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Abstract
Temporal lobe epilepsy (TLE) is associated with brain pathology extending beyond temporal lobe structures. We sought to 
look for informative patterns of brain tissue properties in TLE that go beyond the established morphometry differences. We 
hypothesised that volume differences, particularly in hippocampus, will be paralleled by changes in brain microstructure. 
The cross-sectional study included TLE patients (n = 25) from a primary care center and sex-/age-matched healthy controls 
(n = 55). We acquired quantitative relaxometry-based magnetic resonance imaging (MRI) data yielding whole-brain maps 
of grey matter volume, magnetization transfer (MT) saturation, and effective transverse relaxation rate R2* indicative for 
brain tissue myelin and iron content. For statistical analysis, we used the computational anatomy framework of voxel-based 
morphometry and voxel-based quantification. There was a positive correlation between seizure activity and MT saturation 
measures in the ipsilateral hippocampus, paralleled by volume differences bilaterally. Disease duration correlated positively 
with iron content in the mesial temporal lobe, while seizure freedom was associated with a decrease of iron in the very same 
region. Our findings demonstrate the link between TLE clinical phenotype and brain anatomy beyond morphometry differ-
ences to show the impact of disease burden on specific tissue properties. We provide direct evidence for the differential effect 
of clinical phenotype characteristics on processes involving tissue myelin and iron in mesial temporal lobe structures. This 
study offers a proof-of-concept for the investigation of novel imaging biomarkers in focal epilepsy.

Keywords  Temporal lobe epilepsy · Quantitative magnetic resonance imaging · qMRI · Microstructural tissue property · 
Voxel-based quantification · Brain plasticity · Mesial temporal lobe

Abbreviations
EEG	� Electroencephalography
FEW	� Family-wise error
GM	� Grey matter
MT	� Magnetization transfer
SPM	� Statistical parametric mapping
TLE	� Temporal lobe epilepsy
qMRI	� Quantitative magnetic resonance imaging
VBM	� Voxel-based morphometry
VBQ	� Voxel-based quantification

Introduction

There is mounting evidence for brain pathology extending 
beyond the temporal lobe in patients with temporal lobe 
epilepsy (TLE)—one of the most common forms of focal 
epilepsy. Theoretical work and animal models suggest that 
TLE-related brain remodeling follows a specific temporal 
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trajectory, with both focal and distributed cortico-subcor-
tical changes that are further modulated in the course of 
disease (Bernhardt et al. 2013a; Sutula 2004). Most recent 
reports support the notion of dynamic bidirectional brain 
anatomy changes related to disease progression, where the 
initial seizure-induced boost in neurogenesis is followed 
by gliosis due to depletion of hippocampal stem cells and 
shift towards astrocytes production (Sierra et al. 2015a, b). 
Cross-sectional (Bonilha et al. 2004) and longitudinal com-
putational anatomy studies (Bernhardt et al. 2013b) in TLE 
patients provide indirect evidence for this process, showing 
hippocampal volume loss in the chronic stages of disease. 
Given the gap of knowledge about the neurobiology underly-
ing TLE-associated gray matter volume and cortical thick-
ness changes, new magnetic resonance imaging (MRI) tech-
niques provide a window of opportunity to assess pathology 
related to brain’s iron and myelin homeostasis.

Animal models confirmed the notion that seizures induce 
axonal and myelin loss in the hippocampus paralleled by 
dysfunctional axonal sprouting and re-myelination (Savas-
kan and Nitsch 2001). Under the supposition of seizure-
induced neurogenesis rate increase, evidence from animal 
models shows that newly generated neuronal granule cells 
migrate into the hilus as far as the hippocampal CA3, where 
due to abnormal integration into hippocampal networks they 
start contributing to recurrent excitatory circuits (Scharfman 
et al. 2000). This seizure-related aberrant network devel-
opment is followed by hippocampal myelin loss and fiber 
degeneration in TLE, especially for small diameter axons, 
demonstrated by animal models and post mortem investiga-
tions (Ozdogmus et al. 2009). Correspondingly, human stud-
ies demonstrate increased oligodendroglia density and sub-
sequent gliosis in white matter areas adjacent to the seizure 
onset zone (Kasper and Paulus 2004; Stefanits et al. 2012). 
Supported by findings showing epilepsy-associated changes 
of hilar ectopic granule cells (Scharfman et al. 2000) par-
alleled by changes in myelinated fibers (Luo et al. 2015; 
Ye et al. 2013), myelin-sensitive neuroimaging techniques 
would allow to probe microstructural tissue differences in 
TLE patients.

In the context of TLE, there is strong evidence from 
animal models about the epileptogenic role of abnormal 
iron homeostasis in combination with blood–brain-barrier 
leakage, local inflammation and cellular oxidative stress in 
the hippocampus (Duffy et al. 2012; van Vliet et al. 2007). 
Recent studies demonstrate an association between seizure 
activity, histological and neuroimaging signatures cor-
responding to pathological iron deposits (Aggarwal et al. 
2018). Ferroptosis—the regulated cell death dependent on 
iron, occurs in the hippocampus following pharmacological-
induced TLE in rodents (Ye et al. 2019). Confirmatory for 
this notion, there is compelling evidence that inhibitors tar-
geting iron homeostasis can prevent hippocampal ferroptosis 

and ameliorate cognitive impairment associated to TLE 
(Ye et al. 2019). Human studies find a similar relationship 
between epilepsy and seizure-dependent inflammation in 
association to altered iron transfer and iron saturation rates 
(Tombini et al. 2013; Zhang et al. 2014).

The majority of computational anatomy studies in epi-
lepsy rely on T1- and T2-weighted brain imaging data that 
are governed by unknown MR contrast contributions, which 
are a function of the underlying tissue properties. Morpho-
metric features—cortical thickness, surface area or grey mat-
ter volume, extracted from this type of MRI data, are heav-
ily dependent on local MR contrast properties that remain 
unaccounted for across all surface- and voxel-based methods 
at hand. The missing link between brain tissue properties 
and resulting morphometry results hinder the straightfor-
ward neurobiological interpretation of “spurious” findings 
(Lorio et al. 2016b). Recent advances in qMRI provide the 
opportunity to assess in vivo quantitatively specific tissue 
properties in the healthy and diseased brain with particular 
focus on myelin, iron and tissue free water content (Dragan-
ski et al. 2011; Weiskopf et al. 2013).

Up to date, detection of tissue microstructure pathology 
in TLE was restricted to histology studies of post-surgery 
ex-vivo tissue samples that showed altered intracortical 
myelination and fiber arrangement, particularly in superfi-
cial cortical layers (Thom et al. 2000). The combination of 
state-of-the-art histology and ex-vivo MRI-based morpho-
metry confirmed the spatial correspondence between axonal 
degeneration of temporopolar white matter and blurring of 
grey-white matter boundaries (Garbelli et al. 2012). Recent 
qMRI study in TLE patients demonstrated an ipsilateral cor-
tical and hippocampal increase of the longitudinal relaxation 
time—a measure sensitive to intracortical myelin, however, 
with unaccounted contribution of the effects of iron (Bern-
hardt et al. 2018). This was interpreted as a sign of disrupted 
fiber architecture that finds correlates in histology specimens 
of TLE patients.

Our in-vivo study investigated the differences in brain 
tissue properties associated with TLE clinical phenotype 
characteristics—disease duration and frequency, beyond the 
established brain morphometry assessment in TLE patients. 
To this aim, we acquired qMRI data according to our estab-
lished relaxometry-based protocol followed by state-of-
the-art whole-brain statistical analysis using voxel-based 
quantification (VBQ) in SPM12s computational anatomy 
framework (Draganski et al. 2011). We hypothesized that 
individuals’ seizure frequency and overall duration will 
correlate with tissue property patterns in hippocampus and 
associated nodes of limbic circuits.
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Methods

Participants

For this cross-sectional study, we recruited patients with left-
lateralized pharmaco-responsive and -resistant TLE (n = 25; 
13 females, mean age ± standard deviation 40.9 ± 14.9 years, 
age range—18 to 69 years old) and sex-/age-matched healthy 
volunteers (n = 55; 28 females, mean age ± standard devia-
tion 36.8 ± 14.6  years, age range 19–72  years old; see 
Table 1). Handedness was estimated based on the Edinburgh 
Handedness Inventory and classified into right-handedness 
dependent on scores superior to + 40, ambidexter—with 
scores between − 40 and + 40 and left handedness—scores 
inferior to − 40 (Oldfield 1971).

The decision to restrict the analysis to only left lateralized 
TLE aimed to differentiate unilateral versus bihemispheric 
effects. The protocol was approved by the local Ethics 
Committee and prior to study inclusion we obtained writ-
ten informed consent from each participant. All procedures 
were performed in accordance with national and interna-
tional guidelines.

The diagnosis of mesial TLE followed the criteria of the 
International League Against Epilepsy (Berg et al. 2010) 
including (i) clinical aspects of seizures such as semiology, 
onset and history; (ii) standard and/or long-term video-
electroencephalography (EEG) and (iii) neuro-radiological 

assessment. Clinical 3 Tesla MRI was obtained according 
to established protocols (Wellmer et al. 2013) at Univer-
sity Hospital CHUV Lausanne, and reviewed by a neu-
roradiologist with special expertise in epileptology (for 
pharmaco-responsiveness and -resistance, see “Results” 
section). The evaluation of the lateralization of the epilep-
togenic seizure onset zone depended on seizure semiology, 
evidence of unilateral epileptiform activity on EEG, and 
MRI findings. Patients without strong evidence for laterali-
zation of the seizure onset zone or with a bilateral, lateral 
temporal or extra-temporal epileptogenic focus (focal cor-
tical dysplasia or lateral temporal sclerosis) were excluded 
from subsequent analysis, as we aimed at investigating 
structural changes in temporal lobe epilepsy including a 
clear epileptogenic focus. Additional exclusion criteria 
included a history of psychogenic non-epileptic seizures, 
autoimmune etiologies of epilepsy, history of traumatic 
brain injury, evidence of ischemic or hemorrhagic brain 
lesions, tumors, or neuro-radiological diagnosis of brain 
pathology beyond hippocampal and mesial temporal lobe 
sclerosis.

Following radiological evaluation criteria, our cohort 
consists of 5 patients with lesional epilepsy (3—with hip-
pocampal sclerosis, 1—with hippocampal dysplasia, and 
1—with hippocampal malrotation), while for the remain-
ing 20 patients, clinical MRI did not show any evident 
lesion. The definition of epileptogenic focus lateraliza-
tion was based on inter-ictal epileptiform discharges. 21 
patients were drug responsive, i.e. seizure-free since more 
than 5 years, 4 patients were resistant to antiepileptic drug 
treatment, dependent on consensus definition of the Inter-
national League Against Epilepsy (Kwan et al. 2010).

To quantify epilepsy severity, we documented and 
calculated the number of auto-reported generalized 
tonic–clonic seizures across life time and of focal seizures 
without generalization within the last 12 months. The date 
of MRI acquisition is used as endpoint for the time interval 
of interest. We refrained from including reports of focal 
seizures without generalization dating back more than 
12 months ago given the expected lack of precision, par-
ticularly for non-generalized seizures. Only 3 out of the 25 
patients presented focal seizures without generalization. 
1 of the 3 patients did not have any focal seizure within 
12 months before data acquisition.

Disease duration was calculated as the time span 
between the first seizure and MRI data acquisition. The 
seizure-free interval represented the time between the 
last seizure and MRI data acquisition. 6 patients were in 
remission with a free interval of more than 5 years for 
generalized seizures and 4 out of these 6 patients were in 
remission for focal seizures too.

Table 1   Demographic and clinical information of study participants

Displayed values are means with standard deviation, given in squared 
brackets [] for left-lateralized TLE and healthy controls
TLE temporal lobe epilepsy, C healthy controls, # number of, AED 
antiepileptic drug treatment, TIV total intracranial volume, f female, 
m male, l liter

TLE C

# 25 55
Sex
 F 13 28
 M 12 27

Age [years] 41 [15] 37 [15]
Handedness [#]
 Right 19 44
 Left 1 2
 Ambi-dexter 5 9

Age at epilepsy Onset [years] 28.2 [16.6]
Disease duration [years] 12.7 [11.4]
Seizure generalized [#] [life] 15.8 [7.9]
Seizure free [months] 45.9 [22.0]
Seizure freq focal [years] 11.4 [28.8]
AED tried [#] 1.6 [0.9]
TIV [l] 1.56 [0.18] 1.58 [0.17]
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Magnetic resonance imaging data acquisition

We acquired quantitative MRI (qMRI) data on a 3 Tesla MRI 
system (Magnetom Prisma, Siemens Medical Systems, Ger-
many) using a 64-channel radio-frequency receive head coil 
and body coil for transmission. The protocol consisted of 
three multi-echo 3D fast low angle shot (FLASH) with pro-
ton density (TR/α = 24.5 ms/6°), T1 (TR/α = 24.5 ms/21°), 
and magnetization transfer (MT) (TR/α = 24.5  ms/6°)-
weighted contrasts (Helms et al. 2008) using a field-of-
view of 240 × 256 × 176 mm along with the A-P, H-F and 
L-R directions and isotropic voxel sizes of 1 × 1 × 1 mm 
(Weiskopf et al. 2013). We used parallel imaging along 
the phase encoding (acceleration factor 2, GRAPPA image 
reconstruction) and Partial Fourier 6/8 in the partition 
direction to speed up data acquisition. Data was acquired 
for mapping inhomogeneities of the radio-frequency trans-
mit field B1 using a 3D Echo Planar Imaging spin-echo/
stimulated-echo method (Lutti et al. 2012). The acquisition 
parameters were as follows: TR = 500 ms, TE = 39.06 ms, 
TM = 31.2 ms, FOV = 192 × 256 × 192 mm along with the 
A-P, H-F and L-R directions, image resolution = 4mm3. 2D 
dual-echo field map data was acquired to correct for image 
distortions in the EPI data using the SPM field map toolbox 
(Hutton et al. 2012). The total acquisition time was 27 min.

qMRI map calculation and image processing

For data preprocessing and analysis we use the established 
computational anatomy framework of SPM12s (www.​fil.​ion.​
ucl.​ac.​uk/​spm/​softw​are/​spm12) with voxel-based morphom-
etry (VBM) and VBQ (Draganski et al. 2011) running under 
Matlab 7.13 (Mathworks Inc., Sherborn, MA, USA). Regres-
sion of the log-signal from the 8 proton density-weighted 
echoes was used to calculate the R2* maps. Signals of six 
equidistant bipolar gradient echoes were averaged to aug-
ment the signal-to-noise ratio (Helms and Dechent 2009) 

before calculating the MT saturation maps (Weiskopf et al. 
2013). All qMRI data were corrected for radiofrequency 
transmit inhomogeneities using the B1 maps (Lutti et al. 
2014).

Image processing

For automated brain tissue classification and subsequent 
regional volume calculation, we used the MT saturation 
maps with SPM12s default settings of the “unified seg-
mentation” framework (Ashburner and Friston 2005) and 
enhanced tissue probability maps providing higher sensi-
tivity for detection of subcortical structures (Lorio et al. 
2016a). We estimated spatial registration parameters to 
standard Montreal Neurological Institute space for volume 
and qMRI maps with SPM12s diffeomorphic algorithm 
based on exponentiated lie algebra (DARTEL) (Ashburner 
2007). The GM probability maps for voxel-based morpho-
metry analysis were scaled with the corresponding Jaco-
bian determinants, whilst MT and R2* maps underwent 
the previously described weighted averaging (Draganski 
et al. 2011) to preserve the total signal average. Prior to 
statistical analysis all maps were spatially smoothed using 
an isotropic 3D Gaussian convolution kernel of 6  mm 
full-width-at-half-maximum.

Statistical analysis

We concatenated whole-brain volume, MT saturation and 
R2* maps of left-lateralized TLE patients and healthy par-
ticipants within a single multi-parametric ANOVA design to 
test for between-group differences (Fig. 1, Table 2A). Age, 
sex and total intracranial volume (TIV) were included as 
additional variables to control for their specific effects on 
brain anatomy. Using whole-brain and region-of-interest 
analyses, we tested correlations between brain morpho-
metry, tissue properties and clinical phenotype—number 

Fig. 1   Grey matter volume differences between left TLE patients and 
healthy controls. Statistical parametric maps (SPM) of grey matter 
volume differences between patients with left-lateralized TLE and 
healthy controls. SPMs displayed on axial T1-weighted image in 

standard MNI space. For visualization purposes SPMs thresholded at 
p < 0.001, uncorrected for multiple comparisons. TLE temporal lobe 
epilepsy, C healthy controls, L left, R right hemisphere

http://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
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of generalized seizures, disease duration and seizure-free 
interval preceding the MRI data acquisition (Figs. 2 and 
4, Table 2B). For the post-hoc region-of-interest analysis 
testing the correlation between hippocampus volume/myelin 
content, seizure frequency and disease duration, we calcu-
late the optimal weighted averages of TLE individuals’ hip-
pocampal volumes using the first eigenvector as provided 
by SPM12’s volume-of-interest function. The spatial extent 
of the hippocampus was defined using the neuromorpho-
metrics atlas (probabilistic and maximum probability tissue 
labels—derived from the “MICCAI 2012 Grand Challenge 
and Workshop on Multi-Atlas Labeling”, www.​neuro​morph​
ometr​ics.​com/​2012_​MICCAI_​Chall​enge_​Data.​html).

We report significant results at a statistical threshold 
of p < 0.05 after family-wise error (FWE) correction for 
multiple comparisons (Table 2) and as trends when below 
p < 0.001, uncorrected for multiple comparisons (Figs. 1, 2 
and 3).

Results

Demographic and clinical phenotype

There were no significant sex-, age- or TIV-related dif-
ferences between healthy controls and TLE patients. Five 

patients were ambidexter and one had a left-hand dominance 
(Table 1). The remaining 19 TLE patients were right-handed. 
The handedness (p = 0.54) and sex distribution (p = 0.34) of 
TLE patients were comparable to healthy controls.

Main effects of disease

We report a larger hippocampal volume bilaterally in TLE 
patients, additionally to operculum bilaterally, ipsilateral 
middle temporal gyrus and contralateral cerebellar and post-
central regions (Fig. 1, Table 2A). There were no significant 
MT and R2* differences in the group comparison.

Seizure activity

The whole-brain VBM analysis showed a positive corre-
lation between seizure frequency, measured by number of 
generalized seizures, and the volume of hippocampus bilat-
erally (Fig. 2A, Table 2B). We denote the higher statisti-
cal significance confined to the anterior hippocampus. We 
point out that the region denoted as hippocampal tail in the 
voxel-based analysis may include also parts of the fornix. 
There was a similar effect for the contralateral transverse 
temporal gyrus and thalamus, the ipsilateral posterior insula, 
orbito-frontal cortex, anterior cingulate cortex and cerebellar 
posterior lobes bilaterally. The VBQ analysis demonstrated 

Fig. 2   Correlation between seizure frequency and brain anatomy 
in left TLE patients. Statistical parametric maps (SPM) of posi-
tive correlation between A volume estimates and number of gener-
alized seizures and between B myelin estimates based on MT satu-
ration intensity values and number of generalized seizures in left 
TLE. Whole-brain results of SPM T statistics projected on axial 

T1-weighted image in standard MNI space on left side and on bilat-
eral hippocampal surfaces on right side. For visualization purposes 
SPMs thresholded at p < 0.001, uncorrected for multiple comparisons. 
TLE temporal lobe epilepsy, MT magnetization transfer (saturation), L 
left, R right hemisphere

http://www.neuromorphometrics.com/2012_MICCAI_Challenge_Data.html
http://www.neuromorphometrics.com/2012_MICCAI_Challenge_Data.html
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spatially overlapping results with a positive correlation 
between MT saturation and seizure activity in the ipsilateral 
hippocampal body, bilateral thalamus and the contralateral 
transverse temporal gyrus (Fig. 2B, Table 2B).

The post-hoc region-of-interest analysis centered on the 
hippocampus (Fig. 1) confirmed the correlation between 
number of generalized seizures (Fig. 2) with hippocampus 
volume bilaterally with emphasis on the right hippocam-
pus (Figs. 1 and 3A). The MT saturation analysis did not 
show significant correlations (Fig. 3B).

Fig. 3   Correlation between hippocampal grey matter volume and 
number of generalized seizures. Hippocampal volume estimates in 
left TLE patients (x axis) plotted against A number of generalized 
seizures (y axis); B MT saturation (x axis) and number of general-
ized seizures (y axis). Significant partial correlation for ipsilateral 

left hippocampus (p = 0.023) and for contralateral right hippocampus 
(p < 0.0001), correlation of MT parameters not significant (p > 0.05). 
Optimal weighted averages of hippocampal volumes extracted from 
left and right hippocampus. TLE temporal lobe epilepsy, C healthy 
controls, L left, R right, # number of

Fig. 4   Correlation between disease progression, seizure-free interval 
and iron content. Statistical parametric maps of positive and negative 
correlation between effective transverse relaxation rate R2* inten-
sity values and A disease duration in years (with values projected on 

bilateral hippocampal surfaces left) and B the seizure-free interval in 
months in left TLE. Results displayed on T1-weighted image in MNI 
space, statistical threshold at p < 0.001, uncorrected for multiple com-
parisons. [−] negative, [ +] positive correlation, L left, R right
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Disease progression

The VBQ analysis revealed a positive correlation between 
disease duration and R2* increase, indicative for iron con-
tent of the ipsilateral hippocampus, the transverse temporal 
gyrus and cerebellum as well as contralateral insula and 
basal ganglia (Fig. 4A). In contrast, seizure-free intervals 
correlated negatively with R2* values in the ipsilateral par-
ahippocampal gyrus and the contralateral fusiform gyrus 
(Fig. 4C).

Discussion

Our study demonstrates a specific pattern of volume and 
brain tissue property differences in TLE patients that were 
associated with individuals’ disease duration and seizure 
frequency. The observed hippocampal volume expansion 
in TLE patients is paralleled by MT saturation increase in 
the very same region. Differences in mesial temporal lobe 
volume and tissue properties were associated with individu-
als’ seizure activity. Our qMRI multi-parameter approach 
extends previous morphometry findings in patients with 
TLE to show concomitant microstructure differences that 
are interpreted in the context of underlying neurobiological 
processes.

Seizure activity associated with differences 
in regional volume and myelin content

Our main finding is that seizure activity and TLE disease 
duration impact hippocampal microstructure beyond the 
already known effects on volume and shape. The effects are 
bilateral, thus independent from seizure focus localization. 
This finding is at odds with the imaging neuroscience lit-
erature that reports volume loss interpreted in the context of 
hippocampal sclerosis, which can be seen in chronic cases 
even with the naked eye. There are two lines of argumenta-
tion that support the notion of initial volume increase in the 
early phase of TLE—one related to the underlying neuro-
biological processes and another—to methodological and 
interpretational issues of computational anatomy studies 
using T1-weighted imaging.

We interpret the hippocampal volume increase in the 
early phase of TLE as indicative for seizure-induced boost 
of neurogenesis potentially paralleled by mossy fiber sprout-
ing and changes in density/persistence of hilar basal den-
drites. This assumption is based on the cumulating evi-
dence from animal TLE models (Sierra et al. 2015a, b) and 
from findings in both animal model (Madsen et al. 2000; 
Olesen et al. 2017) and investigations in patients treated 
with electro-convulsive therapy (Dukart et al. 2014). A 
particular detail – the gradient of seizure impact along the 

longitudinal hippocampal axis with stronger effects in the 
anterior hippocampus, seen after electro-convulsive therapy 
(Dukart et al. 2014) and in our study—in the correlation 
analysis with seizure frequency, lends further credibility to 
our findings. For the chronic phase of TLE, hippocampal 
atrophy, due to depletion of the stem cell pool and ongoing 
asymmetric cell division with predominant generation of 
astrocytes (Sierra et al. 2015a, b), can explain the widely 
accepted radiological and histology findings.

The second line of argumentation addressing the contro-
versy in the computational anatomy literature about TLE-
induced brain structure differences in patients (Bernhardt 
et al. 2013b; Briellmann et al. 2002; Coan et al. 2014; Holt-
kamp et al. 2004; Mueller et al. 2006) stems from the fact 
that the majority of studies use T1-weighted imaging for 
assessment of volume or cortical thickness. Independent 
from the methods used for feature extraction and statisti-
cal analysis—i.e. surface- or voxel-based, the fact that the 
MR contrast is dependent on underlying tissue properties 
and that T1-weighted MRI protocols are not informative 
with respect to these changes, prompted a revision of the 
established neurobiological interpretation. Recent evidence 
about the occasional “erroneous” interpretation of nature 
and directionality of morphometric changes is provided in 
the context of brain maturation (Natu et al. 2019) and age-
ing (Lorio et al. 2016b; Taubert et al. 2020). Our volume 
estimates are based on qMRI data, which renders them more 
robust to the underlying tissue property characteristics in the 
context of TLE (Lorio et al. 2016b).

The novelty of our VBQ approach comes from the analy-
sis of parameters indicative for tissue property differences, 
beyond and above the morphometry findings. The observed 
positive correlation between MT saturation and seizure fre-
quency restricted to the hippocampus ipsilateral to seizure 
onset can be interpreted in the context of neurogenesis and 
related biological phenomena. Given the fact that MT satu-
ration is based on differences in macromolecular content 
rather than in molecular mobility, it allows for the distinc-
tion of densely packed gray matter from normal gray and 
white matter but is also sensitive to tissue’s myelin content 
(Draganski et al. 2011; Helms et al. 2008). We interpret the 
MT saturation findings as correlates of axonal sprouting of 
existing and newly generated neurons in the ipsilateral to 
seizure onset hippocampus, most probably secondary to sei-
zures (Savaskan and Nitsch 2001) or as an additional marker 
of increased neurogenesis,—i.e. cellular density.

Disease progression related to iron concentration 
estimates

The observed positive correlation between the transverse 
relaxation rate—R2* and disease duration is interpreted as 
iron accumulation, inflammation, edema or blood leakage. 
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Iron accumulation confined to the mesial temporal lobe of 
TLE patients is supported by previous studies suggesting 
a seizure-dependent activation of an inflammatory cascade 
involving IL-6 and TNF-α cytokines leading to altered iron 
transfer and saturation (Ikeda 2001; Tombini et al. 2013; 
Zhang et al. 2014). In patients with epilepsy, transferrin 
saturations are increased as a surrogate marker for iron 
overload (Ikeda 2001) and the presence of altered iron sug-
gests dysfunctional regeneration after seizure. In line with 
a previous study, our findings support the interpretation 
that a seizure-induced increase of the permeability of the 
blood–brain-barrier leads to extravasation of blood compo-
nents and hemoglobin with the consequence of ferritin over-
expression in the hippocampus (Gorter et al. 2005). Another 
argument for the role of iron in TLE patients is the fact that 
in the animal model, iron chelators ameliorate seizure-
induced mitochondrial oxidative stress, excitotoxic neuronal 
injury and hippocampal cell loss (Liang et al. 2008). Alter-
natively, one can assume that volume and qMRI parameters 
could be influenced by vasogenic or cytotoxic edema after 
generalized seizures (Scott et al. 2006). Given the mean of 
seizure-free intervals of 46 months with a minimum interval 
of two months, the probability of seizure-induced impact on 
the presented results is negligible.

We acknowledge potential study limitations that could 
impact our results and interpretations. The cross-sectional 
nature of the study limits our inferences to correlation 
rather than causation. Given the novelty of the neuroimag-
ing approach, we focused on a rather small clinical cohort 
with unilateral left-sided seizure onset. Epilepsy severity is 
inferred from subjective reports of seizures with second-
ary generalization. Subjective seizure diaries only give a 
restricted insight into individual real seizure activity. The 
current approach focuses exclusively on seizures with gen-
eralization as determinants of temporal lobe changes. Focal 
seizures without generalization were not considered in the 
analysis. Histological interpretation of the MT and R2* 
maps are based on references studies (Helms et al. 2008), 
however building on validated biophysical models.

Conclusion

Our combined VBM/VBQ study offers additional neuro-
biological interpretation linking disease duration, seizure 
frequency, brain volume and tissue properties in pharmaco-
responsive and -resistant TLE patients. We interpret our 
results as evidence for a seizure-induced boost of neurogen-
esis and axonal sprouting associated with myelination, which 
is followed by a continuous, but reversible accumulation of 
iron in the mesial temporal lobe. Non-invasive assessment of 
brain tissue properties could become relevant for the clinical 
evaluation and outcome prediction in TLE.

Key Points

•	 qMRI biomarkers of brain tissue microstructure are 
correlates of TLE clinical phenotype providing insight 
into microscopic processes underlying disease

•	 We investigate qMRI in TLE patients and healthy con-
trols by MT saturation and effective transverse relaxa-
tion rate, biomarkers of myelin and iron concentration

•	 Seizure activity correlates with MT saturation meas-
ures in ipsilateral hippocampus paralleled by volume 
differences in same area

•	 Disease duration correlates positively with R2* meas-
ures in mesial temporal lobe, while seizure freedom is 
associated with decrease of R2* in very same region

•	 Clinical phenotype characteristics are linked to pro-
cesses involving myelination and iron differences in 
mesial temporal lobe structures
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