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Abstract
Neurogranin (Nrgn) is a neural protein that is enriched in the cerebral cortex and is involved in synaptic plasticity via its 
interaction with calmodulin. Recently we reported its expression in the brain of the adult zebrafish (Alba-González et al. J 
Comp Neurol 530:1569–1587, 2022). In this study we analyze the development of Nrgn-like immunoreactivity (Nrgn-like-
ir) in the brain and sensory structures of zebrafish embryos and larvae, using whole mounts and sections. First Nrgn-like 
positive neurons appeared by 2 day post-fertilization (dpf) in restricted areas of the brain, mostly in the pallium, epiphysis 
and hindbrain. Nrgn-like populations increased noticeably by 3 dpf, reaching an adult-like pattern in 6 dpf. Most Nrgn-like 
positive neurons were observed in the olfactory organ, retina (most ganglion cells, some amacrine and bipolar cells), pal-
lium, lateral hypothalamus, thalamus, optic tectum, torus semicircularis, octavolateralis area, and viscerosensory column. 
Immunoreactivity was also observed in axonal tracts originating in Nrgn-like neuronal populations, namely, the projection 
of Nrgn-like immunopositive primary olfactory fibers to olfactory glomeruli, that of Nrgn-like positive pallial cells to the 
hypothalamus, the Nrgn-like-ir optic nerve to the pretectum and optic tectum, the Nrgn-like immunolabeled lateral hypo-
thalamus to the contralateral region via the horizontal commissure, the octavolateralis area to the midbrain via the lateral 
lemniscus, and the viscerosensory column to the dorsal isthmus via the secondary gustatory tract. The late expression of 
Nrgn in zebrafish neurons is probably related to functional maturation of higher brain centers, as reported in the mammalian 
telencephalon. The analysis of Nrgn expression in the zebrafish brain suggests that it may be a useful marker for specific 
neuronal circuitries.
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Abbreviations
ca  Anterior commissure
Ce  Cerebellum
cet  Cerebellar tract
DiL  Diffuse nucleus of the inferior hypothalamic lobe
DT  Dorsal thalamus
E  Epiphysis

fb  Forebrain bundle
GCL  Retinal ganglion cell layer
H  Hypothalamus
Hb  Habenulae
Hc  Caudal zone of periventricular hypothalamus
hc  Horizontal commissure
INL  Retinal inner nuclear layer
IO  Inferior olive
Ip  Interpeduncular nucleus
IPL  Retinal interplexiform layer
ll  Lateral lemniscus
M2  Posterior tubercular area
MO  Medulla oblongata
NAT  Anterior tuberal nucleus
nI  Nucleus isthmi
nIII  Oculomotor nucleus
nIV  Trochlear nucleus
nrm  Neuromasts
OB  Olfactory bulb
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oc  Optic chiasm
OE  Olfactory epithelium
OLA  Octavolateralis area
OT  Optic tectum
ot  Optic tract
Pa  Pallium
PG  Preglomerular complex
PGZ  Periventricular grey zone
Pit  Pituitary
PL  Posterior lobe
Po  Preoptic area
PSp  Parvocellular superficial pretectal nucleus
pT  Pretectum
pTh  Prethalamus
PTN  Posterior tuberal nucleus
RL  Rostrolateral nucleus
rvt  Rostral visceral tract (Yáñez et al. 2017)
S  Subpallium
SC  Spinal cord
sgt  Secondary gustatory tract
tb  Tectobulbar tract
Tel  Telencephalic lobes
Th  Thalamus
TLa  Torus lateralis
TSc  Torus semicircularis
VC  Viscerosensory column

Introduction

Neurogranin (Nrgn; also known as p17, RC3 and BICKS) 
is a small neural protein (Baudier et al. 1989, 1991; Wat-
son et al. 1990; Coggins et al. 1993; Huang et al. 1993) 
that seems to regulate synaptic plasticity through its inter-
action with calmodulin and other proteins (Li et al. 2020; 
Zhong and Gerges 2020). Initially purified from bovine 
forebrain (named p17; Baudier et al. 1989, 1991), it was 
also identified as a cortex-enriched mRNA in rat brain (rat 
cortex-enriched cDNA clone 3 or RC3; Watson et al. 1990; 
see also Deloulme et al. 1991). Together with neuromodu-
lin (GAP-43), PEP-19 (purkinje cell protein 4, pcp-4) and 
Igloo (Neel and Young, 1994; Gerendasy and Sutcliffe 1997; 
Gerendasy 1999), neurogranin is part of the so-called “cal-
pacitin” family.

Neurogranin seems to regulate synaptic plasticity by 
favoring long-term potentiation (LTP) over long-term 
depression (LTD) (Fedorov et al. 1995; Ramakers et al. 
1995, 1997; Chen et al. 1997; Pak et al. 2000; Huang et al. 
2004; Lee 2006; Zhabotinsky et al. 2006; Zhong et al. 2009, 
2011; Zhong and Gerges 2020). Neurogranin interacts with 
calmodulin through its highly conserved IQ domain (Baud-
ier et al. 1989, 1991; Deloulme et al. 1991; Prichard et al. 
1999), which also contains a specific site for protein kinase 

C (PKC) phosphorylation (Baudier et al. 1989, 1991; Wat-
son et al. 1990; Deloulme et al. 1991; Huang et al. 1993; 
Paudel et al. 1993; Gerendasy et al. 1994) and interaction 
with phosphatidic acid (Domínguez-González et al. 2007). 
When  Ca2+ levels reach a certain threshold inside the cell, 
Nrgn is phosphorylated and releases calmodulin, which can 
then interact with other proteins (Baudier et al. 1989, 1991; 
Watson et al. 1990; Deloulme et al. 1991; Gerendasy et al. 
1994; Gerendasy and Sutcliffe 1997; Lee 2006; Li et al. 
2020). The phosphorylated form of Nrgn may also have 
down-stream targets to be fully determined yet, such as the 
calmodulin dependent nitric oxide synthase (Martzen and 
Slemmon 1995) or G-protein coupled second messengers 
(Cohen et al. 1993; Watson et al. 1996).

Given Nrgn function in synaptogenesis and synaptic plas-
ticity, it is not surprising that it has been related to various 
human neurological diseases and disorders, which include 
Alzheimer disease (Chang et al. 1997; Hellwig et al. 2015; 
Bereczki et al. 2016; Casaletto et al. 2017; Lista and Hampel 
2017; Kvartsberg et al. 2019), Parkinson and Parkinsonian 
disorders (Koob et al. 2014; Selnes et al. 2017), schizophre-
nia (Giegling et al. 2010; Van Winkel et al. 2010; Gurung 
and Prata 2015; Wen et al. 2016; Zhang et al. 2019; Jin 
et al. 2019) and Huntington’s disease (DiFiglia 1990). In 
fact, Nrgn is used as a CSF biomarker for synapsis loss in 
Alzheimer disease (Lashley et al. 2018; Blennow and Zetter-
berg 2018a, b), and could be a marker for other diseases and 
pathological states (Yang et al. 2015; Bereczki et al. 2017). 
In addition, sleep deprivation has shown to decrease Nrgn 
levels (Rhyner et al. 1990; Neuner-Jehle et al. 1995), which 
again could indicate a role of Nrgn in synaptic plasticity.

It is also very likely that Nrgn is crucial in the develop-
ment of certain areas and circuits of the brain. Neurogranin 
genomic region contains regulatory elements for retinoic 
acid and steroid hormone receptors (Iñiguez et al. 1994; 
Enderlin et al. 1997; Husson et al. 2003, 2004; Féart et al. 
2005; Buaud et al. 2010), as well as binding domains for 
different transcription factors (Iñiguez et al. 1994; Martínez 
de Arrieta et al. 1997; Sato et al. 1995). Several studies have 
suggested a cell specific regulation of Nrgn expression by 
thyroid hormones (Muñoz et al. 1991; Iñiguez et al. 1992, 
1993, 1996), likely through thyroid responsive elements 
within the Nrgn first intron (Martínez de Arrieta et al. 1999; 
Morte et al. 1999).

Despite most likely having key roles during brain devel-
opment, only a couple of studies have analyzed Nrgn distri-
bution during development in the rat (Gerendasy et al. 1994; 
Álvarez-Bolado et al. 1996) and the mouse olfactory bulb 
(Gribaudo et al. 2012). In the adult, Nrgn brain distribution 
was studied in the rat (Represa et al. 1990; Watson et al. 
1990, 1992; Neuner-Jehle et al. 1996; Houben et al. 2000; 
Singec et al. 2003), mouse (Singec et al. 2003), three species 
of monkey (Cercopithecus aetiops by Singec et al. 2003, and 
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Macaca fascicularis and M. nemestrina by Guadaño-Ferraz 
et al. 2005), adult zebra finches (Clayton et al. 2009) and 
recently in the adult zebrafish (Alba-González et al. 2022). 
In adult zebrafish, we previously showed by Western blot of 
brain protein extracts the presence of three Nrgn-immuno-
reactive peptide bands with MW corresponding to those of 
peptides in mouse brain extracts, validating this antibody for 
zebrafish brain studies (Alba-González et al. 2022). These 
three proteins are coded in zebrafish by two paralog neu-
rogranin genes, nrgna and nrgnb, but distinction of cells 
expressing one or other of these was not studied and thus 
the immunoreactivity was named as neurogranin-like. The 
study of Nrgn-like expression along development (present 
results) in comparison with those of the adult stage (Alba-
González et al. 2022) provides new neuroanatomical data for 
a more precise topological location of nuclei and tracts in 
early postembryonic stages in zebrafish. In addition, given 
the growing use of zebrafish as a model in neurobiology 
and the availability of tools in this species (Key and Devine 
2003; Friedrich et al. 2010; Wyatt et al. 2015; Adams and 
Kafaligonul 2018; Vanwalleghem et al. 2018; Bao et al. 
2019; Zakowski 2020), we believe our study also sets the 
basis for future work using zebrafish to tackle the Nrgn roles 
in health and disease.

Materials and methods

Animal maintenance and embryo collection

Wild-type zebrafish adults (Danio rerio) were kept in 
aquaria under standard conditions of 14/10 h light/dark 
periods, 28.0 ± 1.0  °C, pH 7.0 ± 1.0. Water quality was 
monitored weekly and kept within recommended param-
eters (0–50 mg/L nitrate, < 1 mg/L nitrite, and < 0.2 mg/L 
ammonium) (see Aleström et al. 2019). Adults were fed with 
a mixture of decapsuled Artemia salina and commercial dry 
flake food twice a day.

For obtaining embryos and larvae, adults were transferred 
to mating tanks in a 2:1 ratio (female: male). The next morn-
ing, fertilized eggs were collected in Petri dishes and main-
tained at 28.0 ± 1.0 °C in an incubator until their use.

Neurogranin immunocytochemistry

Samples analyzed

Various embryonic and larval stages were analyzed, these 
included 1 day post-fertilization (dpf), 2 dpf, 3 dpf, 5 dpf, 
5.5 dpf, 6 dpf, 16 dpf [L1 stage following Singleman and 
Holtzman 2014] and 21 dpf [advanced L1, Singleman and 
Holtzman 2014] stages.

Embryos and larvae were euthanized by tricaine meth-
anesulfonate (MS222; Sigma, St. Louis, MO) overdose and 
fixed by immersion in 4% paraformaldehyde (PFA) in 0.1 M 
pH 7.4 phosphate buffer (PB) at room temperature. After 
being rinsed in saline PB (PBS), fish were transferred to PBS 
and kept at 4 °C until use.

Whole‑mount immunocytochemistry

The protocol used for whole-mount immunocytochemistry 
in embryos and larvae was that described by Turner et al. 
(2014). In brief, embryos and larvae were dehydrated in 
50% methanol and stored in 100% methanol at – 20 °C for 
at least 30 min. Samples were then rehydrated, washed 3 
times (10 min each) in 0.5% Triton-X-100 in 0.1 M PBS 
(PBST; pH 7.4) and permeabilized with Proteinase K 
(Sigma-Aldrich, P2308). Then, to prevent non-specific 
antibody binding sites, fish were incubated with a blocking 
solution of 10% normal goat serum (NGS; Sigma Aldrich, 
G6767-19B409) in 0.5% PBST with 1% dimethyl sulfoxide 
(DMSO) for 1 h, and then with the primary antibodies solu-
tion (Nrgn: Rabbit Anti-Neurogranin Polyclonal Antibody; 
Chemicon, AB5620, Lot #3,091,673, 1:500 dilution; SV2: 
Mouse Anti-synaptic vesicle protein 2; DSHB AB2315387, 
1:250 dilution) overnight at 4 °C. Then, fish were washed in 
PBST (4 times, 30 min each) and incubated with appropriate 
secondary antibodies (Goat Anti Rabbit IgG-Alexa Fluor 
488, Invitrogen, A11008 for Nrgn immunohistochemistry 
and Goat Anti Rabbit IgG-Alexa Fluor 568, Invitrogen, 
A1104 for SV2; 1:500 dilutions) at room temperature for 
1 h. After two washes in PBST (30 min each), fish immu-
noreacted against Nrgn antibody were counterstained with 
Sytox Orange Nucleic Acid Stain (Invitrogen, S11368, 1:104 
dilution) for 7 min at room temperature. After two washes in 
PBST (30 min each), fish were maintained in 50% glycerol 
in PB and stored at 4 °C. For imaging, embryos and larvae 
were transferred to 80% glycerol (30 min) and mounted in 
1% low melting point agarose in 80% glycerol.

Immunocytochemistry in cryosections

Whole larvae (6 dpf) were kept on 30% sucrose in PB 
overnight at 4 °C. The next day, larvae were embedded 
in Tissue-Tek mounted media (Cell Path, KMA-0100-
00A), frozen in methylbutane cooled in liquid nitrogen. 
Next, transverse sections (12–14 µm thick) were obtained 
using a cryostat (MICROM; HM 500 M) and collected in 
gelatin-coated slides. To remove autofluorescence, sec-
tions were incubated in 0.2% sodium borohydride in PBS 
(30 min). Sections were preincubated with normal goat 
serum (1 h) and then incubated with the primary anti-
body solution as indicated above for whole-mount immu-
nocytochemistry (4 °C; overnight). Then, sections were 
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washed four times in PBST (15 min each) and incubated 
with Goat Anti-Rabbit IgG coupled to Alexa Fluor 488 
(Sigma Aldrich, A11008, 1:500 dilution) at room tem-
perature for 1 h. After two washes with PBST (10 min 
each), slides were mounted using 50% glycerol in PB and 
maintained at 4 °C in darkness until observation.

Imaging

Embryos and larvae were imaged using a laser scanning 
confocal microscope Nikon A1R equipped with Nikon 
Plan Fluor 10x (0.30 NA) and 20x (0.50 NA) objectives. 
An argon ion laser (488 nm) and a diode laser (561 nm) 
provided the excitation light for the fluorophores. Emission 
light was sequentially acquired for each channel. Confocal 
z-stacks were processed and analyzed using Fiji software 
(Schindelin et al. 2012). Red channel is shown as magenta in 
the figures. Sections of zebrafish larvae (6 dpf) were imaged 
using an Epifluorescence microscope (Nikon Eclipse 90i) 
coupled to an Olympus DP71 digital camera.

Results

Neurogranin distribution in the embryo and larva

We investigated Nrgn-like immunoreactive (Nrgn-like-ir) 
structures at various stages of embryonic (1–3 dpf) and 
postembryonic/ larval (5, 6, 16 and 21 dpf) development 
of zebrafish.

Neurogranin expression in the embryo

No Nrgn immunoreactivity was observed in the central nerv-
ous system at 1 dpf embryos. The first Nrgn-like-ir structures 
appeared at 2 dpf, showing the first immunoreactive cell 
bodies in the pallium, the epiphyseal cluster (not shown) 
and the hypophysis (Fig. 1a, a’). A few sparsely distributed 
Nrgn-like-ir cell bodies were also observed in the preoptic 
region close to the anterior commissure. In addition, in the 
prosencephalon, immunoreactive fibers were observed in 
the olfactory bulb (glomeruli) and the anterior commissure. 
Two small compact groups of Nrgn-like-ir cell bodies were 
observed in the ventral region (basal plate) of the mesen-
cephalon and the isthmus, which could represent the IIIrd 
(oculomotor) and IVth (trochlear) motor nuclei, respectively 
(see discussion). In addition, many Nrgn-like-ir cell bodies 
and fibers were located along the medulla oblongata and 
spinal cord, with some hindbrain neurons forming discrete 
groups in a segmental pattern (Fig. 1a, a’).

By 3 dpf, in addition to Nrgn-like-ir fibers in the olfactory 
glomeruli, we observed a few large Nrgn-like-ir cell bodies 
in the olfactory bulbs. We also observed strong immunoreac-
tivity in cell bodies in the pallium, subpallium and preoptic 
region close to the anterior commissure (Fig. 1b, b’). More 
caudally, in addition to the expression in epiphyseal and 
hypophyseal cell bodies, Nrgn-like expression was also seen 
in the tubercular area (M2 of Mueller and Wullimann 2003) 
and faint Nrgn-like expression in cell bodies of the thala-
mus and optic tectum. Although no new immunoreactive 
cell groups were seen in the mesencephalic tegmentum and 
isthmus, an increasing number of Nrgn-like-ir cell bodies 
were observed in the rhombencephalic tegmentum (Fig. 1b, 

Fig. 1  Side view of confocal 
projections from 2 (a, a’) and 
3 (b, b’) dpf zebrafish embryos 
showing Neurogranin-like 
(Nrgn-like) immunoreaction 
(in green) and counterstained 
with Sytox Orange Nucleic 
Acid (in magenta). Arrowheads 
point to mesencephalic and 
rhombencephalic positive cell 
groups. A faintly labeled cell 
was also pointed in the optic 
tectum (arrow). Rostral is to the 
left and dorsal to the top. For 
abbreviations, see the list. Scale 
bars, 100 µm
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b’). Strongly immunostained fibers were also seen cours-
ing the olfactory tract and the anterior commissure, while 
faintly labeled fibers could be observed in the supraoptic 
tract/ forebrain bundle (see Wilson et al. 1990; Chitnis and 
Kuwada 1990), the optic tract and the ventral longitudinal 
tract through the medulla and rostral spinal cord (Fig. 1b, 
b’). Only scarce tectal cell bodies showed faint Nrgn-like 
immunoreactivity.

Neurogranin expression in larvae

By 5 dpf, in addition to the Nrgn-like-ir structures described 
previously in embryos, Nrgn-like-ir cell bodies appeared in 
the tuberal area, hypothalamus and in the cerebellum, the 
later likely representing Purkinje cells of the cerebellar val-
vula. A significant increase in the number of Nrgn-like-ir 

cell bodies was noticed in the optic tectum, in the pallium 
and in M2 (Fig. 2a, a’, b, b’).

At 6 dpf, Nrgn-like immunoreactivity was studied both 
in whole-mount brain and in transverse sections from non-
dissected larvae for better neuroanatomical characterization. 
We observed Nrgn-like immunoreactivity in the central 
nervous system and sensory organs. Well-developed Nrgn-
like-ir cell bodies were observed in developing sensory 
organs as the retina, the olfactory epithelium, cranial neuro-
masts (Fig. 3a, c, e) and inner ear (hair cells; not shown). In 
the retina, Nrgn-like immunoreactivity was noticed in sev-
eral populations, namely, some bipolar and amacrine cells 
and in most, if not all, ganglion cells. Nrgn-like-ir processes 
of these cells were also observed forming organized strata in 
the inner nuclear layer (INL) and coursing in the optic nerve 
and tract (Figs. 2c, c’, 3a). In the brain, we could observe 
a number of Nrgn-like-ir fibers in the olfactory glomeruli 

Fig. 2  Side (a, a’, c, c’) dorsal 
(b, b’) and ventral (d, d’) confo-
cal projections of zebrafish 
brains from 5 (a), 5.5 (b) and 
6 (c, d) dpf larvae showing 
Neurogranin-like (Nrgn) immu-
noreaction of zebrafish brain (in 
green) and counterstained with 
Sytox Orange Nucleic Acid (in 
magenta). Rostral is to the left. 
For abbreviations, see the list. 
Scale bars, 100 µm
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coming from Nrgn-like-ir receptor cells in the olfactory 
rosette. Double immunostaining against Nrgn and the syn-
aptic marker SV2 confirmed that all olfactory glomeruli 
received Nrgn-like-ir fibers (not shown). Fibers both in the 
olfactory nerve and bulb were strongly labeled (Figs. 2c, 
c’, 3b). In the telencephalic lobes, we observed increased 
numbers of intensely labeled Nrgn-like-ir cell bodies in the 

pallium, the precommissural subpallium and the preoptic 
area (Fig. 3c–f). Periventricular cells of the preoptic area 
send projections to the ventrolateral margin and course cau-
dally (Fig. 3e). Caudal to the anterior commissure, a large 
group of intensely immunolabeled cell bodies was also 
observed. Nrgn-like-ir cell bodies were also observed in the 
epiphysis, dorsal thalamus, posterior tubercle (anterior and 

Fig. 3  a–n Photomicrographs 
of transverse sections showing 
Nrgn-like immunoreaction (in 
green) in the retina (a), brain 
(b–m) and spinal cord (n) of a 
6 dpf zebrafish larvae. Section 
levels are indicated in the lon-
gitudinal schema of the brain at 
the bottom. In b, outlined stars 
show the olfactory glomeruli. 
Note in j the slightly mismatch 
between both sides of the brain 
at mesencephalic level. Arrows 
in k point to the CSF-contacting 
cell processes directed towards 
the posterior recess of the hypo-
thalamus. Asterisk: ventricle. 
For abbreviations, see the list. 
Scale bars, 200 µm
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posterior tuberal nuclei), torus lateralis, the inferior hypotha-
lamic lobes, pituitary (probably adenohypophysis) and, more 
faintly stained, in the preglomerular complex and the caudal 
hypothalamic lobes (Figs. 2c, c’, 3d–k). Faintly immunola-
beled cell bodies were also seen in the posterior lobe (Hc), 
showing CSF-contacting morphology around the posterior 
recess (Fig. 3k). Compared with previous stages, the number 
of Nrgn-like-ir fibers increased both in the posterior tubercle 
and hypothalamus. As in previous stages, Nrgn-like-ir fibers 
were observed in the optic tract, coursing to a conspicuous 
neuropil area in the pretectum (likely to be the parvocel-
lular superficial pretectal nucleus) and also entering the 
optic tectum (Figs. 2c, c’, 3f). In the alar mesencephalon, 
the number of Nrgn-like-ir cell bodies and fibers increased 
in the optic tectum. Some Nrgn-like-ir cell bodies, together 
with fibers likely originated from the lateral lemniscus, 
were also observed in the torus semicircularis (Fig. 3h–j). 
In the mesencephalic tegmentum, Nrgn-like-ir cell bodies 
were observed medially close to the ventricle (Fig. 3j). In 
the rostral rhombencephalon, immunoreactive cell bodies 
were observed in the cerebellar valvula (Fig. 3h–k), and in 
the medial and lateral regions of the isthmic tegmentum, 
including the interpeduncular nucleus (Fig. 3k). Caudally, 
a number of Nrgn-like-ir cell bodies were observed in the 
octavolateralis area, the primary viscerosensory column, 
the reticular formation and the inferior olive (Fig. 3l–m). 
Some Nrgn-like-ir cell bodies were also observed in the spi-
nal cord (Fig. 3n). In addition to the labeled fibers and cell 
bodies described above, we observed Nrgn-like-ir fibers in 
several tracts and commissures: in the anterior and horizon-
tal commissures and in the olfactory, telencephalic, optic, 
tectobulbar, cerebellar and secondary gustatory/visceral 
tracts (Fig. 2c, c’), most of them already present in previous 
stages (Figs. 2, 3).

Finally, we analyzed expression by 16 and 21 dpf in 
whole-mount (Fig. 4a-a’, b-b’). We observed little qualita-
tive differences in Nrgn-like immunoreactivity compared to 

6 dpf larvae. Noteworthy, the region of the pallium with 
cells with intense Nrgn-like expression was broader than in 
previous stages.

Discussion

This study reports the appearance and changes in distribu-
tion of Nrgn-like immunoreactivity in the brain and sensory 
organs of zebrafish during development. Nrgn-like immuno-
reactivity is late appearing, since its expression starts by 2 
dpf in very restricted areas of the brain but increases notice-
ably from 3 to 6 dpf. By 5 dpf-6 dpf, the regional expression 
of Nrgn-like peptides resembles that observed in the adult 
(Alba-González et al. 2022). We observed expression in cell 
bodies and fibers of specific regions of the forebrain, mid-
brain and hindbrain. These results expand considerably the 
neuronal distribution reported previously by nrgna mRNA 
in situ hybridization (Zada et al. 2014). Based on the loca-
tion of the Nrgn-like-ir cells, away from the ventricular zone, 
it seems probable that they correspond to differentiated neu-
rons, which would agree with observations in the cerebral 
cortex of rat (Represa et al. 1990; Houben et al. 2000).

Nrgn shares important biochemical similarities with other 
members of the calpacitin family, such as neuromodulin 
(Coggins et al. 1993; Gerendasy and Sutcliffe 1997) and 
pcp-4 (Mione et al. 2006). They share an IQ domain and, at 
least in mammals, they are substrates for PKC phosphoryla-
tion (Baudier et al. 1991; Deloulme et al. 1991; Watson et al. 
1992; Huang et al. 2000; Kumar et al. 2013, Alba-González 
et al. 2022). While Nrgn seems to be mainly postsynaptic in 
mammals (Represa et al. 1990; Coggins et al. 1993; Watson 
et al. 1994; Neuner-Jehle et al. 1996), neuromodulin seems 
to be presynaptic and located in axons (Snipes et al. 1987; 
McGuire et al. 1988; Gerendasy and Sutcliffe 1997). It is 
noteworthy that Nrgn appears to be a marker for specific 
cell populations, allowing to track these populations during 

Fig. 4  Side view of confocal 
projections from 16 (a, a’) and 
21 (b, b’) dpf zebrafish brains 
showing Nrgn-like immunore-
action (in green) and coun-
terstained with Sytox Orange 
Nucleic Acid (in magenta). 
Rostral is to the left and dorsal 
to the top. For abbreviations, 
see the list. Scale bars, 100 µm
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development (present results), as it is also the case for pcp-4, 
another member of the calpacitin family (Mione et al. 2006). 
We have observed Nrgn-like expression throughout the brain 
and sensory organs, which suggests that in zebrafish Nrgn-
like peptides could be both pre- and post-synaptic, as shown 
in the rat spinal cord (Houben et al. 2000). It would be nec-
essary a detailed study of the different Nrgn-like peptides to 
confirm how they relate to the synapse and their relation to 
neuromodulin. Below, we will discuss the main findings in 
specific brain and sensory systems populations.

Olfactory system. Present results reveal Nrgn-like expres-
sion in cells of the olfactory epithelium, as well as in the 
olfactory nerve and terminal fields (glomeruli) in the olfac-
tory bulb, i.e., in the primary olfactory neurons. However, 
the neurons of the olfactory bulb (mitral cells, granule 
cells), as well as the olfactory tracts, appear to be negative 
in embryos/larvae, suggesting that Nrgn is presynaptic in 
zebrafish primary olfactory fibers. Some Nrgn-like-ir olfac-
tory bulb neurons (likely to represent granule cells) were 
also observed in adults (Alba-González et al. 2022). Results 
in zebrafish larvae differ from those reported by Gribaudo 
et al. (2012) in the olfactory bulbs of developing mouse, 
which lack Nrgn-like immunoreactivity in olfactory fib-
ers, but prominently express it in tufted cells and in granule 
cells. This suggests that Nrgn is involved in different tasks 
in olfactory circuits of zebrafish and mouse.

Telencephalon. An interesting result is the strong Nrgn-
like expression in cell bodies of the primordial pallium of 
zebrafish larvae, which agrees with results reported with 
nrgna in situ hybridization (Zada et al. 2014). Our results 
of Nrgn-like expression in larval pallium correspond with 
that observed in some pallium regions of the adult (Alba-
González et al. 2022). The larval pallium appears to origi-
nate a conspicuous Nrgn-like-ir forebrain tract that is recog-
nizable in whole mount stained brains extending toward the 
hypothalamus–posterior tubercle. In addition, the pallium 
originates Nrgn-like-ir fibers coursing in the anterior com-
missure. These projections correspond with those reported in 
detail with DiI tracing from some pallial regions of the adult 
zebrafish (Yáñez et al. 2022). However, it was not possible 
to identify the different adult pallial regions in larvae, which 
precludes more detailed comparisons. The strong expression 
of Nrgn found in projection neurons of the zebrafish pal-
lium reminds the distribution of Nrgn in principle neurons of 
various pallial areas of rodents (Álvarez-Bolado et al. 1996), 
although projection neurons appear morphologically much 
more specialized in rodents. The pallium of two oscine birds 
also expresses high Nrgn mRNA levels (Clayton et al. 2009).

The development of the Nrgn-like expression in zebrafish 
telencephalon shows some differences with that reported in 
the developing rat (Álvarez-Bolado et al. 1996). In the rat 
telencephalon, Nrgn expression starts in the primordium of 
the amygdala and the piriform cortex at embryonic stage 

18, increasing the areas of expression on postnatal week 1, 
when Nrgn immunoreactivity appears in olfactory cortex, 
isocortex, subiculum, hippocampus, striatum (caudoputa-
men) and parts of the globus pallidus and septum (Álva-
rez-Bolado et al. 1996). In the zebrafish nervous system, 
Nrgn-like expression is observed from 2 dpf, before the ani-
mal hatched from the chorion and is capable of independ-
ent feeding (Kimmel et al. 1995; Strähle et al. 2012; Filosa 
et al. 2016). At this stage, we observe Nrgn-like expression 
in cell bodies of the pallium, which is similar the situation 
in the rat.

Visual system. In the retina of developing zebrafish, 
Nrgn-like is expressed largely in ganglion cells but also in 
numerous amacrine cells and some bipolar cells. Both inner 
and outer plexiform layers show Nrgn-like immunoreactiv-
ity, which is prominent in sublayers of the inner plexiform 
layer, unlike its poor expression in adults (Alba-González 
et al. 2022). As far as we are aware, there are no reports 
of distribution or development of Nrgn expression in the 
retina of other vertebrates. The strong Nrgn-like expression 
in retinal ganglion cells during development is also observed 
in their axons. In toto staining reveals Nrgn-like positivity 
in the optic nerve and optic tract since 3 dpf, as well as 
conspicuous immunoreactivity in two visual afferent fields, 
that is, AF7 (corresponding to the adult parvocellular super-
ficial pretectal nucleus, PSp, located in p1) and the optic 
tectum. Other afferent fields of the optic pathway were less 
easily recognizable (for a description of the different AFs in 
larval zebrafish see Robles et al. 2014, and Baier and Wul-
limann, 2021). As reported in adults, the AF7 neuropil has 
no associated Nrgn-like-ir cells, nor the conspicuous ven-
tral commissure linking the PSp of both sides (Castro et al. 
2006a; Yáñez et al. 2018) was labeled. The optic tectum, as 
in the adult zebrafish (Alba-González et al. 2022), showed 
abundant Nrgn-like-ir cells, most showing their somas in the 
thick periventricular cell layer. Whereas the zebrafish visual 
system shows abundant expression of Nrgn-like early on in 
development, suggesting it is an important peptide for this 
system, the lack of data on this system in other vertebrates 
precludes further comparison.

Diencephalon and segmental distribution of Nrgn. The 
diencephalon of vertebrates, including zebrafish, consists 
of three prosomeres (p1–p3), from caudal to rostral, with 
several alar and basal plate derivatives (Puelles and Ruben-
stein 1993; Wullimann and Puelles 1999; Hauptmann et al. 
2002; Mueller, 2012). Convenient sections as that presented 
in Fig. 3f, show that the three prosomeres are different with 
respect to Nrgn-like expression in neuronal populations. The 
most conspicuous Nrgn-like expressing population corre-
sponds to that of the thalamus (alar region of p2), whereas 
alar p3 (prethalamus) and p1 (pretectum) lack similar popu-
lations. The neurons of the zebrafish thalamus are mostly 
glutamatergic and at least some nuclei project to the pallium 
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(Mueller 2012; Yáñez et al. 2022). Unlike the thalamus, 
the most dorsal region of p2 (the habenula) neither shows 
Nrgn-like-ir neurons, nor the habenular commissure shows 
Nrgn-like-ir fibers. The alar region of p1 (pretectum) mostly 
consists of GABAergic populations (Mueller et al. 2006; 
Mueller 2012). Pretectal neurons do not express Nrgn, nor 
Nrgn-like-ir fibers are observed in the posterior commissure, 
the most conspicuous of the brain dorsal commissures. The 
Nrgn-like-ir cells of the epiphysis probably are not projec-
tion neurons, because fibers of the epiphysis tract were not 
labeled. This thin but conspicuous tract appears very early 
in zebrafish development (Wilson et al. 1990).

Hypothalamus. The hypothalamus is considered the ven-
tral region of the secondary prosencephalon in neuromeric 
models of the brain (Puelles and Rubenstein 1993; Affaticati 
et al. 2015). In zebrafish and other teleosts, its caudal (ven-
tral) region evaginates to form lateral and posterior recesses 
of the infundibulum around which become organized the 
hypothalamic lobes (inferior and posterior), an impar saccus 
vasculosus (in some teleosts but not in zebrafish), as well as 
outstanding groups of neurons, some protruding laterally 
or caudally (preglomerular complex, torus lateralis, diffuse 
nucleus, mammillary nucleus). The origin of these neuronal 
populations of teleosts is complex, because they originate 
from the primordial hypothalamic walls and from cells 
migrating tangentially from posterior tubercular/midbrain 
regions (Bergqvist 1932; Corujo and Anadón 1990; Bloch 
et al. 2019, 2020). The origin of some migrating populations 
was recently traced in transgenic zebrafish to the midbrain 
(Bloch et al. 2019, 2020), and these migrating cells travel 
during several days before reaching its hypothalamic loca-
tion. Present results reveal that the conspicuous hypotha-
lamic populations of Nrgn-like-ir cells at 5–6 dpf appeared 
by 3 dpf, i.e., before the arrival to the torus lateralis and 
hypothalamic lobes of the midbrain migrating population. 
Moreover, these Nrgn-like-ir populations of the torus later-
alis and diffuse nucleus give rise to a conspicuous Nrgn-like-
ir tract (tract of the horizontal commissure) that decussates 
ventrally and caudally to the optic chiasm in the horizontal 
commissure, which is characteristic of teleost fishes. Instead, 
the preglomerular population originated in the midbrain pro-
jects ipsilaterally to the pallium without forming any com-
missure (see Fig. 2c, d in Bloch et al. 2020). This suggests 
that these Nrgn-like-ir embryonic populations originate from 
the hypothalamic primordia, mixing with those tangentially 
migrating from the midbrain demonstrated by Bloch et al. 
(2019, 2020).

Hindbrain. The expression of Nrgn-like immunoreactiv-
ity during hindbrain development shows a segmental pattern 
of the first positive neurons. This is clearly appreciable in 2 
dpf and 3 dpf embryos, where small groups of Nrgn-like-ir 
cell bodies can be ascribed to rhombomeres 2 to 6. Seg-
mental patterns of early hindbrain populations have been 

reported for reticulospinal and motoneurons (Metcalfe et al. 
1986; Hanneman et al. 1988), which develop much earlier 
than the Nrgn-like-ir cells. In 5 dpf and 6 dpf larvae the 
number of Nrgn-like-ir cells increased considerably, and the 
segmental groups have coalesced longitudinally forming two 
partially overlapped columns in the dorsolateral hindbrain. 
Careful observation of these columns and comparison with 
topographical expression of key markers in 6 dpf brain 
reveals that Phoxb2 and VGlut expressions in the zebrafish 
brain browser application (http:// vis. arc. vt. edu/ proje cts/ zbb/) 
(Marquart et al. 2015) allows to easily distinguish between 
the octavolateralis column (OLA) (VGlut + , Phoxb2-) and 
the viscerosensory column (VGlut-, Phoxb2 +) at dorsal 
hindbrain regions. The dorsolateral Nrgn-like-ir popula-
tion corresponding to the viscerosensory column extends 
between r4 (rhombomere 4) and the obex (caudal hindbrain, 
where both sides fuse) and that of the octavolateralis column 
(OLA) extends between r2 and r4–r5. In its rostral level the 
viscerosensory column becomes thinner and shifts to locate 
medial to the OLA. The Nrgn-like-ir viscerosensory column 
coincides with a cellular band that expresses Phoxb2 (Cop-
pola et al. 2012), whereas this marker is not expressed in the 
OLA. In adult zebrafish, the viscerosensory column shows 
three lobes (facial, glossopharyngeal and vagal sensory 
lobes), two of them conspicuous (Wullimann et al. 1996; 
Castro et al. 2006b; Yáñez et al. 2017). In larvae, a con-
spicuous Nrgn-like-ir ipsilateral ascending tract ending in 
the cerebellar region can be identified as the secondary gus-
tatory tract projecting to the secondary gustatory nucleus, 
as reported with tract tracing in adults (Yáñez et al. 2017), 
although the cells of this nucleus were Nrgn negative.

As indicated above, combination of Phoxb2 and VGlut 
expressions in the Z Brain Browser application (http:// vis. 
arc. vt. edu/ proje cts/ zbb/) (Marquart et al. 2015) can be used 
for easily distinguishing between the Nrgn-like-ir OLA 
(VGlut + , Phoxb2-) and the Nrgn-like-ir viscerosensory 
column (VGlut- and Phoxb2 +) at dorsal hindbrain regions. 
The location of the hindbrain area responsible to auditory 
stimuli in 6 dpf larvae (Constantin et al. 2020) appears to 
match with that the OLA reported here. In the case of the 
OLA, in transverse hindbrain sections it can be appreciated 
how the Nrgn-like-ir OLA gives rise to abundant arcuate fib-
ers crossing the midline and coursing in the lateral lemniscus 
toward the midbrain (maybe torus semicircularis), i.e., in the 
reported main efferent pathway of the OLA (Vanwalleghem 
et al. 2017; Constantin et al. 2020). With regards the devel-
oping cerebellum, Nrgn-like expression is low in most cere-
bellar regions in contrast with that observed in the OLA. The 
zebrafish cerebellum has been molecularly characterized in 
adults and development by Bae et al. (2009). As in the case 
of the viscerosensory column, we have not found reports of 
Nrgn distribution in these hindbrain regions of other verte-
brates, which precludes comparative comparisons.

http://vis.arc.vt.edu/projects/zbb/
http://vis.arc.vt.edu/projects/zbb/
http://vis.arc.vt.edu/projects/zbb/
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Possible roles of Nrgn during brain development. The 
fact that Nrgn is expressed in the brain from early stages in 
zebrafish (present results) and rat (Gerendasy et al. 1994; 
Álvarez-Bolado et al. 1996) suggests it plays some roles dur-
ing development, maybe in axonal growth, plasticity and 
synaptogenesis. In zebrafish, pathfinding and synaptogenesis 
has already started by 2 dpf, and thus Nrgn could have a role 
in these processes under regulation by thyroid hormones and 
other signals (Muñoz et al. 1991; Iñiguez et al. 1992, 1993, 
1994, 1996; Enderlin et al. 1997; Husson et al. 2003, 2004; 
Féart et al. 2005; Buaud et al. 2010). In fact, zebrafish larva 
shows a 46% increase in nrgna transcript after T3 thyroid 
hormone administration (Zada et al. 2014), which points 
to thyroid regulation of Nrgn expression during develop-
ment, as shown in mammals (Iñiguez et al. 1992, 1996; 
Piosik et al. 1995; Martínez de Arrieta et al. 1999; Dowling 
and Zoeller 2000; Zoeller et al. 2005; Stepien and Huttner 
2019). In the rat brain, a peak of Nrgn expression has been 
described between postnatal days 10 and 20 (Represa et al. 
1990; Watson et al. 1990; Álvarez-Bolado et al, 1996), 
which may be coupled with a peak in synaptogenesis. Our 
data does not allow analyzing differences in expression 
levels between different stages, as levels of confocal signal 
(gain) was adjusted individually for every imaged specimen, 
so levels of expression between stages are not comparable. 
We did observe a sustained expression of Nrgn-like through-
out development, without transient expression in any area 
or cell type, i.e., once Nrgn-like expression is observed in 
one area it is maintained in development and in the adult 
(Alba-González et al. 2022). This is similar to results in the 
mammalian brain (Represa et al. 1990; Watson et al. 1990; 
Álvarez-Bolado et al. 1996; Guadaño-Ferraz et al. 2005), 
because loss of expression at a given area or cell type has 
only been reported in the mouse olfactory bulb (Gribaudo 
et al. 2012).

Comparison with the expression of pcp4a in zebrafish. It 
is worth noting that our results show that Nrgn is a marker 
for specific neuronal populations, allowing tracing these 
populations during development. This is also the case for 
pcp4a, another member of the calpacitin family studied 
by in situ hybridization in developing and adult zebrafish 
(Mione et al. 2006). Some parallelisms can be noted in 
the distribution of pcp4a mRNA (Mione et al. 2006) and 
Nrgn-like peptides (present results). In both cases, first 
expression is observed in differentiating neurons, and not 
in proliferating zones. Some neuronal populations show 
expression of both pcp4a and Nrgn in development, but 
there are others expressing one or the other, suggesting 
only partial codistribution. Among populations expressing 
both substances, the most outstanding are the retinal gan-
glion cells. Other areas showing possible colocalization or 
codistribution of both pcp4a and Nrgn are the pallium, the 
dorsal thalamus, the optic tectum, the torus semicircularis, 

cerebellum and the viscerosensory area (Mione et al. 2006; 
present results). The dorsal habenula is pcp4a positive but 
Nrgn negative, and the same appears to occur with the pre-
glomerular complex, pseudoglomerular nucleus, mammil-
lary bodies and reticulospinal neurons (Mione et al. 2006; 
present results). Among the Nrgn-like-ir populations that 
are largely pcp4a negative during development, it is worth 
mentioning the amacrine and bipolar cells of the retina, 
and the inferior lobes. Thus, although both Nrgn and pcp4a 
interact with calmodulin in neurons, facilitating adapta-
tion, they appear to be selectively used by some centers. 
Further comparison of pcp4a and Nrgn-like expression in 
developing zebrafish is precluded because of the different 
nature of the methods used by Mione et al. (2006) and 
in the present study. For instance, whereas Nrgn immu-
nohistochemistry allowed studying tracts and neuropil 
regions, the techniques applied in Mione et al. (2006) did 
not allow showing these important anatomical features. 
Further studies should address in detail possible relations 
between pcp4a and Nrgn, as well as other calpacitins, in 
developing zebrafish neurons.

Final consideration. There are many aspects of Nrgn 
function in the adult brain and during development yet to 
be clarified, research in which zebrafish will most certainly 
contribute, given the number of tools available to work in 
these species. Study of Nrgn function has attracted little 
attention so far, but this may change soon, as a Nrgn mutant 
has been generated as part of a project investigating the phe-
notype of zebrafish carrying mutations in human schizo-
phrenia-associated genes (Thyme et al. 2019). This project 
highlights the potential implication of Nrgn and zebrafish in 
understanding human disease.

Conclusions

Our study of Nrgn-like immunoreactivity in neural tissues 
during the development of the zebrafish reveals positive 
cells in both sensory organs of the head (retina, olfactory 
rosette, neuromasts) and in the brain. Nrgn-like expression 
appears late in the positive populations, suggesting that 
it is expressed in cells that are differentiated functionally. 
Main Nrgn-like-ir populations in the brain were observed 
in the pallium, hypothalamic lobes, thalamus, optic tectum, 
octavolateralis area and viscerosensory column, suggesting 
close relationship of Nrgn with processing sensory informa-
tion, probably contributing to adaptative responses in larval 
stages. The restriction of its expression to specific neuronal 
populations, combined with observations in toto, allowed to 
use Nrgn-like immunoreactivity to reveal the origin of some 
tracts and commissures.
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