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Abstract
The medial temporal lobe (MTL) is a set of interconnected brain regions that have been shown to play a central role in 
behavior as well as in neurological disease. Recent studies using resting-state functional magnetic resonance imaging 
(rsfMRI) have attempted to understand the MTL in terms of its functional connectivity with the rest of the brain. However, 
the exact characterization of the whole-brain networks that co-activate with the MTL as well as how the various sub-regions 
of the MTL are associated with these networks remains poorly understood. Here, we attempted to advance these issues by 
exploiting the high spatial resolution 7T rsfMRI dataset from the Human Connectome Project with a data-driven analysis 
approach that relied on independent component analysis (ICA) restricted to the MTL. We found that four different well-
known resting-state networks co-activated with a unique configuration of MTL subcomponents. Specifically, we found that 
different sections of the parahippocampal cortex were involved in the default mode, visual and dorsal attention networks; 
sections of the hippocampus in the somatomotor and default mode networks; and the lateral entorhinal cortex in the dorsal 
attention network. We replicated this set of results in a validation sample. These results provide new insight into how the 
MTL and its subcomponents contribute to known resting-state networks. The participation of the MTL in an expanded range 
of resting-state networks is in line with recent proposals on MTL function.

Keywords Medial temporal lobe · Functional connectivity · Resting-state fMRI · Independent component analysis · Dual 
regression

Abbreviations
MTL  Medial temporal lobe
DMN  Default mode network
rfMRI  Resting-state functional magnetic resonance 

imaging
MNI  Montreal Neurological Institute 152
aPHG  Anterior parahippocampal cortex
pPHG  Posterior parahippocampal cortex
lEnt  Lateral entorhinal cortex

mEnt  Medial entorhinal cortex
hHi  Head of the hippocampus
bHi  Body of the hippocampus
tHi  Tail of the hippocampus
Th  Thalamus proper
Cd  Caudate
Pu  Putamen
Pal  Pallidum
Hi  Hippocampus
Amg  Amygdala
Ac  Accumbens area
vDC  Ventral DC
STS  Bankssts
cACC   Caudal anterior cingulate
cdMF  Caudal middle frontal
Cun  Cuneus
Ent  Entorhinal
FuG  Fusiform
iP  Inferior parietal
iT  Inferior temporal
ICG  Isthmus cingulate
lO  Lateral occipital
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lOF  Lateral orbitofrontal
LgG  Lingual gyrus
mOF  Medial orbitofrontal
mT  Middle temporal
PHG  Parahippocampal gyrus
PCL  Paracentral
IFGOp  Pars opercularis
IFGOr  Pars orbitalis
IFGTr  Pars triangularis
PCAL  Pericalcarine
PoG  Postcentral
pCC  Posterior cingulate
PrG  Precentral
PCun  Precuneus
rACg  Rostral anterior cingulate
rMF  Rostral middle frontal
SF  Superior frontal
SP  Superior parietal
ST  Superior temporal
SMG  Supramarginal
FrP  Frontal pole
TmP  Temporal pole
TTG   Transverse temporal
Ins  Insula

Introduction

The medial temporal lobe (MTL) has received much inter-
est in research and the clinic due to its key implication in 
memory processes (e.g., Alvarez and Squire 1994; Suzuki 
and Amaral 2004; Squire et al. 2007), as well as due to its 
involvement in several relatively common pathological 
conditions (e.g., temporal lobe epilepsy, schizophrenia and 
Alzheimer’s disease; Douw et al. 2015; Seidman et al. 2003; 
Kenkhuis et al. 2019; Govindpani et al. 2020). The MTL 
encompasses a number of different anatomical structures, 
primarily the parahippocampal and entorhinal cortices as 
well as the hippocampal formation. Recent resting-state 
fMRI (rsfMRI) studies have attempted to understand the 
MTL by considering its functional connectivity with the rest 
of the brain (Kahn et al. 2008; Libby et al. 2012; Qin et al. 
2016; Ranganath and Ritchey 2012; Ritchey et al. 2015; 
Ruiz-Rizzo et al. 2020; Schröder et al. 2015; Wang et al. 
2016). An on-going debate regarding this issue concerns the 
different whole-brain functional networks that connect to the 
MTL. Specifically, whereas the traditional view is that the 
MTL interacts mainly with two whole-brain networks (Kahn 
et al. 2008; Libby et al. 2012; Qin et al. 2016; Ranganath and 
Ritchey 2012; Ritchey et al. 2015; Schröder et al. 2015; Bar-
nett et al. 2019), other recent studies using data-driven tech-
niques have found that the MTL connects with additional 
networks (Ruiz-Rizzo et al. 2020; Wang et al. 2016; Plachti 

et al. 2019). Characterizing the whole-brain functional net-
works that co-activate with the MTL has implications for 
understanding its role in health and disease. One potential 
reason for why this issue remains unresolved may be due 
to methodological limitations in previous studies. Here, we 
relied on a data-driven parcellation of the MTL using the 
whole-brain high spatial resolution 7T rsfMRI dataset from 
the Human Connectome Project (HCP).

The standard view on the connectivity between the MTL 
and the rest of the brain is that the MTL is connected with 
two distinct whole-brain networks. Both anatomical and 
functional connectivity studies have shown that MTL con-
nectivity is largely organized along a posterior–anterior 
gradient. For example, tract-tracing studies in monkeys and 
rodents have found that posterior sections of the parahip-
pocampal gyrus (PHG) and posterior sections in the hip-
pocampal formation show increased (mono- or poly-syn-
aptic) connectivity with posterior midline regions like the 
retrosplenial cortex and posterior cingulate cortex, whereas 
anterior sections of the parahippocampal cortex and ante-
rior sections of the hippocampal formation show increased 
connectivity with anterior brain regions like the orbitofron-
tal cortex and amygdala (Aggleton 2012; Jones and Witter 
2007; Kobayashi and Amaral 2007, 2003; Kondo et al. 2005; 
Rosene & Van Hoesen 1977; Strange et al. 2014; Suzuki and 
Amaral 1994). Similarly, lateral sections of the entorhinal 
cortex (Ent) have been associated with the posterior whole-
brain network, whereas medial Ent has been associated with 
the anterior network (Jones and Witter 2007; Strange et al. 
2014). More recent functional connectivity studies using 
rsfMRI have further confirmed this bipartite organization 
of MTL whole-brain connectivity. Specifically, Libby et al. 
(2012) found that seeds placed in posterior PHG revealed co-
activity with posterior midline regions like the retrosplenial 
cortex, precuneus, posterior cingulate and occipital cortex, 
whereas seeds placed in more anterior locations produced 
co-activity with orbitofrontal cortex and inferior temporal 
cortex. Other studies placing seeds in various locations along 
the hippocampal long axis have revealed a similar separation 
of co-activity between posterior and anterior networks (Kahn 
et al. 2008; Qin et al. 2016), as have studies examining the 
entorhinal cortex (Schröder et al. 2015). In short, evidence 
from various sources now confirms that MTL connectivity 
can be associated with both a posterior and an anterior net-
work (Ranganath and Ritchey 2012; Ritchey et al. 2015).

However, three recent functional connectivity studies have 
presented results that have challenged this view. These studies 
have relied on data-driven approaches to examine functional 
connectivity thereby avoiding potential biases inherent in 
functional connectivity techniques that rely on placing seeds 
(Zuo et al. 2010). Specifically, Wang et al. (2016) examined 
the slice-by-slice connectivity between both the parahip-
pocampal gyrus as well as the hippocampus and the rest of 
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the brain using a hierarchical clustering technique. Interest-
ingly, they found that there were three connectivity clusters 
along the parahippocampal long axis, one in posterior PHG 
that connected to the aforementioned posterior network, one 
in anterior PHG (termed perirhinal cortex) that connected 
to the anterior network, and one in an even more anterior 
PHG location that connected to a network of regions that 
included the insula, post central gyrus and amygdala. Simi-
larly, Ruiz-Rizzo et al. (2020) examined functional connec-
tivity of the MTL as well as the amygdala using a spatially 
restricted Independent Component Analysis (ICA) approach 
(Blessing et al. 2016; Formisano et al. 2004). They found that 
clusters of activity detected inside the MTL and amygdala 
co-activated with sets of brain regions that correlated with 
the reference networks of Allen et al. (2011). Specifically, 
in addition to the default mode network (correlation varied 
from r = 0.12 to r = 0.48 for different MTL activity clusters), 
they also found that MTL was somewhat connected to other 
networks like the salience ( r = 0.14 ), frontal ( r = 0.11 ), basal 
ganglia ( r = 0.40 ) and visual networks ( r = 0.11 ). Finally, 
a recent paper by Plachti et al. (2019) focused on the hip-
pocampus using a consensus clustering technique and found 
that connectivity between the hippocampus and the rest of the 
brain was best described by 3, 5 and even 7 clusters.

Thus, it appears that whereas some studies have found 
that the MTL is connected to two different whole-brain 
functional networks, others have found it is connected to 
additional different networks. This empirical discrepancy 
may be the result of methodological limitations in the afore-
mentioned studies. First, previous studies have relied on 
relatively low spatial resolution fMRI acquisition protocols 
( ∼ 3.5 mm voxels). One concern with such low resolution 
data is that the large size voxels may be unable to accurately 
separate signals from different resting-state networks leading 
to variability in the reported results. Second, previous stud-
ies have not sufficiently taken into account the observation 
that the MTL is affected by local magnetic field inhomoge-
neities that lead to reduced temporal signal-to-noise ratios 
(tSNR; e.g., Olman et al. 2009; Weiskopf et al. 2006). The 
additional noise in the MTL region may hamper the detec-
tion of MTL contributions to resting-state networks and also 
produce inconsistencies in the reported results. In this study, 
we addressed these two limitations in three ways. First, we 
addressed the separability of signals inside the MTL using 
a dataset with high spatial resolution (1.6 mm isotropic) 
acquired at a high field strength (7T). Previous studies have 
shown that compared to lower resolutions at 3T, increased 
spatial resolution at 7T results in more clearly defined rest-
ing-state networks (Vu et al. 2017). Second, previous studies 
have also shown that reducing the voxel size in fMRI data 
avoids partial voluming effects and leads to improved signal 
detection in areas with low tSNR (Hyde et al. 2001; Rob-
inson et al. 2004; Sladky et al. 2013). Finally, we relied on 

the spatially restricted group ICA technique (srICA; Bless-
ing et al. 2016; Ezama et al. 2021; Formisano et al. 2004). 
Whole-brain ICA is frequently used to separate signal from 
noise in fMRI studies (e.g., Janssen and Mendieta 2020; 
Smith et al. 2013). Instead, by applying ICA to a particular 
brain region, the noise profile that is specific to that brain 
region will be taken into account and result in a more sensi-
tive separation of signal from noise in that region.

The current study relied on high spatial resolution data 
as well as a targeted analysis approach to clarify the con-
tributions of the MTL in existing resting-state networks. 
Specifically, whole-brain functional connectivity maps (FC 
maps) associated with the MTL clusters found by the srICA 
were computed using the Dual Regression technique (Nick-
erson et al. 2017). These whole-brain FC maps reflected 
the large-scale co-activity with the specific MTL clusters 
found in the previous step. Next, MTL clusters were classi-
fied as signal or noise on the basis of an algorithm that relied 
on the correlation with the 7 known resting-state networks 
obtained by Yeo et al. (2011). We then used linear mixed 
effect regression analyses to calculate the relative contribu-
tion of each MTL subcomponent in the different resting-state 
networks. Specifically, the MTL was segmented into anterior 
and posterior portions of the PHG, head, body and tail of 
the hippocampus and mEnt and lEnt. Finally, we relied on a 
test-validation approach in which results obtained in the test 
dataset were validated on a second dataset.

Methods

Participants

Data for all participants were downloaded from the Human 
Connectome Website. The initial dataset consisted of 184 
participants who had participated in the 7T data acquisition. 
However, data from 12 participants were excluded due to 
the presence of specific Quality Control issues identified by 
the HCP (i.e., QC issues A, B, C, and D). The final sample, 
therefore, consisted of 172 participants, between the ages 
of 22 and 35 (104 females). Further detailed description on 
the study subjects may be found in Van Essen et al. (2012). 
The data analyses were conducted in agreement with the 
declaration of Helsinki and with the protocol established 
by the Ethics Commission for Research of the Universidad 
de La Laguna, the Comité de Ética de la Investigación y 
Bienestar Animal.

Data acquisition and preprocessing

Data packages herein used come from the WU-Minn HCP 
Data-1200 Subjects data set. For this experiment, we down-
loaded 7T Resting-State fMRI 1.6 mm/32k FIX-Denoised 
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(Compact) and Resting-State fMRI FIX-Denoised 
(Extended) datasets. As per the HCP reference manual, 
these data were acquired by the Washington-University and 
Minnesota Consortium, with a Siemens Magnetom 7T MR 
Scanner and a Nova32 32-channel Siemens receive head coil 
from Nova Medical. Four 16-min-long rsfMRI acquisitions 
were acquired per subject. RsfMRI acquisitions alternated 
the direction of the phase encoding gradient, where two 
sessions were acquired in the posterior-to-anterior phase 
direction and the other two in anterior-to-posterior phase 
direction. For the resting-state acquisitions, participants 
were instructed to fix their sight on a white cross-hair over a 
dark background (Smith et al. 2013). MRI scanning param-
eters for the resting-state data were based on acquisitions 
of Gradient-Echo EPI volumes. Each volume contained 85 
slices that were acquired with a multiband factor of 5. Slice 
thickness was 1.6 mm with no gap, the FOV was 208 × 208 
mm, matrix size 130 × 130, resulting in 1.6 mm isotropic 
voxels. The TR was 1000 ms, echo time (TE) 22.2 ms, and 
the flip angle 45◦ . We used the first two of these four rsfMRI 
datasets as a test set (32 minutes of resting-state data), and 
the last two datasets as a validation set. Both test and valida-
tion datasets had alternating phase directions.

The downloaded fMRI datasets consisted of already 
pre-processed functional data according to HCP minimal 
preprocessing pipelines ( Glasser et al. 2013). Briefly, trans-
formations that reduce head motion were estimated using 
FSL MCFLIRT (Jenkinson et al. 2002), fieldmap and gradi-
ent distortion corrections were applied, and transformations 
from fMRI space to MNI space were estimated using non-
linear transformations. Importantly, smoothing of the data 
was minimized in two ways: First, the transform from native 
to MNI space preserved the native space resolution of the 
fMRI acquisitions, and second, all transformations (motion 
correction, fMRI to MNI space) were postponed, com-
bined and applied in a single step using sinc interpolation. 
Next, the data in MNI space were temporally filtered using 
a 2000-s high-pass filter and automatically denoised using 
the FIX program (Griffanti et al. 2014; Salimi-Khorshidi 
et al. 2014). This program uses semi-automatic classifica-
tion of head-motion and other artifacts which minimized the 
potential impact of head-motion artifacts in our data (Salimi-
Khorshidi et al. 2014). The final files were demeaned and 
had native 1.6 mm isotropic resolution in MNI space. We 
then extracted and regressed out the CSF and WM signal 
that was obtained from each participant’s wmparc file.

In addition, for the structural data, we downloaded the 
3T Structural Preprocessed and 3T Structural Preprocessed 
Extended packages. Again as per the HCP reference man-
ual, the T1w images were acquired using a 3DMPRAGE 
protocol TI/TR/TE: 1000/2400/2.14 ms, flip angle = 80◦ , 
resulting in 0.7 mm isotropic voxels. The T2w images were 
acquired using a 3D T2-SPACE protocol TR/TE: 3200/565 

ms, flip angle = variable, and also resulting in 0.7 mm iso-
tropic voxels. The structural images were acquired on a 3T 
Siemens Connectom Skyra scanner. The downloaded struc-
tural packages contained the T1w and T2w images for each 
participant as well as the full Freesurfer output and trans-
formation matrices that were relevant for our downstream 
analyses (see below). For additional specific information on 
the pre-processing of these structural images, we refer to 
Glasser et al. (2013).

Data analysis

The aim of this study was to explore the different whole-
brain networks that co-activate with the MTL as well as how 
the different MTL subcomponents contribute to these dif-
ferent networks. To approach these objectives, our analyses 
were divided into four main steps. A graphical representa-
tion of the workflow is displayed in Supplementary Fig. S1. 
The most relevant results from these analyses will be made 
available on our github page (https:// github. com/ iamni elsja 
nssen).

Segmentation of MTL into subcomponents

The first step of our analysis involved the segmentation of 
the MTL into a number of subcomponents. This segmenta-
tion took place in a participant-specific manner, meaning 
that each segmentation took into account the unique shape 
of the MTL in each participant’s brain. The MTL subcom-
ponents were the head, body and tail of the hippocampus 
(hHi, bHi, and tHi), the anterior (aPHG) and posterior 
(pPHG) parahippocampal gyrus, as well as the medial and 
lateral entorhinal cortex (lEnt and mEnt). All segmentations 
relied on the Desikan–Killiany cortical Atlas as well as the 
subcortical segmentation that is produced by Freesurfer 
and that was included with the downloaded dataset (i.e., 
the aparc+aseg atlas in Freesurfer terminology; Desikan 
et al. 2006). This provides an automatic segmentation of 
the brain in terms of a set of 42 brain regions that are fitted 
to the unique morphology of each participant’s brain. This 
is achieved by combining prior information about the prob-
able spatial location of a given brain area and its surround-
ing structures with information about the morphology of 
a specific target participant brain. This way of segmenting 
the brain into regions is, therefore, more accurate than other 
atlas segmentations that are based on normalized brains.

To obtain the three subdivisions for the hippocampus 
we relied on the Hippocampal Subfields and Nuclei of the 
Amygdala script (v21) with the (0.7 mm) T2w image as 
the input (Iglesias et al. 2015). Besides segmenting the hip-
pocampus into a set of internal subfields, this script also 
provides a segmentation of the hippocampus into its head, 
body and tail sections. In addition, anterior and posterior 

https://github.com/iamnielsjanssen
https://github.com/iamnielsjanssen
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PHG were obtained by first extracting the parahippocam-
pal gyrus mask from a given participant’s aparc+aseg atlas. 
Next, to define aPHG and pPHG, we computed an inter-
section of a plane with the centroid point of the parahip-
pocampal gyrus. The centroid point in the anterior–posterior 
direction was computed as the mean voxel coordinate of 
the parahippocampal mask along the y-axis. Consequently, 
the voxels posterior to this y-plane were defined as pPHG 
and voxels anterior to the plane as aPHG. To separate the 
entorhinal cortex in a medial and lateral section we com-
puted its centroid point as the mean coordinate along the 
x-axis and defined medial and lateral sections as above. This, 
therefore, produced participant-specific MTL subcomponent 
masks for head, body and tail of the hippocampus, anterior 
and posterior PHG, and medial and lateral entorhinal cortex 
(see Fig. 1 for a graphical presentation of the location of the 
MTL and its various subcomponents for a representative 
participant).

Detection of MTL activation clusters

The next step of the analysis had three goals. First, we 
attempted to identify those locations of the MTL that 

were activated during the resting state using a data-driven 
approach. We first created MTL masks combining bilateral 
hippocampus, parahippocampal gyrus and entorhinal cor-
tices that were specific to each participant. These masks 
were similar to those described above in that they were 
derived from the participant-specific aparc+aseg atlas, but 
were different because they did not distinguish between the 
individual MTL subcomponents. This was because we first 
aimed to detect locations inside the entire MTL that are 
active during the resting state without taking into account 
the various MTL subcomponents. To improve accuracy 
for the group analyses, each participant’s MTL mask was 
increased in size by one voxel. We then multiplied the 
masks with the cleaned, whole-brain resting-state fMRI 
data. This produced 4D fMRI files containing only the 
timeseries of the voxels within the MTL mask of each par-
ticipant. We then performed group spatially restricted ICA 
(group srICA) over these data using FSL melodic (v3.15). 
Given the smaller sized dataset due to the masking, we 
used the default method for data reduction (i.e., an initial 
principal component analysis) by disabling MIGP in the 
melodic options (Smith et al. 2014).

Fig. 1  Visualization of the MTL subcomponents. Location of MTL in 
the left (a) and right hemispheres (b) of the whole brain along with a 
zoomed view (c) as well as a tagged zoomed view (d). Panels c and d 
highlight the various substructures that make up the MTL, posterior 

parahippocampal gyrus (pPHG), anterior parahippocampal gyrus 
(aPHG), hippocampal tail (tHi), body (bHi) and head (hHi), as well 
as medial (mEnt) and lateral (lEnt) entorhinal cortex
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As mentioned in the Introduction, the main advantage of 
srICA compared to whole-brain ICA is that a more sensi-
tive decomposition of signals in a specific region can be 
obtained. As also mentioned above, a well-known problem 
with fMRI data is that the GRE EPI acquisition protocols 
are sensitive to local magnetic field inhomogeneities (Devlin 
et al. 2000) which lead to variability in the tSNR between 
the different areas of the brain (see Supplementary Fig. S2 
for an overview of the tSNR in the current dataset as well 
as evidence that MTL regions had substantially lower tSNR 
compared to other areas). A consequence of the multivariate 
nature of ICA is that signals coming from regions with low 
tSNR are less likely to be included in a component (connec-
tivity) map. This is because the timecourses of regions with 
increased noise (i.e., low tSNR) are less likely to correlate 
with the timecourses of other regions. One way to deal with 
this issue is to apply ICA to a specific region with a low 
tSNR. In this case, the ICA procedure will take into account 
the specific noise profile of that region and enable a more 
sensitive separation between voxels clusters that correspond 
to noise and voxel clusters that correspond to signal. In other 
words, given that the MTL is a region known to have low 
tSNR (Olman et al. 2009 and see Supplementary Fig. S2), 
we reasoned that srICA applied to the MTL would lead to a 
more sensitive detection of signal clusters inside the MTL 
compared to a whole-brain ICA approach.

One aspect of ICA is that it requires a decision about 
the number of dimensions under which the analysis is per-
formed. Here, we used a method to determine the optimal 
number of dimensions for the ICA that was developed in 
our laboratory (Ezama et al. 2021). Specifically, we tested 
across a wide range of different dimensions the relationship 
between a set of components found for a specific dimension 
and a set of known resting-state networks (Yeo et al. 2011). 
We then chose the dimension at which this relationship was 
optimal. Specifically, we first performed ICA on the same 
dataset at dimensions ranging from 1 to 15 in a stepwise 
fashion. Next, we obtained whole-brain FC maps derived 
from all MTL activation clusters for each dimension. These 
FC maps were obtained using the Dual Regression technique 
(Nickerson et al. 2017). The dual regression approach con-
sisted of a first regression of the IC outputs of melodic to 
the cleaned and whole-brain fMRI data for each participant. 
The output of this first step in dual regression are the time-
courses of each independent component for each participant. 
The second step in dual regression involves a regression of 
the time-courses associated with each participant-specific IC 
map against the cleaned fMRI data. This second step pro-
duced the whole-brain maps that represent the FC between 
a specific IC and the rest of the brain.

These whole-brain FC maps obtained for each of the 15 
dimensions were then correlated with the 7 resting-state net-
works of Yeo et  al. (2011). This led to 15 correlation 

matrices of sizes m × n where m refers to the number of 
dimensions (1–15), and n to the number of resting-state net-
works (here 7). Inspection of these 15 correlation matrices 
revealed the set of resting-state networks that frequently had 
high correlation ( r > 0.40 ) with a set of components across 
all dimensions. We then executed an algorithm that found a 
component if its maximum correlation with a given resting-
state network was above a threshold ( rmax > 0.4) and if this 
maximum correlation was sufficiently higher than the second 
highest correlation ( rmax

rmax2

> 1.3 ), both within the same IC and 

within the same resting-state network. On the assumption 
that a larger number of dimensions leads to more fraction-
ated component clusters, we then chose the smallest dimen-
sion at which this algorithm produced the largest number of 
ICs. This procedure, therefore, detected in a data-driven 
fashion the optimal number of dimensions for which the 
srICA produced the largest number of voxel clusters inside 
the MTL that were both sensitive and specific to known 
resting-state networks.

Group‑level analyses of whole‑brain FC

To anticipate our results, the previous steps resulted in the 
detection of a set of FC maps that closely corresponded 
to a set of known resting-state networks. The next step in 
the analyses was to assess the statistical reliability of the 
observed whole-brain maps at the group level. One standard 
way of performing such an analysis would be to rely on a 
voxel-based modeling tool such as FSL randomize. How-
ever, a general problem with this approach is that it assumes 
that each voxel represents the exact same brain region across 
all participants. However, as has been discussed at length 
elsewhere, there is large variability in brain morphology 
between participants, and therefore, group-level analyses of 
this type are sub-optimal (Anticevic et al. 2008; Fischl et al. 
2008). Instead, we opted for a different analysis approach 
that took into account the unique morphology of each par-
ticipant’s brain. Specifically, we created a dataset that, for 
each participant, contained average co-activity values for all 
their cortical and subcortical regions from the aparc+aseg 
atlas. We obtained these data by intersecting each partici-
pant-specific aparc+aseg atlas with each participant-specific 
whole-brain maps obtained from Dual Regression. We then 
fitted these data to a linear mixed effect regression model 
of the form:

where hemisphere was a discrete co-variable with two levels 
(left vs right), FC_map was a factor with number of levels 
equal to the number of ICs corresponding to resting-state 
networks detected in the previous step, brain_region was a 

(1)
Z = hemisphere + FC_map × brain_region + rand (participant),
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factor with number of levels equal to the sum of the number 
of cortical and subcortical regions in the aparc+aseg atlas, 
and participant was a random factor with number of lev-
els equal to the total number of participants (i.e., 172). The 
dependent variable was the average Z value for each brain 
region computed from the participant-specific Dual Regres-
sion maps. Importantly, this mixed-effect model included a 
random effect term for participant that takes into account the 
likely between-participant variability that is inherent in these 
data. In addition, this modeling approach uses participant-
specific masks that leads to group-level results that do not 
violate the assumption of unique brain morphology.

Within this model, our specific interest was in the interac-
tion term of the model ( FC_map × brain_region ) that pro-
vided a test of the null hypothesis that brain regions would 
not have differences in mean co-activity values across the 
different FC maps. In other words, this interaction would not 
be significant if the different activation clusters detected in 
the MTL would be connected to the exact same whole-brain 
resting-state networks. When this interaction was significant, 
we performed post hoc tests where we compared for each FC 
map, the average Z value for a given region versus the mean 
of the other regions (an “effect” contrast). This, therefore, 
produced for each FC map, a list of cortical and subcorti-
cal regions from the aparc+aseg atlas that had significantly 
more co-activity compared to all other regions.

All modeling took place in the statistical computing 
environment R (v4.0.0). Mixed effect modeling relied on 
the lme4 package (v1.1.23; Bates et al. 2007). Results 
from these regression models are presented in the form of 
ANOVA tables that were computed directly from the output 
of the mixed effect models using the lmerTest package 
(v3.1-2; Kuznetsova et al. 2017). P values in these models 
were computed using the Satterthwaite correction for the 
degrees of freedom. Post hoc testing was performed using 
the emmeans package (v1.4.6; Lenth et al. 2018) when a 
given interaction term was significant (i.e., p < 0.05 ). P val-
ues in these post hoc tests were adjusted for multiple com-
parisons using the Bonferroni method. We visualized these 
results using the ggseg (v1.5.4; Mowinckel and Vidal-
Piñeiro 2019), and ggpubr packages (v0.3.0; Kassambara 
2018).

Relative contributions of MTL subcomponents

The previous srICA step provided us with several clusters 
inside the MTL that co-activated with different resting-state 
networks. The final step in the analyses was to determine 
the relative contributions of the seven MTL subcompo-
nents (body hippocampus, anterior PHG, etc.) to the dif-
ferent resting-state networks. To do this, we intersected the 
participant-specific MTL subcomponent masks (described 
above) with each participant-specific whole-brain FC map 

obtained from Dual Regression. These data were then fit-
ted to the same statistical model as described in Equation 1, 
except that the term brain_region now referred to the seven 
MTL subcomponents. As before, our specific interest was in 
the interaction term of the model ( FC_map × brain_region ) 
that provided a test of the null hypothesis of whether the 
seven MTL subcomponents were activated in the same way 
across the various FC maps. However, the post hoc tests that 
were performed when this interaction term was significant 
differed from those described above. Specifically, to deter-
mine the relative contribution of the MTL subcomponents to 
the different resting-state networks, we first performed pair-
wise comparisons of all seven MTL subcomponents within 
each FC map. This produced a list of 21 pairwise compari-
sons for each FC map with a test statistic (i.e., the z ratio, 
see below) that reflected the degree to which a given MTL 
subcomponent differed from another MTL subcomponent. 
These pairwise test statistics were then summed, ordered, 
and thresholded at > 0. This therefore produced for each 
detected resting-state network an ordered list of the relative 
contributions of each MTL subcomponent.

Validation analysis

To confirm the reliability of our results, we attempted to 
validate our findings in a second dataset. This validation 
dataset consisted of two additional rsfMRI acquisitions from 
the same participants included in the test dataset. The two 
rsfMRI scans from the validation set were acquired in a dif-
ferent scanning session (on a different day) as the test set, but 
relied on the same MRI acquisition parameters. The preproc-
essing protocol used was the same as described for the test 
dataset. To validate the results, whole brain FC maps were 
computed from the data in the validation set using the MTL 
clusters obtained in the test set. This analysis, therefore, pro-
vides a validation of the degree to which the MTL clusters 
we obtained in the spatially restricted ICA step of the analy-
sis generalize to different datasets. We quantified this step 
by computing the correlation between the whole-brain FC 
maps in the test and validation sets, and by comparing the 
correlations of the whole-brain FC maps with the reference 
networks of Yeo in the test and validation sets.

Results

Detection of MTL activation clusters

The procedure for finding the optimal number of dimen-
sions first returned that across all the 15 dimensions tested, 
resting-state networks 1 (visual), 2 (somatomotor), 3 (dorsal 
attention), and 7 (default mode) were most frequently found 
with correlations r > 0.40 . In addition, the algorithm found 
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that dimension 7 was the lowest dimension at which the larg-
est number of ICs were strongly and uniquely connected to 
different resting-state networks. Specifically, we found that 
for dimension 7, four ICs were strongly and uniquely corre-
lated with four different resting-state networks: IC0 was cor-
related with the dorsal attention network ( r = 0.42 ), IC1 was 
correlated with the somatomotor network ( r = 0.53 ), IC2 
was correlated with the default mode network ( r = 0.59 ), 
and IC3 was correlated with the visual network ( r = 0.66 ; 
see Table 1 for an overview of the correlations for each IC 
with all networks). As can be seen in Supplementary Fig. 
S3, strong correlations ( r > 0.40 ) were frequently found for 
these four networks in other dimensions, suggesting that the 
detection of these four networks was not idiosyncratic to 
dimension 7. In addition, as can be seen in Supplementary 
Fig. S4, we also examined dimensions 20 and 30 and this 
did not lead to the detection of new networks. Finally, as can 
be seen in Supplementary Fig. S5, the ICs that were uncor-
related with the reference networks were indeed unlikely to 
reflect real BOLD signal. Specifically, IC4 seems to reflect 
signal in CSF, IC5 in draining veins, and IC6 does not reveal 
much signal in the first place (see also Griffanti et al. 2017, 
for further information on manually classifying ICs). We 
can, therefore, conclude that for our data the specific clusters 
of voxels detected by the ICA using dimension 7 for IC0, 
IC1, IC2 and IC3 were optimal in connecting with the four 
known resting-state networks (see also Supplementary Fig. 
S6 for a direct comparison in overlap between the obtained 
ICs and Yeo networks).

A visual presentation of the precise location of the four 
ICs along with their whole-brain group-level FC map 
derived from Dual Regression is presented in Fig. 2. As can 
be seen in Fig. 2, the four ICs are located at different posi-
tions in the MTL and revealed contrasting FC with the rest 
of the brain, indicating the involvement in different resting-
state networks. A more detailed view of the location of each 
IC within the MTL can be seen in Fig. 3A–C. In this Figure, 
it can be seen that the four clusters detected by spatially 

restricted ICA occupy positions within the MTL that both 
respect and cross anatomical boundaries (e.g., IC0 seems 
to reflect activity in both parahippocampal gyrus as well as 
entorhinal cortex). The statistical reliability of the observed 
whole-brain networks as well as how the detected activation 
clusters are distributed across the various MTL subcompo-
nents was examined in more detail below.

Group‑level analyses of whole‑brain FC

Group-level mixed-effect regression analysis revealed main 
effects of Hemisphere ( F1,59508 = 21.72, p < 0.0001 ), FC 
Map ( F3,59508 = 2955.38, p < 0.0001 ), and Brain Region 
( F43,59508 = 351.21, p < 0.0001 ). Most relevant for our pre-
sent purposes, there was a significant interaction between 
FC Map and Brain Region ( F129,59508 = 589.18, p < 0.0001 ), 
suggesting that co-activity values of brain regions differed 
between the various whole-brain FC maps associated with 
each IC. As can be seen in Table 2, post hoc analyses 
revealed that IC0 and its corresponding FC map revealed 
regions typically associated with the dorsal-attention net-
work like the inferior and superior parietal cortex, as well 
as lateral frontal areas. Similarly, as can be seen in Table 3, 
IC1 and its associated FC map showed regions typically 
associated with the somatomotor network like the amyg-
dala and post- and pre-central gyri. In addition, as can been 
seen in Table 4, IC2 and its corresponding FC map revealed 
regions generally found in the default mode network, like 
the isthmus cingulate (retrosplenial cortex), the precuneus, 
and the medial orbitofrontal cortex. Finally, as can be seen 
in Table 5, IC3 and its associated FC map revealed regions 
associated with the visual network like the cuneus and peri-
calcarine sulcus (see also Fig. 4B and C for a visual presen-
tation of these results).

Relative contributions of MTL subcomponents

Group-level mixed-effect regression analyses that exam-
ined the relative contribution of the MTL subcompo-
nents to each resting-state network revealed main effects 
of Hemisphere ( F1,9432 = 45.96, p < 0.0001 ) ,  Brain 
Region ( F6,9432 = 1867.63, p < 0.0001 ) and FC Map 
( F3,9432 = 2378.99, p < 0.0001 ). Again, important for our 
present purposes, the interaction between Region and FC 
Map was highly significant ( F18,9432 = 1442.85, p < 0.0001 ), 
suggesting that average co-activity values for each MTL sub-
component differed between the four ICs. Further explora-
tion of this interaction using pairwise comparisons of the 
seven MTL subcomponents within each IC and then ranking 
the summed z ratios revealed the relative contributions of 
each MTL subcomponent. Specifically, as can be seen in 
Table 6, summed z ratios in IC0 (correlated with the dorsal-
attention network) were strongest in pPHG, then in aPHG 

Table 1  Table of correlations of the FC maps with resting-state net-
works

Correlations that were strongly and unique correlated with specific 
resting-state networks are shown in bold

Yeo et al. (2011), seven networks IC0 IC1 IC2 IC3

Visual 0.13 0.12 0.02 0.66
Somatomotor 0.02 0.53 0.03 0.24
Dorsal attention 0.42 0.05 0.01 0.16
Ventral attention and salience 0.03 0.01 0.02 0.21
Limbic 0.04 0.10 0.00 0.02
Executive control 0.20 0.02 0.11 0.00
Default mode 0.12 0.20 0.59 0.01



1003Brain Structure and Function (2022) 227:995–1012 

1 3

and finally in lEnt. Similarly, Table 6 showed that for IC1 
(correlated with the somatomotor network), summed z ratios 
were strongest in hHi followed by bHi, and tHi. In addi-
tion, Table 6 showed that for IC2 (correlated with the default 
mode network) summed z ratios in descending order were 
ranked pPHG, aPHG, hHi and bHi. Finally, Table 6 showed 
that for IC3, summed z ratios were strongest in pPHG (see 
also Figure 5 for a graphical presentation of these results).

Validation results

Calculation of the whole-brain FC maps in the validation 
dataset using the MTL clusters obtained from the test set 
described above showed highly similar results to those 
obtained in the test set (see Figure S7). Correlation of FC 
maps in the test and validation sets showed highly reliable 

correlations. Specifically, the FC maps associated with 
IC0 (DA), IC1 (SM), IC2 (DMN) and IC3 (VIS), corre-
lated r = 0.95, r = 0.96, r = 0.98, r = 0.97 between the test 
and validation set, respectively. Finally, the pattern of cor-
relations between the obtained FC maps in the validation 
set and the Yeo reference networks was highly similar (see 
Table S1). We, therefore, conclude the MTL clusters that we 
report are robust and generalize to different datasets.

Complementary results

One concern with the results reported above is that we only 
compared the whole-brain FC maps with the set of 7 ref-
erence networks of Yeo et al. (2011). In complementary 
analyses, we examined whether our results would general-
ize to the 17 reference networks of Yeo et al. (2011), the 

Fig. 2  The subset of Independent Components (IC0, first row; IC1, 
second; IC2, third; IC3, fourth) detected as signal from the spatially 
restricted ICA (left columns, srICA), and their corresponding large-
scale functional connectivity maps derived from Dual Regression 
(right columns, DR). The color gradient represents the group level of 

co-activation quantified in Z values. Note how different IC hotspots 
inside the MTL connect to different areas of the brain that highly 
overlap with resting-state networks (see also Supplementary Fig. S6). 
srICA spatially restricted independent component analysis, IC inde-
pendent component, DR dual regression
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10 networks in Smith et al. (2009) and the 18 networks in 
Allen et al. (2011). Specifically, we correlated the whole 
brain FC maps that we obtained for dimension 7 with these 
additional reference networks. The results from these cor-
relations are shown in Supplementary Tables S2–4. There 
are two noteworthy observations from these results. First, 
the results we obtained with the 17 networks of Yeo et al. 
(2011) and the 10 networks of Smith et al. (2009) were com-
parable to those obtained above. Specifically, IC3 yielded 

the highest correlation with the visual network, IC2 with 
the default mode, and IC1 with the somatomotor network for 
both the 17 reference networks of Yeo et al. (2011) and the 
10 networks in Smith et al. (2009). However, IC0 (associ-
ated with dorsal attention in the set of 7 networks) correlated 
r = 0.28 the default mode network C and r = 0.20 with the 
dorsal attention network A in the 17 networks of Yeo et al. 
(2011), and r = 0.29 with the frontoparietal network in the 
set of Smith et al. (2009). This variability likely reflects a 

Fig. 3  Detailed location of the main target hotspots in the MTL 
detected with spatially restricted ICA. IC0 (blue), IC1 (green), IC2 
(orange) and IC3 (red) in saggital (a), coronal (b) and axial (c) views. 

Note how ICs both respect and cross anatomical boundaries suggest-
ing inter-structure communication. Slices in 1 mm MNI152 space. 
DA dorsal attention, SM somatomotor, DM default mode, Vis visual
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further splintering of networks and label differences between 
the reference sets.

Second, the correlations between our obtained results and 
the 18 networks of Allen et al. (2011) resulted in generally 
low correlations (see Supplementary Table S4). Although 
we cannot provide a clear explanation of these low correla-
tions at this point, we note that these results are not in line 
with these observed with the other reference sets and that 

they resemble the low correlations found by Ruiz-Rizzo 
et al. (2020) that also used this reference set. We discuss 
this issue in more detail below.

Discussion

The aim of the current study was to characterize the different 
resting-state networks that co-activate with the MTL as well 
as detail how the different MTL subcomponents contribute 
to these resting-state networks. We examined this issue using 
the high spatial resolution 7T rsfMRI dataset from the HCP 
with a data-driven method that applied ICA in a manner that 
was restricted to the MTL. We found that during the resting 
state, our method detected four activation clusters that were 
spread across the various subcomponents of the MTL. Using 
Dual Regression and mixed effect regression techniques to 
estimate reliability across participants, we found that these 
four activation clusters were functionally connected to four 
different whole-brain resting-state networks that relied on 
different contributions of MTL subcomponents. Specifically, 
we found that the dorsal attention network (detected with 
r = 0.42 ) relied primarily on the parahippocampal gyrus 
and entorhinal cortex, the somatomotor network ( r = 0.53 ) 
on the hippocampus, the default mode network ( r = 0.59 ) 
on both parahippocampal gyrus and hippocampus, and the 
visual network ( r = 0.66 ) on the parahippocampal cortex 

Table 2  Cortical and subcortical areas showing reliable co-activity 
with IC0 (correlated with Dorsal Attention network) relative to the 
mean co-activity value of all other areas

p values corrected for multiple comparisons using Bonferroni correc-
tion

Region z ratio p value

Parahippocampal 47.72 ~0.000E+00
Inferior parietal 40.13 ~0.000E+00
Precuneus 24.03 5.577E–126
Fusiform 20.59 1.569E–92
Caudal middle frontal 17.42 2.406E–66
Inferior temporal 16.61 2.535E–60
Isthmus cingulate 11.68 7.301E–30
Superior parietal 9.17 2.068E–18
Supramarginal 8.38 2.194E–15
Entorhinal 7.79 2.789E–13
Middle temporal 5.78 3.301E–07
Medial orbitofrontal 4.10 1.802E–03

Table 3  Cortical and subcortical areas showing reliable co-activity 
with IC1 (correlated with Somatomotor network) relative to the mean 
co-activity value of all other areas

p values corrected for multiple comparisons using Bonferroni correc-
tion

Region z ratio p value

Amygdala 55.30 ~0.000E+00
Hippocampus 53.71 ~0.000E+00
Postcentral 49.85 ~0.000E+00
Paracentral 34.58 2.413E–260
Superior temporal 27.76 5.009E–168
Precentral 21.26 1.237E–98
Bankssts 19.23 8.143E–81
Medial orbitofrontal 13.27 1.406E–38
Entorhinal 12.17 1.874E–32
Fusiform 11.51 5.215E–29
Temporal pole 10.15 1.421E–22
Cuneus 10.00 6.511E–22
Frontal pole 8.82 4.865E–17
Isthmus cingulate 7.39 6.378E–12
Middle temporal 7.19 2.866E–11
Transverse temporal 3.83 5.402E–03
Parahippocampal 3.62 1.279E–02

Table 4  Cortical and subcortical areas showing reliable co-activity 
with IC2 (correlated with Default Mode network) relative to the mean 
co-activity value of all other areas

p values corrected for multiple comparisons using Bonferroni correc-
tion

Region z ratio p value

Isthmus cingulate 70.52 ~0.000E+00
Precuneus 50.65 ~0.000E+00
Parahippocampal 34.93 1.301E–265
Inferior parietal 32.82 1.256E–234
Rostral anterior cingulate 32.67 1.781E–232
Frontal pole 26.58 5.334E–154
Medial orbitofrontal 26.31 7.064E–151
Caudal middle frontal 21.98 1.828E–105
Superior frontal 18.42 3.889E–74
Middle temporal 13.09 1.656E–37
Hippocampus 11.37 2.489E–28
Posterior cingulate 8.69 1.499E–16
Caudate 7.09 5.923E–11
Ventral DC 6.21 2.345E–08
Temporal pole 4.91 3.874E–05
Rostral middle frontal 4.19 1.188E–03
Brain stem 3.53 1.777E–02
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(see Table 6 for details). These results were validated with 
high replication ( r > 0.95 ) in a separate dataset.

Previous studies have reported inconsistent results on the 
number of whole-brain networks that co-activate with the 
MTL. Whereas, the classical view is that the MTL is con-
nected to a posterior and an anterior network (Kahn et al. 
2008; Libby et al. 2012; Qin et al. 2016; Ranganath and 
Ritchey 2012; Ritchey et al. 2015; Schröder et al. 2015), 
more recent studies have found that the MTL relies on 
additional networks beyond these two traditionally pro-
posed (Ruiz-Rizzo et al. 2020; Wang et al. 2016; Plachti 
et al. 2019). The current results are in line with these more 
recent studies in that they show that the MTL is connected 
to additional resting-state networks. Specifically, the cur-
rent study shows that the MTL was connected to the dorsal 
attention, somatomotor, default mode and visual networks 
(see Table 1 for details). Three of these four networks have 
a clear correspondence to the posterior and anterior net-
works previously identified. Specifically, the default mode 
and visual network likely reflect the previously identified 
posterior network, while the somatomotor network likely 
reflects the anterior network. This interpretation rests on 
the specific overlap of regions usually associated with the 
posterior/anterior networks and with the regions found to be 
linked to the resting-state networks obtained in our study. 

In particular, the posterior network is typically associated 
with posterior regions like the retrosplenial cortex, precu-
neus (Ranganath and Ritchey 2012; Ritchey et al. 2015) as 
well as with occipital areas (Libby et al. 2012; Wang et al. 
2016). As can be seen in Tables 4 and 5 these regions were 
exactly among those with the highest co-activation in the set 
of regions linked to the visual and default mode networks 
found in our study. Similarly, the anterior network is typi-
cally associated with the amygdala and orbitofrontal cortex 
(Ranganath and Ritchey 2012; Ritchey et al. 2015), and as 
can be seen in Table 3, these regions also appear among the 
most co-activated in the set of regions associated with the 
somatomotor network. The current results, therefore, suggest 
that, in a resting-state context, the posterior and anterior net-
works typically linked with the MTL are the visual, default 
mode and somatomotor networks, respectively.

Although the current results are in line with those studies 
that have argued for a more expanded connectivity between 
the MTL and the rest of the brain (Ruiz-Rizzo et al. 2020; 
Wang et al. 2016; Plachti et al. 2019), they differ from these 
previous studies in some details. First, as mentioned in the 
Introduction, a recent study by Ruiz-Rizzo et al. (2020) con-
cluded that MTL was connected with five different resting-
state networks. Using the reference set of 20 networks of 
Allen et al. (2011), they found that MTL connected with 
default mode, salience, frontal, basal ganglia and visual 
networks. One general problem with this study are the 
relatively low correlations between the observed and refer-
ence networks (i.e., visual, frontal and salience networks all 
had r < 0.15 ). Indeed, the problem here may to be related 
to the specific reference atlas because when we used the 
Allen et al. (2011) atlas as a reference, correlations between 

Fig. 4  Spiderplot representation of functional connectivity (estimated 
marginal coefficients) between the four IC hotspots (IC0, IC1, IC2, 
IC3) and the rest of the brain (a), as well as functional connectiv-
ity results from group-based analyses in subcortical (b) and cortical 
(c) regions for each of the different ICs (see Tables 2, 3, 4 and 5 for 
details)

◂

Fig. 5  Spiderplot representation of co-activity values (estimated mar-
ginal coefficients) within the 7 MTL regions for each of the four ICs 
(a), as well as the relative contribution (in terms of summed z-val-
ues) from each MTL region to each of the four ICs (b). Note that, 
for example, IC0 (Dorsal Attention, blue dots) relies on contributions 

from pPHG and aPHG and lateral Ent, and that IC2 (Default Mode, 
green dots) relied primarily on pPHG, aPHG, and on head and body 
of the hippocampus. DA dorsal attention, SM somatomotor, DM 
default mode, Vis visual
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obtained networks and the reference set were also rela-
tively low (see Complementary Results and Supplementary 
Table S4). Given that correlations were substantially higher 
in the reference sets of Yeo et al. (2011) and Smith et al. 
(2009), future studies should be geared towards resolving 
these rather remarkable discrepancies between sets of refer-
ence networks. In addition, a study by Plachti et al. (2019) 
found that during the resting state, functional connectivity 
between the hippocampus and the rest of the brain could 
be described by 3, 5 or even 7 clusters. This seems at odds 
with our observation that the hippocampus was involved 
in only two networks (default mode and somatomotor net-
works; see also Ezama et al. 2021). However, this interpre-
tation is complicated by the fact that Plachti et al. (2019) 
focused on the internal parcellation of the hippocampus and 
did not present the whole-brain functional connectivity of 
the obtained parcellations. Future studies that employ the 
consensus clustering technique used by Plachti et al. (2019) 
while also reporting whole-brain connectivity maps should 
be able to resolve this issue. In short, although the current 
results as well as the set of studies discussed here support the 
notion of expanded connectivity of the MTL, specific details 
regarding the influence of the particular reference set and 
pattern of whole-brain connectivity remain to be resolved.

The current results also provide insight into how the vari-
ous MTL subcomponents contribute to these four resting-
state networks. Specifically, the visual network relied pri-
marily on posterior sections of the parahippocampal gyrus 
(PHG), and the dorsal attention network primarily on a 
posterior-to-anterior gradient along the parahippocampal 
long-axis and lateral entorhinal cortex (pPHG–aPHG–lEnt, 
in order of relative contribution). In addition, the default 
mode network relied on a more complex pattern of co-acti-
vation in both parahippocampal gyrus and hippocampus 
with opposite gradients in these two structures: In the para-
hippocampal gyrus the gradient was in the posterior–ante-
rior (pPHG–aPHG) direction; whereas in hippocampus, it 
was in the anterior–posterior (head–body of hippocampus) 
direction. Finally, the somatomotor network relied primar-
ily on the hippocampus with an anterior–posterior gradient 
(head–body–tail of hippocampus; see Table 6, and Figure 5 
for details). These results are generally consistent with those 
previously observed. Specifically, the posterior network has 
traditionally been associated with pPHG and middle to pos-
terior sections of the hippocampus (Kahn et al. 2008; Libby 
et al. 2012; Qin et al. 2016; Ranganath and Ritchey 2012; 
Ritchey et al. 2015; Ruiz-Rizzo et al. 2020; Schröder et al. 
2015; Wang et al. 2016). This is in line with our observa-
tions that the visual and default mode networks strongly 
co-activate with posterior sections of the parahippocampal 
gyrus and hippocampus. In addition, the anterior network 
is traditionally associated with anterior sections of the 

parahippocampal gyrus (aPHG, including perirhinal cortex) 
and anterior sections of the hippocampus. Interestingly, our 
results revealed that the somatomotor network, that included 
areas typically associated with the anterior network like the 
amygdala and medial orbitofrontal cortex, relied primar-
ily on the hippocampus and not on the parahippocampal 
gyrus (see Table 3 and Figure 3). One possible explanation 
for this is that the anterior network previously observed in 
low spatial resolution data represented a mix between the 
somatomotor and dorsal attention networks thereby explain-
ing the involvement of the aPHG. In sum, the current results, 
therefore, suggest that MTL plays a role in four different 
resting-state networks where these networks display distinct 
configurations of MTL subcomponents.

Although the MTL is traditionally linked with episodic 
memory (e.g., Squire & Zola-Morgan 1991), more recent 
studies have shown the involvement of this structure in a 
wide range of cognitive functions such as short-term mem-
ory (Ranganath and Blumenfeld 2005), visual perception 
(Barense et al. 2012), attention (Aly and Turk-Browne 2016; 
Córdova et al. 2019; Ruiz et al. 2020), and language and 
conceptual processing (Duff and Brown-Schmidt 2012; 
Mack et al. 2016; Piai et al. 2016). For example, a recent 
study by Ruiz et al. (2020) revealed that patients with MTL 
lesions showed impaired performance in an attention task 
that relied on visual perception suggesting that the MTL 
plays a role in attention processes. The results reported here 
are in line with these studies in that they highlight the vari-
ety of resting-state networks to which the MTL contributes. 
Specifically, although resting-state studies can only make 
limited claims about function, our observation of the MTL 
in visual and dorsal attention networks seem to be in line 
with previous studies that have emphasized the implication 
of MTL in perception and attentional processes (Aly and 
Turk-Browne 2016; Córdova et al. 2019; Ruiz et al. 2020). 
The current observation that the MTL is involved in four dif-
ferent resting-state networks, therefore, further underscores 
the notion that the MTL may be involved in a more abstract 
type of processing (e.g., relational) that plays an important 
part in many different cognitive domains.

Our study has several limitations. First, our conclusion 
that MTL relies on four particular resting-state networks is 
based on the specific reference atlas of Yeo et al. (2011). 
However, as we show in Supplementary Tables S2–4, cor-
relations with the 17 network atlas of Yeo et al. (2011) and 
the 10 networks of Smith et al. (2009) yielded highly simi-
lar results. In addition, group-level FC analysis relied on 
averages across voxels in a brain region. An obvious dis-
advantage in this approach is that there are limitations on 
the spatial precision with which an effect may be localized. 
We think such concerns may be further mitigated by using 
procedures that segment brain regions to more fine grained 
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parcels (e.g., Schaefer et al. 2018). Finally, although we 
compared the contributions of 7 different MTL subcom-
ponents to whole-brain resting-state networks, we did not 
explicitly include the perirhinal cortex. The reason for this 
is twofold. First, the perirhinal cortex simply does not form 
part of the standard Desikan–Killany atlas that we used for 
our segmentations (Desikan et al. 2006). Second, the precise 
anatomical definition of perirhinal cortex remains highly 
disputed (Suzuki and Amaral 1994; Augustinack et  al. 
2014), which complicates an accurate automatic segmenta-
tion. Thus, although the usefulness of this structure is clear 
(Augustinack et al. 2014; Libby et al. 2012), the integration 
of this structure into an automatic segmentation pipeline that 
also includes other MTL structures has prevented us from 
analyzing the contribution of this structure at this moment 
in time.

To conclude, the current study used a high spatial reso-
lution dataset to examine the different whole-brain resting-
state networks that co-activate with the MTL. A secondary 
goal was to examine how the different MTL subcompo-
nents contribute to these resting-state networks. We found 
that the MTL co-activates with the default mode, somato-
motor, visual and dorsal attention networks. Our results 
revealed that these networks are subserved by distinct con-
figurations of MTL subcomponent co-activity, where the 
default mode network relied on a combination of activity 
in parahippocampal gyrus and hippocampus, the somato-
motor network on the hippocampus, the visual network 
on the parahippocampal gyrus, and the dorsal attention 
network on the parahippocampal gyrus and the entorhinal 
cortex. These results go beyond previous studies that have 
associated MTL with a posterior and an anterior network 

(Kahn et al. 2008; Libby et al. 2012; Qin et al. 2016; Ran-
ganath and Ritchey 2012; Ritchey et al. 2015; Ruiz-Rizzo 
et al. 2020; Schröder et al. 2015; Wang et al. 2016; Bar-
nett et al. 2019; Vincent et al. 2006). They are in line 
with previous FC studies that have found that the MTL 
is linked to additional networks (Ruiz-Rizzo et al. 2020; 
Wang et al. 2016; Plachti et al. 2019) and are suggestive 
of a functional role of MTL that goes beyond episodic 
memory (Aly and Turk-Browne 2016; Barense et al. 2012; 
Córdova et al. 2019; Duff and Brown-Schmidt 2012; Ran-
ganath and Blumenfeld 2005; Ruiz et al. 2020). Finally, 
the current results are obtained from young healthy adults 
and therefore establish a baseline pattern of how various 
MTL subcomponents contribute to known resting-state 
networks. In the future, we hope to examine how these 
patterns change with aging and pathology.
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Table 5  Cortical and subcortical areas showing reliable co-activity 
with IC3 (correlated with Visual network) relative to the mean co-
activity value of all other areas

p values corrected for multiple comparisons using Bonferroni correc-
tion

Region z ratio p value

Cuneus 99.93 ~0.000E+00
Pericalcarine 89.54 ~0.000E+00
Lingual 77.22 ~0.000E+00
Superior parietal 40.98 ~0.000E+00
Precuneus 23.29 2.205E–118
Parahippocampal 18.32 2.276E–73
Fusiform 16.28 5.737E–58
Lateral occipital 15.69 7.799E–54
Postcentral 11.46 9.415E–29
Paracentral 8.86 3.329E–17
Caudal anterior cingulate 7.90 1.164E–13
Transverse temporal 6.98 1.274E–10
Precentral 4.16 1.375E–03

Table 6  Strongest contrast for MTL substructures for each IC

Contrast based on the sum of pairwise z ratio differences for all sub-
structures. Rank indicates the order of the substructures relative con-
tribution for each IC

Region IC Summed z ratio Rank Network

pPHG 0 366.37 1
aPHG 0 158.15 2 Dorsal attention
lEnt 0 8.44 3
hHi 1 342.85 1
bHi 1 180.64 2 Somatomotor
tHi 1 141.79 3
pPHG 2 233.97 1
aPHG 2 122.92 2 Default mode
hHi 2 30.40 3
bHi 2 10.85 4
pPHG 3 456.13 1 Visual
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Neuroscience at Washington University. The data that support the 
findings of this study are openly available from Human Connectome 
Project (www. human conne ctome. org).

Code availability Code will be made available upon reasonable request.
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