ports the formation of new episodic memories. Cereb Cortex 
26(1):268–278

Liang Z, Bai Y, Ren Y, Li X (2016) Synchronization measures in eeg 
signals. Signal Process Neurosci 167:202

Liu Y et al (2021) Microglia elimination increases neural circuit 
connectivity and activity in adult mouse cortex. J Neurosci 
41(6):1274–1287

Mattsson N, Palmqvist.Stomrud SE et al (2019) Staging β-amyloid 
pathology with amyloid positron emission tomography. JAMA 
Neurol 76(11):1319–1329

Mesholam RI, Moberg PJ, Mahr RN, Doty RL (1998) Olfaction in 
neurodegenerative disease. A meta-analysis of olfactory func-
tioning in Alzheimer’s disease and Parkinson’s disease. Arch 
Neurol 55:84–90

Montaron M-F, Bouyer J-J, Rougeul A, Buser P (1982) Ventral 
mesencephalic tegmentum (VMT) controls electrocortical beta 
rhythms and associated attentive behaviour in the cat. Behav 
Brain Res 6(2):129–145

Morgan CD, Murphy C (2002) Olfactory event-related potentials in 
Alzheimer’s disease. J Int Neuropsychol Soc 8:753–763

Mouly AM, Sullivan R (2010) Memory and plasticity in the olfac-
tory system: from infancy to adulthood. In: Menini A (ed) The 
neurobiology of olfaction. CRC Press/Taylor & Francis, Boca 
Raton (FL). Chapter 15. Available from: https://​www.​ncbi.​nlm.​
nih.​gov/​books/​NBK55​967/

Munia TTK, Aviyente S (2019a) Comparison of wavelet and rid-
rihaczek based methods for phase-amplitude coupling. IEEE 
26:1897–1901

Munia TTK, Aviyente S (2019b) Time-frequency based phase-
amplitude coupling measure for neuronal oscillations. Sci Rep 
9(1):1–15

Park J et al (2012) Gamma oscillatory activity in relation to memory 
ability in older adults. Int J Psychophysiol 86(1):58–65

Pedregosa F et al (2011) Scikit-learn: machine learning in python. J 
Mach Learn Res 12:2825–2830

Petersen RC (2016) Mild cognitive impairment. Continuum (Min-
neap Minn) 404–418. https://​doi.​org/​10.​1212/​CON.​00000​00000​
000313

Poza J et al (2017) Phase-amplitude coupling analysis of spontaneous 
EEG activity in Alzheimer’s disease. IEEE. https://​doi.​org/​10.​
1109/​EMBC.​2017.​80373​05

Pusil S et al (2019) Hypersynchronization in mild cognitive impair-
ment: the “X” model. Brain 142(12):3936–3950

Quiñones-Camacho LE et al (2021) Dysfunction in interpersonal 
neural synchronization as a mechanism for social impairment in 
autism spectrum disorder. Autism Res 14(8):1585–1596

Radiske A et al (2020) Cross-frequency phase-amplitude coupling 
between hippocampal theta and gamma oscillations during 
recall destabilizes memory and renders it susceptible to recon-
solidation disruption. J Neurosci 40(33):6398–6408

Rallabandi VS, Tulpule K, Gattu M et al (2020) Automatic classi-
fication of cognitively normal, mild cognitive impairment and 
Alzheimer’s disease using structural MRI analysis. Info Med 
Unlocked 18:100305

Reinhart RM, Nguyen JA (2019) Working memory revived in older 
adults by synchronizing rhythmic brain circuits. Nat Neurosci 
22(5):820–827

Rubino D, Robbins KA, Hatsopoulos NG et al (2006) Proagating 
waves mediate information transfer in the motor cortex. Nat 
Neurosci 9:1549–1557

Sedghizadeh MJ et al (2020) Olfactory response as a marker for 
Alzheimer’s disease: evidence from perceptual and frontal lobe 
oscillation coherence deficit. PLoS ONE 15(12):e0243535

Silva M, Mercer P, Witt M, Pessoa R et al (2018) Olfactory dysfunc-
tion in alzheimer’s disease systematic review and meta-analysis. 
Dement Neuropsychol 12:123–132

Srinath R, Ray S (2014) Effect of amplitude correlations on coher-
ence in the local field potential. J Neurophysiol 112(4):741–751

Talamo BR et al (1989) Pathological changes in olfactory neurons in 
patients with Alzheimer’s disease. Nature 337:736–739

Tass PA, Rosenblum M, Weule J et al (1998) Detection of n:m phase 
locking from noisy data: application to magnetoencephalogra-
phy. Phys Rev Lett 81:3291

Timofeev I, Bazhenov M, Seigneur J et al (2012) Neuronal syn-
chronization and thalamocortical rhythms in sleep, wake and 
epilepsy. In: Noebels JL, Avoli M, Rogawski MA et al (eds) 
Jasper's basic mechanisms of the epilepsies [Internet], 4th edn. 
National Center for Biotechnology Information (US), Bethesda 
(MD). Available from: https://​www.​ncbi.​nlm.​nih.​gov/​books/​
NBK98​144/

Valencia AL, Froese T (2020) What binds us? inter-brain neural 
synchronization and its implications for theories of human con-
sciousness. Neurosci Conscious 2020(1):niaa010. https://​doi.​
org/​10.​1093/​nc/​niaa0​10

Wang Z et al (2019) Functional connectivity changes across the 
spectrum of subjective cognitive decline, amnestic mild cogni-
tive impairment and Alzheimer’s disease. Front Neuroinform. 
https://​doi.​org/​10.​3389/​fnagi.​2022.​879836

Ward LM (2003) Synchronous neural oscillations and cognitive pro-
cesses. Trends Cogn Sci 7(12):553–559

Womelsdorf T, Fries P (2007) The role of neuronal synchronization 
in selective attention. Curr Opin Neurobiol 17(2):154–160

Yener G, Güntekin B, Oniz A, Başar E (2007) Increased frontal 
phase-locking of event-related theta oscillations in Alzheimer 
patients treated with cholinesterase inhibitors. Int J Psycho-
physiol 64(1):46–52

https://www.ncbi.nlm.nih.gov/books/NBK55967/
https://www.ncbi.nlm.nih.gov/books/NBK55967/
https://doi.org/10.1212/CON.0000000000000313
https://doi.org/10.1212/CON.0000000000000313
https://doi.org/10.1109/EMBC.2017.8037305
https://doi.org/10.1109/EMBC.2017.8037305
https://www.ncbi.nlm.nih.gov/books/NBK98144/
https://www.ncbi.nlm.nih.gov/books/NBK98144/
https://doi.org/10.1093/nc/niaa010
https://doi.org/10.1093/nc/niaa010
https://doi.org/10.3389/fnagi.2022.879836


2969Brain Structure and Function (2022) 227:2957–2969	

1 3

Zhan Y et al (2014) Deficient neuron-microglia signaling results in 
impaired functional brain connectivity and social behavior. Nat 
Neurosci 17:400–406

Zhao J, Du Y-Z, Ding X-T et al (2020) Alteration of functional con-
nectivity in patients with Alzheimer’s disease revealed by rest-
ing-state functional magnetic resonance imaging. Neural Regen 
Res 15(12):285–292

Zou Y et al (2016) Olfactory dysfunction in Alzheimer’s disease. 
Neuropsychiatr Dis Treat 12:869

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.


	Network synchronization deficits caused by dementia and Alzheimer’s disease serve as topographical biomarkers: a pilot study
	Abstract
	Introduction
	Methods
	Participants
	Task description
	EEG data acquisition and preprocessing
	Biomarkers
	Percent phase locking
	Amplitude coherence
	Theta-gamma phase-amplitude coupling

	Classification
	Statistical analyses

	Results
	PPL is significantly higher in healthy participants compared to aMCI and AD patients
	Amplitude coherence is significantly lower in AD patients
	Significant difference is observed in theta-gamma phase-amplitude coupling between aMCI patients and both healthy and AD groups
	Healthy individuals, aMCI and AD patients can be classified with multiple binary classifiers

	Discussion and limitations
	PPL
	Amplitude coherence
	PAC
	Classification

	Acknowledgements 
	References




