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Abstract
Homotopic functional connectivity reflects the degree of synchrony in spontaneous activity between homologous voxels in 
the two hemispheres. Previous studies have associated increased brain homotopy and decreased white matter integrity with 
performance decrements on different cognitive tasks across the life-span. Here, we correlated functional homotopy, both at 
the whole-brain level and specifically in fronto-parietal network nodes, with task-switching performance in young adults. 
Cue-to-target intervals (CTI: 300 vs. 1200 ms) were manipulated on a trial-by-trial basis to modulate cognitive demands 
and strategic control. We found that mixing costs, a measure of task-set maintenance and monitoring, were significantly 
correlated to homotopy in different nodes of the fronto-parietal network depending on CTI. In particular, mixing costs for 
short CTI trials were smaller with lower homotopy in the superior frontal gyrus, whereas mixing costs for long CTI trials 
were smaller with lower homotopy in the supramarginal gyrus. These results were specific to the fronto-parietal network, 
as similar voxel-wise analyses within a control language network did not yield significant correlations with behavior. These 
findings extend previous literature on the relationship between homotopy and cognitive performance to task-switching, and 
show a dissociable role of homotopy in different fronto-parietal nodes depending on task demands.

Keywords  Homotopy · Hemispheric asymmetries · Task-switching · Mixing costs · Executive functions · Resting-state 
fMRI

Introduction

Homotopic functional connectivity is defined as the degree 
of synchrony in the time course of spontaneous activity 
between the two cerebral hemispheres (Stark et al. 2008). 
The integration between the left and right hemispheres is 
a robust feature with a peculiar functional hierarchy, with 
homotopy being highest in sensory-motor regions and lowest 
in higher-level associative regions including the prefrontal 
cortex (PFC) (Stark et al. 2008; Zuo et al. 2010). This gen-
eral gradient is related to structural connections of the brain. 
The corpus callosum, the major inter-hemispheric connec-
tivity tract, plays a key role in mediating homotopy func-
tional integration (for a recent review see Jin et al. 2020). 
This assumption is supported by studies reporting an asso-
ciation between homotopic connectivity dysfunction and 
degraded corpus callosum integrity, which is accompanied 
by lower processing speed and worse cognitive performance, 
as shown in cognitive aging (Persson et al. 2006; Sullivan 
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et al. 2006; Madden et al. 2009; Gorbach et al. 2017; Avelar-
Pereira et al. 2020).

Moreover, functional homotopy is influenced by many 
alterations of brain physiology (Jin et al. 2020). Global func-
tional homotopy follows a quadratic trend across the lifes-
pan, with a progressive decrease during development, con-
ceivably accompanying functional specialization, and a later 
increase with cognitive aging (Kelly et al. 2009; Supekar 
et al. 2009; Zuo et al. 2010). An age-related increase in 
homotopy in the PFC has been shown to be associated with 
a worsening of working memory performance over 5 years 
in the adult lifespan (Avelar-Pereira et al. 2020). Homotopic 
alterations have been also reported in several brain patho-
logical conditions, such as psychiatry diseases, stroke, and 
epilepsy (Mancuso et al. 2019).

To date, few studies assessed a significant correlation 
between human cognitive abilities and homotopy, such as 
visuo-spatial attention in adolescence (Gracia-Tabuenca 
et al. 2018). The association between homotopic connec-
tivity and cognitive control has been less investigated in 
younger adults. Unraveling the role between homotopic 
brain integration and high-level cognitive functions in 
healthy adults will help to clarify the functional meaning 
of homotopy.

In the present study, we specifically focused on task-
switching (Rogers and Monsell 1995; Rubin and Meiran 
2005), a well-validated paradigm that provides two com-
plementary indices of cognitive control: mixing costs, that 
is, response time (RT) difference between repeat trials in 
task-switching and single task-blocks; and switching costs, 
that is, RT difference between switch and repeat trials during 
the task-switching blocks.

Previous studies associated higher integrity in the genu 
of the corpus callosum with better performance in task-
switching in both younger and older adults (Gold et al. 2010; 
Vallesi et al. 2016). Specifically, higher fractional anisot-
ropy and lower mean diffusivity in this white matter tract 
in younger adults predicted lower mixing costs, whereas 
no correlations were found for the switching costs (Vallesi 
et al. 2016). Mixing costs have been interpreted as a meas-
ure of sustained control processes, including maintenance 
and monitoring of task-set, or management of competition 
between task-sets in task-switching blocks (Ilan and Miller 
1994; Braver et al. 2003; Rubin and Meiran 2005; cf. Los 
1996). No correlations were instead found for the switching 
costs, a measure of phasic processes such as task-set recon-
figuration, updating, or interference (Rogers and Monsell 
1995; Allport and Wylie 1999). These studies suggest a dis-
sociation between these two types of costs (also see Ambro-
sini et al. 2019, for factor analysis evidence).

Concerning the neural basis of task-switching, neuro-
imaging studies have shown that regions that belong to 
the fronto-parietal network (FPN) are activated during the 

performance of different types of task-switching (e.g., Sohn 
et al. 2000; Kim et al. 2011; Jamadar et al. 2015; Vallesi 
et al. 2015). More specifically, animal and human neuro-
science research provided evidence that lateral prefrontal 
regions are involved in representing task-sets (Miller and 
Cohen 2001; Sakai 2008), whereas dorsal parietal regions 
are important to voluntarily shift attentional focus as well 
as planning and implementing task-relevant selection of 
stimuli and responses (Posner and Petersen 1990; Corbetta 
and Shulman 2002; Corbetta et al. 2008; Cabeza et al. 2008).

Compatible with this view, a recent Transcranial Mag-
netic Stimulation (TMS) study on task-switching (Muhle-
Karbe et al. 2014) showed that inhibition of the left infe-
rior frontal junction may interfere with task goal updating, 
whereas inhibition of the left intra-parietal sulcus may dis-
rupt the ability to update the specific response sets. This 
suggests that the intra-parietal sulcus is more involved in 
translating abstract task goals into specific action rules to 
guide task implementation.

Regarding the two behavioral costs, previous studies have 
associated mixing and switching costs with the functioning 
of right and left-lateralized prefrontal regions, respectively. 
For example, Braver and colleagues (2003) found that faster 
repeat-trial responses in mixed blocks were associated with 
higher right anterior prefrontal activations, whereas faster 
switching responses were associated with higher left pari-
etal activations. Another resting-state EEG study using three 
different task-switching paradigms (Ambrosini and Vallesi 
2016) showed that right-ward asymmetrical activity (opera-
tionalized as β/α ratio) in a dorsolateral prefrontal source 
predicted smaller mixing costs, while left-ward asymmetri-
cal activity in the same region predicted smaller switching 
costs, compatibly with a role of these lateralized activities in 
complementary executive functions (Vallesi 2021).

In the light of the previous literature, we investigated in 
this study whether global brain homotopy and more spe-
cific homotopy in nodes of the FPN could predict cogni-
tive performance in a classical task-switching paradigm. 
We analyzed mixing and switching costs as markers of sus-
tained and phasic control processes, respectively. We also 
manipulated cue-to-target interval (CTI: 300 vs. 1200 ms) 
on a trial-by-trial basis to differentially modulate cognitive 
demands in this paradigm (e.g., Meiran 1996; Cooper et al. 
2015; Capizzi et al. 2020).

As commonly observed in the task-switching literature 
(see Kiesel et al. 2010; Karayanidis and Jamadar 2015, for 
reviews), given that our CTI manipulation was trial-by-trial, 
we expected a sub-optimal task-preparation (and thus worse 
performance) for the short CTI, as in this situation the maxi-
mum level of preparation has been shown to be timed later 
for shorter CTIs than for longer ones (Altmann and Gray 
2008). Moreover, sub-optimal preparation for short CTIs 
would be more generally exacerbated by variable foreperiod 
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effects, occurring when short and long preparatory intervals 
are randomly intermixed within a block of trials (e.g., Niemi 
and Näätänen 1981; Vallesi 2010).

Additionally, in terms of brain-behavior correlations, we 
also expected task-switching behavioral performance to be 
worse with higher brain functional homotopy, specifically 
in regions belonging to the FPN, with possibly differen-
tial effects of switching and mixing costs with short and 
long CTIs. Nevertheless, the opposite prediction could also 
be put forward, as previous studies have shown that more 
complex and difficult tasks (e.g., task-switching) are associ-
ated with higher interhemispheric interactions especially in 
fronto-parietal regions (Banich and Belger 1990; Ocklen-
burg et al. 2012). This alternative prediction is, however, 
much less likely, as task demands are conceivably low dur-
ing the resting-state period in which functional homotopy 
is computed, and it may not be related to task-related inter-
hemispheric functional integration required for demanding 
tasks. We further investigated cognitive-functional coupling 
using network connectivity strength, a functional measure 
investigating brain integration between regions without con-
sidering brain interhemispheric interactions.

Methods

Participants

Forty-seven young healthy individuals (26 females; mean 
age = 24.7 years, SD = 3.5) voluntarily took part in the 
study. All participants gave informed consent prior to their 
recruitment. For their time, they were reimbursed for both 
the fMRI and the behavioral experimental sessions (see 
details on the General procedure section). All of them were 
right-handed as assessed with the Edinburgh Handedness 
Inventory (Oldfield 1971) with an average score of 87.8 
(SD = 12.2), reported no history of neurological or psychi-
atric disorders, had a normal color vision and normal or 
corrected-to-normal visual acuity. The procedures involved 
in this study were approved by the Bioethical Committee of 
the Azienda Ospedaliera di Padova–AOP (Prot # 2758P).

General procedure

Each participant was tested in two separated experimental 
sessions (mean inter-session interval = 21.5 days, SD = 17.4). 
In the first session, structural and resting-state functional 
MRI (rs-fMRI) data were acquired along with some task-
related fMRI data collected for different aims and published 
elsewhere (e.g., Visalli et al. 2019). The order of acquisition 
was: (i) rs-fMRI, (ii) task-related fMRI, and (iii) structural 
MRI. In the second session, participants performed the 

color-shape task-switching paradigm, which is the focus of 
the present study.

The color‑shape task‑switching paradigm

Participants performed a color-shape task-switching para-
digm (Rubin and Meiran 2005; Ambrosini and Vallesi 2016; 
Vallesi et al. 2016), which was implemented in MATLAB 
(The MathWorks, Inc., Natick, Massachusetts, United States) 
using the Psychophysics Toolbox 3 (Kleiner et al. 2007). 
A graphical representation of the paradigm is presented in 
Fig. 1. Participants sat in a dimly lit soundproof cabin at a 
viewing distance of approximately 60 cm from the computer 
screen. Each trial started with a black fixation cross (visual 
angle: 0.28° by 0.28°) displayed at the center of the screen. 
After 1500 ms, a cue stimulus (visual angle: 5.5° by 1.7°) 
signaling the task to be performed was presented 4.6° above 
the fixation cross. The color task cue consisted of a row of 
three colored rectangles (purple, orange, and yellow), while 
the shape task cue consisted of a row of three small black 
shapes (a triangle, a circle, and a square). Graphic cues were 
chosen to limit the use of linguistic information (Ambrosini 
and Vallesi 2016). After a cue-to-target interval (CTI) of 
either 300 ms (short CTI) or 1200 ms (long CTI), the fixa-
tion cross was replaced by the target stimulus consisting of 
a heart or a star shape (visual angle: 3.5° by 3.5°) in either 
red or blue color. The short CTI was long enough for task-
cue encoding but it was probably too short for task recon-
figuration (cf., Meiran 1996; see also: Luria and Meiran 
2006; Schneider 2016; Lange et al. 2018). The long CTI 
was instead long enough for the completion of task recon-
figuration since its duration was considerably higher than 
average RTs in slow conditions (Rogers and Monsell 1995; 
Meiran 1996). The target was displayed until a response 
was produced by the participant (maximum response time 
allowed: 2500 ms). Participants were instructed to respond 
as fast and accurately as possible to either the shape or the 
color of the target on the basis of the target cue. Responses 
were provided by pressing one of the two lower buttons of 
the CEDRUS RB-840 response pad with the left and right 
index fingers. The assignment of the two shapes and the 
two colors to response keys (2-by-2 possible combinations) 
was counterbalanced across participants. The four possible 
stimuli (two colors by two shapes combination) and the two 
CTIs were pseudo-randomly interleaved within each block 
of trials ensuring that each possible stimulus-by-CTI com-
bination was presented an equal number of times across trial 
types (see below).

Participants completed eight blocks of trials of two differ-
ent types: (i) single-task blocks, during which participants 
performed only one task for the entire block (either color or 
shape), (ii) and task-switching blocks, in which participants 
were required to switch or repeat the task performed at the 
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previous trial on the basis of the task cue. In the single-task 
blocks, the cue was always the same (i.e., the color task cue 
for the pure color block, and the shape task cue for the pure 
shape block). The task procedure was structured as follows: 
(i) two single-task blocks of 40 trials each (one for each task; 
task order counterbalanced across participants); (ii) two 
task-switching blocks of 65 trials each (32 switch trials + 32 
repeat trials + the initial trial); two 40-trial single-task blocks 
(task order inverted with respect to the two initial single-
task blocks). The CTI manipulation was implemented in 

each block type. This trial-wise (instead of block-wise) CTI 
manipulation was used to overcome the possible confound-
ing effects due to changes in task strategy or differences in 
memory load (Meiran 1996). The first three blocks were 
preceded by a short practice phase (8 trials for the single-
task blocks, 16 trials for the switching block). During prac-
tice only, feedback about accuracy and speed was provided 
after each response (the Italian translations for “Well done”, 
“Correct, but try to be faster”, or “Wrong” were displayed 
at the center of the screen after a correct response given 

Fig. 1   Task-switching paradigm. Trials started with a black fixation 
cross. After 1500  ms, a cue stimulus signaled the task to be per-
formed: three colored rectangles required the participant to indicate 
the color of the target (blue or red); three small black shapes required 
the participant to indicate the shape of the target (heart or star). After 
a cue-to-target interval (CTI) of either 300 or 1200 ms the target was 
displayed until the participant’s response (max 2500  ms). Partici-

pants completed eight blocks of trials of two different types: single-
task and task switching blocks. In single-task blocks participants 
were required to perform only one task during the entire block, either 
shape (A) or color (B). In task-switching blocks (C) participants were 
required to indicate either the shape or the color of the target accord-
ing to the cue. The structure of the trial was the same in all block 
types
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within the 2 s maximum RT allowed in test trials, a correct 
response > 2 s, or an incorrect response, respectively). Self-
paced breaks were available between blocks.

Behavioral scores

Data from three participants were discarded since they were 
excluded for imaging issues (see below). The final sample 
for all the reported analyses, hence, included 44 participants. 
A sensitivity power analysis (G*Power 3 software; Faul 
et al. 2007) revealed that our sample size was large enough 
to detect significant (α = 0.05) mean differences between 
two dependent means (e.g., the main effect or the interac-
tion effect of a 2-by-2 repeated measures ANOVA) with a 
medium effect size d = 0.43 (Cohen 1988) with a statistical 
power of 0.80. Data from the practice phase, first trial in a 
block, error (incorrect or no response) and post-error tri-
als were excluded from analysis. For each trial type (i.e., 
single-task, repeat and switch trials) at each CTI, response 
time (RT) values more extreme than one and a half times the 
interquartile range (i.e., the difference between the upper and 
lower quartile) above the upper quartile or below the lower 
quartile were identified as outliers (Borcard et al. 2011) and 
excluded (mean excluded trials = 5.1%, SD = 1.9%). Mean 
RTs were, then, computed for each trial type at each CTI and 
used to calculate two behavioral cost measures: (i) switching 
costs (Monsell 2003), computed as the difference between 
the mean RT from switch trials and that from repeat trials; 
(ii) and mixing costs (Rubin and Meiran 2005), computed as 
the difference between the mean RT from repeat trials and 
that from pure trials. The resulting four scores (i.e., mix-
ing and switching costs at short and long CTI; Fig. 2) were 
used for the brain-behavior correlations with the homotopy 
scores. The correlation between switching and mixing 
costs was r = 0.03 (p = 0.858) at short CTI, and r = − 0.40 
(p = 0.005) at long CTI.

MRI acquisition

Structural and functional images were acquired with a 3 T 
Ingenia Philips scanner (Philips Medical Systems, Best, The 
Netherlands) at the Neuroradiology Unit of the Padova Uni-
versity Hospital. The system was equipped with a 32-channel 
head-coil. Functional data consisted of 250 T2*-weighted 
echo-planar image (EPI) volumes (repetition time, TR: 
2000 ms; echo time, TE: 30 ms; 39 axial-slices with ascend-
ing acquisition; voxel size: 3 × 3 × 3 mm; flip angle, FA: 
76°; acquisition matrix: 84 × 84). After the functional ses-
sion, high resolution T1-weighted anatomical images were 
acquired (TR/TE: 8.10/3.72 ms; 180 sagittal slices; voxel 
size: 1 × 1 × 1 mm; FA: 8; acquisition matrix: 256 × 256). 
To reduce head movements during data acquisition, small 

foam cushions and sponge pads were placed around the par-
ticipant’s head.

Resting‑state fMRI preprocessing

Two participants were excluded after visual quality check, 
reporting enlarged ventricles which could affect normali-
zation steps, while one participant was excluded due to 
an incomplete rs-fMRI exam, thus leaving a sample of 44 
participants for the analysis. Functional data were preproc-
essed using the FMRIB Software Library, version 6.0.0) 
(Smith et al. 2004), according to a previously described 
pipeline (Pini et al. 2020). Functional data were motion 
corrected, brain extracted and registered to the corre-
sponding structural image with rigid-body transformation 
and nonlinearly registered to a symmetric brain template 
(ICBM 2009a Nonlinear symmetric template). Functional 
data were high-pass filtered (100 s) and for each functional 
volume, the framewise displacement (FD) was estimated 
and volumes with more than 0.25 mm FD were regressed 
out from the time series. Confounding variables also 
included the average signal of white matter and cerebro-
spinal fluid, 6 head motion parameters, the derivatives of 
these 8 regressors, and the square of these 16 regressors, 
as suggested by Satterthwaite et al. (2013). In addition, 
the time-courses of the first 5 principal components cal-
culated over white matter and cerebro-spinal fluid voxels 
were included as confounding variables to minimize fur-
ther the effect of physiological noise, a method referred 

Fig. 2   Raincloud plots of behavioral costs. The panels show the dis-
tribution in our sample of switching (A) and mixing (B) costs at short 
(300 ms) and long (1200 ms) CTIs. Data points in the lower panels 
represent individual costs, which are overlaid with boxplots display-
ing sample median alongside interquartile range. The raincloud plots 
were generated using codes provided by Allen et al. (2019)
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as aCompCor, widely used in rs-fMRI pre-processing 
(Behzadi et al. 2007; Chai et al. 2012). Finally, images 
were spatially smoothed using a Gaussian kernel with a 
full-width at half-maximum of 6 mm.

Fronto‑parietal network identification

For an overview of the methodology see Fig. 3. First, we 
identify brain regions organized within the FPN through 

Fig. 3   Workflow of the functional connectivity and homotopy analy-
sis. From the rs-fMRI preprocessed data we extracted the frontopa-
rietal network (FPN) through an independent component analysis 

approach, and voxel-mirror homotopy properties. Functional maps 
were then correlated with behavioral performance (mixing and 
switching costs) through a permutation strategy
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an independent component analysis (ICA). In this step, we 
further included 15 participants with the same rs-fMRI data 
who did not come back to complete the second (behavio-
ral) session and an independent dataset of 21 healthy young 
individuals with MRI sequences with equivalent acquisi-
tion parameters collected at a different site (see Supple-
mentary Methods), for a total of 83 healthy participants 
(45 females; mean age = 24.4 years, SD = 3.2; EHI = 84.5, 
SD = 27.2). The inclusion of a larger sample is known to 
ensure a more robust output in fMRI analyses (Desmond and 
Glover 2002; Mumford and Nichols 2008; Lindquist et al. 
2013). Preprocessed fMRI data were fed into the Group ICA 
Toolbox (GIFT version 3.0a http://​mialab.​mrn.​org/​softw​
are/​gift/) (Calhoun et al. 2001). The number of independent 
components extracted (n = 76) was chosen according to the 
minimum description length criteria (Li et al. 2007). The 
resulting FPN group map was identified through a template 
matching spatial correlation procedure with standard tem-
plates (Shirer et al. 2012), and visually inspected to exclude 
components underlying artifacts, according to Griffanti et al. 
(2017) criteria. The FPN map was binarized at z > 2 and 
used as a whole region of interest (ROI) in the homotopy 
analysis, according to previous procedures applied by our 
group to investigate this network (Pini et al. 2020). For sim-
plicity, results are reported in the left hemisphere. Finally, 
we included the language network, identified through a spa-
tial correlation procedure with the fslcc utility from FSL 
compared with the Shirer’s language template (Shirer et al. 
2012). This network was included as a control network. We 
assumed that homotopy of regions overlapping with lan-
guage network hubs would not exhibit a significant associa-
tion with executive tasks, since these regions converge on a 
left-lateralized network active during speech reception and 
production (Braga et al. 2020).

Finally, for each participant we computed the correla-
tion between cognitive performance and FPN functional 
connectivity strength. Specifically, for each participant, the 
GIFT FPN maps were inserted into a voxel-wise correla-
tion analysis with the switching and mixing tasks. Finally, 
to confirm voxel-wise correlation, FPN-ROI analysis was 
performed, computing the correlation between z score mean 
FPN strength (i.e., mean FPN values—which express the 
degree of functional connectivity within the network for 
each participant) and cognitive performance.

Voxel‑mirror homotopy computation

For each participant, we computed homotopy brain prop-
erty as the voxel-mirrored homotopic functional connec-
tivity between every pair of mirror voxels through in-house 
scripts based on R using unsmoothed data as previously 
reported (Gracia-Tabuenca et al. 2018; Zuo et al. 2010). 
Briefly, in the symmetrical brain space we computed 

the Pearson’s correlation coefficient between each voxel 
time-series residuals (after pre-processing steps) with the 
hemispheric counterpart. Voxels belonging to the three 
sagittal midline slices (9 mm) were excluded, to avoid 
inter-hemispheric partial volume effect. Then correlation 
values were Fisher Z-transformed. Finally, homotopy maps 
of each individual were smoothed with a gaussian kernel 
of 6 mm.

We included in the analysis both whole-brain homotopy 
maps (whole voxel values) and homotopy connectivity 
within the FPN, computed masking the whole-brain homot-
opy maps with the group ROI-FPN binarized map (see pre-
vious section).

Brain functional‑behavioral score correlations

We investigated the association between brain functional 
properties (i.e., connectivity strength and homotopy) and 
mixing/switching costs in different CTI (long, short) in the 
sample of participants who completed both fMRI and behav-
ioral sessions.

This analysis was performed at FPN ROI levels: (i) for 
the homotopy analysis, we first averaged homotopy values 
of voxels within the FPN map. Then we computed corre-
lational analysis between behavioral measures and mean 
homotopy; (ii) for the functional connectivity strength anal-
ysis, the FPN maps from GIFT were threshold at z > 2 and 
an average score for each participant was calculated. The 
ROI analysis was repeated considering whole (left) brain 
mean homotopy values to assess whether the association 
between homotopy and mixing/switching costs was stronger 
within FPN regions than for the whole brain. Due to the non-
linear distribution of homotopy values, we performed a non-
parametric Spearman correlation to assess the association 
between connectivity organization and cognition. p values 
were corrected for multiple comparisons (n = 4 behavioral 
measures; p < 0.0125) to control for type I error with Bon-
ferroni correction.

At the voxel-wise level, we investigated brain-behavior 
correlation between cognitive performance with both FPN 
connectivity and homotopy strength. We implemented a 
nonparametric inference based on permutations (n = 5000) 
using FSL randomise (https://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki/​
Rando​mise). Multiple comparisons were corrected across 
space using familywise error (FWE) based on permuta-
tion testing at a threshold-free cluster enhancement (TFCE; 
Smith and Nichols 2009). Positive and negative associations 
between homotopy and behavioral measures were tested at 
a TFCE level of p < 0.025 corresponding to a two-tailed 
p < 0.05 (randomise correction is only performed on one-
tailed tests). Each contrast was restricted to the FPN map, 
computed as described above.

http://mialab.mrn.org/software/gift/
http://mialab.mrn.org/software/gift/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise
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Reliability analysis

To ensure that the mean homotopy map used in the cor-
relational analysis exhibits a reliable profile, we computed, 
through the same procedure, voxel-mirrored homotopic 
functional connectivity from a larger open-source avail-
able dataset. To this aim, we retrieved participants from 
the Population Imaging of Psychology dataset (PIOP2), 
which is released within the Amsterdam Open MRI Col-
lection (AOMIC). This dataset was selected according to 
the number of scans (250 scans) and TR (2000 ms), which 
were comparable with the dataset used in the present study 
(240 scans and TR = 2000 ms). For further details about 
PIOP2 dataset, see Snoek et al. (2021). From the PIOP2 
dataset, we retrieved 224 participants with both structural 
MRI and rs-fMRI data available. The list of PIOP2 partici-
pants included in this analysis is reported in Supplementary 
Table S1. From the PIOP2 dataset, we computed both mean 
Z-Fisher homotopy maps and one-sample homotopy t-maps. 
We then ran spatial cross-correlation between both mean 
and t-maps from PIOP2 and the study dataset through the 
FSL utility fslcc (FSL v.6.0.0; https://​fsl.​fmrib.​ox.​ac.​uk/​fsl/).

Reliability of behavioral measures—i.e., mean RT for 
each trial type (pure, switch, and repeat trials) at each CTI 
(300 and 1200 ms) and the resulting mixing and switching 
costs—was evaluated by means of split-half correlations 
corrected with Spearman-Brown formula. Reliability coef-
ficients were calculated as follows: (i) trials of each partici-
pant for each trial type-by-CTI combination were randomly 
splitted into two subsets of equal size; (ii) mean RTs was 
computed separately for the two subsets; (iii) switching and 
mixing costs were also calculated for the two subsets; (iv) 
correlations of participant’s mean RTs and costs between the 
two subsets were calculated and corrected. The procedure 
was repeated 2000 times and the median correlation taken 
as an index of reliability.

Results

Behavioral results

Descriptive statistics about switching and mixing costs are 
shown in Fig. 4 and Table 1. Concerning switching costs, 
2-by-2 repeated-measures ANOVAs with within-subject 
factors “Trial type” (levels: repeat and switch trials) and 
CTI (levels: short and long) were conducted on (arcsine 
transformed) accuracy rates and mean RTs. The ANOVA 
on accuracy (see Fig. 4, Panel A) showed significant effects 
for Trial type (F(1,43) = 26.2, p < 0.001, partial η2 = 0.38), 
CTI (F(1,43) = 25.5, p < 0.001, partial η2 = 0.37), and their 
interaction (F(1,43) = 9.46, p = 0.004, partial η2 = 0.18). 
Accuracy was higher for repeat trials at long compared to 

short CTI, although this CTI effect was greater for switch 
trials. Post-hoc comparisons (Holm correction method) 
showed a significant trial-type difference at short CTI 
(mean difference = 0.14, SE = 0.02, t = 5.92, p < 0.001, 95% 
CI for mean difference = 0.07–0.20, Cohen’s d = 0.89), but 
not at long CTI (mean difference = 0.05, SE = 0.02, t = 2.10, 
p = 0.118, 95% CI = − 0.01–0.11, Cohen’s d = 0.32). They 
also showed a significant CTI difference for switch trials 
(mean difference = − 0.12, SE = 0.02, t = − 5.76, p < 0.001, 
95% CI = − 0.17 to − 0.06, Cohen’s d = -− 0.87), but not for 
repeat trials (mean difference = − 0.03, SE = 0.02, t = − 1.46, 
p = 0.296, 95% CI = − 0.08–0.02, Cohen’s d = − 0.22). 
The ANOVA on RTs revealed significant effects for Trial 
type (F(1,43) = 108.42, p < 0.001, partial η2 = 0.72), CTI 
(F(1,43) = 291.61, p < 0.001, partial η2 = 0.87), and their 
interaction (F(1,43) = 52.30, p < 0.001, partial η2 = 0.55). 
Figure 4, Panel B shows that RTs were longer in switch 
trials. They were longer also at the short CTI and this CTI 
effect was greater for switch trials. Post-hoc comparisons 
revealed that CTI differences were significant in both 
repeat trials (mean difference = 0.12 s, SE = 0.02, t = 7.13, 
p < 0.001, 95% CI = 0.08–0.17, Cohen’s d = 1.08) and 
switch trials (mean difference = 0.30 s, SE = 0.02, t = 17.25, 
p < 0.001, 95% CI = 0.25–0.35, Cohen’s d = 2.60). Trial 
type differences were significant at both short (mean dif-
ference = − 0.21 s, SE = 0.02, t = − 12.45, p < 0.001, 95% 
CI = − 0.25 to – 0.17, Cohen’s d = − 1.88) and long CTI 
(mean difference = − 0.03 s, SE = 0.02, t = − 2.11, p = 0.037, 
95% CI = − 0.08–0.01, Cohen’s d = − 0.32). A paired sam-
ples t test comparing switching costs at short vs long CTI 
revealed a significant difference (mean difference = 0.18, 
SE = 0.03, t(43) = 7.23, p < 0.001, 95% CI = 0.13–0.23, 
Cohen’s d = 1.09).

Concerning mixing costs, 2-by-2 repeated-measures 
ANOVAs with within-subject factors “Trial type” (lev-
els: pure and repeat trials) and CTI (levels: short and 
long) were conducted on (arcsine transformed) accu-
racy rates and mean RTs. The ANOVA on accuracy (see 
Fig. 4, Panel C) showed no significant effects for Trial 
type (F(1,43) = 0.35, p = 0.560, partial η2 = 0.008), CTI 
(F(1,43) = 1.08, p = 0.305, partial η2 = 0.02), and their 
interaction (F(1,43) = 2.34, p = 0.134, partial η2 = 0.05). 
The ANOVA on RTs revealed significant effects for Trial 
type (F(1,43) = 90.08, p < 0.001, partial η2 = 0.68), CTI 
(F(1,43) = 92.70, p < 0.001, partial η2 = 0.68), and their 
interaction (F(1,43) = 56.82, p < 0.001, partial η2 = 0.57). 
As shown in Fig. 4, Panel D, RTs were shorter in pure 
trials. Moreover, they were also shorter with long CTI, 
especially in repeat trials. Post-hoc comparisons showed 
that the CTI differences were significant for repeat trials 
(mean difference = 0.12 s, SE = 0.01, t = 12.18, p < 0.001, 
95% CI = 0.10–0.15, Cohen’s d = 1.84), but not for pure 
trials (mean difference = 0.02  s, SE = 0.01, t = 1.88, 

https://fsl.fmrib.ox.ac.uk/fsl/
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p < 0.063, 95% CI = − 0.01–0.05, Cohen’s d = 0.28). Trial 
type differences were significant at both short (mean dif-
ference = − 0.19 s, SE = 0.02, t = − 11.85, p < 0.001, 95% 
CI = − 0.23 to – 0.14, Cohen’s d = − 1.79) and long CTIs 
(mean difference = − 0.08, SE = 0.02, t = − 5.16, p < 0.001, 
95% CI = − 0.12 to − 0.04, Cohen’s d = − 0.78). A paired 
samples t test comparing mixing costs at short vs long CTI 
revealed a significant difference (mean difference = 0.11, 
SE = 0.01, t(43) = 7.54, p < 0.001, 95% CI = 0.08–0.13, 
Cohen’s d = 1.14).

Fig. 4   Trial type by CTI interaction plots. A Marginal means of 
arcsine transformed accuracy rates for repeat (blue diamonds) and 
switch trials (orange squares) at the short (i.e., 300 ms) and long (i.e., 
1200  ms) cue-to-target intervals (CTI). B Marginal means of mean 
response times (RT) for repeat and switch trials at the short and long 

CTI. C Marginal means of arcsine transformed accuracy rates for 
pure (green triangles) and repeat trials (blue diamonds) at the short 
and long CTI. D Marginal means of mean RT for pure and repeat tri-
als at the short and long CTI. Error bars represent the standard error 
of the mean

Table 1   Descriptive statistics of behavioral data

CTI  cue-to-target interval

Trial type CTI (ms) RT (ms) Accuracy (%)

Mean SD Mean SD

Pure 300 439 48 97.9 1.7
1200 420 54 97.5 2.3

Repeat 300 625 135 95.8 4.7
1200 501 123 97.1 3.2

Switch 300 838 189 90.5 6.3
1200 537 123 95.4 4.5
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Homotopy map results

Mean maps of the larger sample (n = 83) showed higher 
homotopy values within the motor and visual regions, and a 
decreased pattern in medial frontal, orbitofrontal and limbic 
regions (Fig. 5, Panel A). This pattern was echoed by the 
one-sample t map (Fig. 5, Panel B) in the whole sample 
(fsl-randomize, n = 5000 permutation). T values highlight 
consistent homotopy values across individuals, incorporat-
ing inter-subject variability. Moreover, the same pattern was 
reported in the subsample of participants who performed the 
cognitive tasks (n = 44) (Supplementary Figure S1), sup-
porting the robustness of homotopy findings in our sample.

Homotopy association with cognitive tasks

There was a positive correlation between homotopy values at 
the whole-brain level and mixing costs with long CTI dura-
tion (Fig. 6, Panel B), although not surviving multiple com-
parison correction (Spearman r, rs = 0.332; p < 0.028). The 
association between whole-brain homotopy and mixing costs 
with short CTI and switching costs (both long and short 
CTI) showed no significant associations (p > 0.1; Fig. 6).

By contrast, there was a significant association between 
the FPN-ROI homotopic connectivity and mixing costs 
with both short and long CTI (Fig. 7, Panels A, B), with 
the latter surviving multiple comparison correction 
(rs = 0.493; p = 0.001). A negative trend was observed 
between FPN-homotopy and switching costs with long 
CTI, although not surviving correction for multiple 

comparisons (rs = 0.364; p = 0.015; Fig. 7, Panel D). No 
significant association was found for FPN-homotopy and 
switching costs with short CTI (Fig. 7, Panel C). Overall, 
this analysis showed that the correlation between homot-
opy and cognitive measures was significant and survived 
correction for multiple comparisons in FPN regions, espe-
cially for mixing costs.

We further investigated the association between homot-
opy and FPN-ROI with a voxel-wise level analysis. Clus-
ters showing a significant positive association between 
homotopy and mixing costs were reported for each CTI. 
Specifically, for the long CTI, mixing costs were posi-
tively related to homotopy in a FPN cluster mapping to the 
supramarginal gyrus, while for the short CTI, the mixing 
costs were linked with homotopy values of the superior 
frontal gyrus (Fig. 8; Table 2). The plots of the distribution 
of correlation values between behavioral performance and 
averaged homotopy of these clusters (assessed with Pear-
son’s correlation) could be appreciated in Fig. 8. In a post-
hoc analysis, we investigated whether other frontal regions 
showed a significant correlation with the switching task 
performance. To this aim, the group FPN map from GIFT 
was thresholded at a threshold of z = 1, which allowed the 
inclusion of larger clusters mapping to the dorsolateral 
prefrontal cortex and in the temporal gyrus. We applied 
the same statistical model with a more lenient threshold 
(TFCE level p < 0.001, uncorrected). This analysis showed 
positive homotopy-behavior correlations in the same clus-
ters reported in the main analysis (Supplementary Figure 
S2). Finally, homotopy functional connectivity within the 

Fig. 5   Homotopy maps in the whole sample of participants (n = 83, only 44 of whom then performed the task-switching test). Mean Z Fisher 
maps (A) and one-sample t test (B) are reported on the left fsaverage surface. Red colors: higher homotopy functional connectivity
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language network (control analysis) did not show signifi-
cant associations at the voxel-wise level with either mixing 
or switching costs, as expected.

Functional connectivity strength and cognitive 
performance

In contrast to the homotopy results, we did not find a 
significant association between functional connectivity 
strength and task-switching performance. At the ROI level, 
the connectivity strength of the FPN was not linked with 
either mixing costs (CTI long: rs = 0.117; p = 0.449; CTI 
short: rs = 0.216; p = 0.158; see Fig. 9), or switching-costs 
(CTI long: rs = − 0.146; p = 0.343; CTI short: rs = − 0.292; 
p = 0.054). This result was in line with the voxel-wise analy-
sis, where we did not observe voxels expressing a significant 
relationship between connectivity strength and task perfor-
mance, for any of the contrasts investigated. To ensure that 
these results were not threshold-dependent, we performed 
this correlational analysis without applying a threshold to 
the FPN maps. The same null results were confirmed for 

both ROIs (mixing costs: CTI long: rs = − 0.098; p = 0.526; 
CTI short: rs = − 0.294; p = 0.053; switching costs: CTI 
long: rs = 0.109; p = 0.483; CTI short: rs = 0.232; p = 0.130) 
and voxel-wise approaches.

Functional and behavioral reliability

As shown in Fig. 10 (panel A), the homotopy maps from 
the PIOP2 cohort and our study dataset were similar. The 
spatial cross-correlation between mean (Z-Fisher) maps 
was r = 0.89 (Fig. 10; panel B). A similar cross-correlation 
value was reported when comparing one-sample t-maps, 
with r = 0.92, suggesting that homotopy features are highly 
reproducible among independent datasets.

For the behavioral measures, reliability of mean RTs for 
the six trial type-by-CTI combinations was: 0.96 (range of 
Pearson’s correlation coefficients: 0.91–98) for pure trials 
at short CTI; 0.96 (range: 0.92–0.99) for pure trials at long 
CTI; 0.92 (range: 0.80–0.97) for repeat trials at short CTI; 
0.93 (range: 0.79–0.98) for repeat trials at long CTI; 0.91 
(range: 0.81–0.96) for switch trials at short CTI; 0.91 (range: 

Fig. 6   Correlation between behavioral measures and whole brain 
average homotopy. rs = nonparametric Spearman correlations. Panels 
A and B show this correlation for mixing costs, short and long Cue-

to-Target intervals (CTI), respectively; Panels C and D show the cor-
relation for the switching costs, short and long CTI, respectively
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0.75–0.97) for switch trials at long CTI. Median correlations 
for switching costs were 0.89 (range: 0.71–0.96) at short CTI 
and 0.88 (range: 0.63-0.97) at long CTI. Median correlations 
for mixing costs were 0.81 (range: 0.59–0.94) at short CTI 
and 0.87 (range: 0.61–0.96) at long CTI.

Discussion

This study was focused on understanding the relationship 
between task-switching performance and functional FPN 
properties. Overall, the present results show that FPN 
homotopy is associated with cognitive performance in a 
task-switching paradigm. Specifically, higher homotopy 
connectivity was linked with worse cognitive outcomes. 
This result echoes previous studies suggesting that higher 
homotopy might represent a proxy of cognitive impairment, 
as observed in several neurological conditions (Guo et al. 
2013; Zhang et al. 2015). As expected, the association was 
significant for the FPN, whereas the relationship between 
whole-brain homotopy organization and task-switching 

performance did not survive multiple comparison correc-
tion. These findings suggested that homotopy connectivity 
of brain regions belonging to the FPN are linked with execu-
tive processes underlying performance on this complex task, 
in line with the assumption that this network represents a 
critical hub for cognitive control in a goal-driven manner 
(Marek and Dosenbach 2018). Notably, the relationship 
between FPN functional connectivity (ICA map) and cog-
nitive performance was not significant, suggesting that FPN 
hemispheric specialization might be a more sensitive proxy 
of higher cognitive abilities compared to measures of within-
network connectivity strength.

Interestingly, our results showed a differential association 
of homotopy in the superior frontal gyrus and the supramar-
ginal gyrus with mixing costs for the short and long CTIs, 
respectively. Notably, these relationships seem specific to 
FPN areas, as no association at the voxel-wise level was 
present between behavior and homotopy in hubs of the con-
trol language network. These findings might suggest that 
different sub-processes are hosted within the FPN homotopy 
gradient during task-switching, as already shown elsewhere 

Fig. 7   Correlation between behavioral measures and fronto-parietal 
homotopy; rs = nonparametric Spearman correlations. p values sur-
viving multiple comparisons are reported in italics. Panels A and B 

show this correlation for mixing costs, short and long CTI, respec-
tively; Panels C and D show the correlation for the switching costs, 
short and long CTI, respectively
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(e.g., Muhle-Karbe et al. 2014). In particular, short CTIs 
make task-switching-related processes more demanding, 
as reported in previous literature for switching costs (Koch 
2001; Monsell 2003; Arrington and Logan 2004; Petruo 
and Beste 2021), and demonstrated by our behavioral data 
analysis also for mixing costs (cf., Manzi et al. 2011). Mix-
ing costs for the short CTI were indeed more than twice as 
big as those for the long one (186 vs. 81 ms, see Table 1). 
While variable foreperiod effects (e.g., Niemi and Näätänen 
1981; Vallesi et al. 2014) could have surely contributed to 
this performance difference between the two CTIs, the short 
CTI condition conceivably entails more uncertainty and 

higher demands on goal maintenance processes reflected by 
mixing costs (Cooper et al. 2015). Control of higher-level 
goal representations is hosted in rostral medial premotor/
prefrontal regions (e.g., Taren et al. 2011; Korb et al. 2017; 
Badre and Nee 2018), which is consistent with the locus of 
the homotopy correlation effect with short CTI mixing costs.

Mixing costs with long CTI (1200 ms) instead positively 
correlated with homotopy in the supramarginal gyrus. Task-
switching performance with long CTI probably relies less 
on task-goal maintenance and more on transforming well-
prepared abstract task-sets to specific sensori-motor actions 
during task implementation, which is a function attributed 

Fig. 8   Fronto-parietal region-of-interest from group ICA registered to 
the asymmetrical MNI template and mapped to the fsaverage surface 
(A). Clusters showing significant positive association were reported 
for both mixing costs in the long CTI, mapping to the supramarginal 
gyrus (SG), and mixing costs in the short CTI, mapping to the supe-
rior frontal gyrus (SFG). Significant results are shown at p < 0.025 

FWE-corrected (Panel B, top). Post hoc analysis between mixing 
costs and averaged homotopy within significant clusters from voxel-
wise analysis are shown in Panel B, bottom. No significant associa-
tion was reported between executive tasks and homotopy properties 
of the language network shown in Panel C. A anterior, P posterior

Table 2   Coordinates showing a significant positive association between homotopic functional connectivity and behavioral measures of mixing 
costs for long and short Cue-to-Target-Interval (CTI)

The location of significant clusters is referred to in terms of the coordinates of peak p value in the ICBM 2009a Nonlinear symmetric template 
voxel space (3 voxel size isotropic resolution; neurological orientation). Coordinates are reported also in MNI after registering the clusters in the 
2 mm MNI template. Clusters are reported in the left hemisphere for simplicity but refer to homotopy measures computed between both hemi-
spheres. pFWE p value after family-wise error correction

Behavioral measure Region Peak voxel coordi-
nates

Peak MNI coordinates Brodmann area Cluster size 
(#voxels)

FWE p

x y z x y z

Mixing costs, Short CTI Superior frontal gyrus |30| 58 42 |4| 30 53 8 27 0.014
Mixing costs, Long CTI Supramarginal gyrus |14| 28 40 |46| − 48 44 40 29 0.005
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to superior parietal regions (Bunge et al. 2002; Brass et al. 
2005). These results are consistent with those of a recent 
TMS study (Muhle-Karbe et al. 2014). In that study, it was 
found that inhibitory TMS over the intra-parietal sulcus 
(MNI: − 34, − 56, 43), close to the peak found here in the 
supramarginal gyrus (|46| − 48 44), disrupted the ability 
to update response-specific sets, but not general task goals, 
that were perturbed only when the pulse was delivered on 
this parietal region closer in time to the response execution. 
Furthermore, consistent with our results, parietal regions 
(Brodmann area 40) have been proposed to be involved in 
the preparation of possible switches of response sets during 
the foreperiod (Wolff et al. 2018).

A parietal contribution to motor processes during task-
switching performance has been also reported in a recent 
electroencephalographic (EEG) study that, by applying sig-
nal decomposition and source reconstruction of EEG data, 
showed response-related parietal modulations for switching 
trials (Petruo and Beste 2021). Although a direct comparison 
between this previous study and ours is hampered by the fact 
that our results concerned the mixing costs, whereas their 
focus was on the switching cost, it is interesting to note that 
both studies point toward a role of motor remapping pro-
cesses during task switching performance. Of note, it should 
also be considered that response processes related to parietal 
activations have been shown to be modulated by age which, 
as introduced earlier, is critical in shaping homotopic con-
nectivity (Dilcher et al. 2021). Indeed, intrinsic connectivity 
undergoes more maturational changes over the lifespan in 
multimodal associative parietal areas, such as the precuneus, 
than in other brain areas, such as in the default mode net-
work (Yang et al. 2014; Gilmore et al. 2015).

Based on previous literature (Kim et al. 2012; Muhle-
Karbe et al. 2014; Vallesi et al. 2015; Ambrosini and Vallesi 
2016), one could also expect that more lateral prefrontal 
regions would be important for mixing costs and, thus, show 
homotopy-related correlations with switching and mixing 
costs. However, in a post-hoc analysis including more lateral 
prefrontal regions in the definition of the FPN, we did not 
find additional clusters showing homotopy-behavior correla-
tion (see Supplementary Figure S2).

It is worth noting that no relationship between homotopy 
and switch costs emerged. At first glance, this null finding 
could be surprising given that previous studies reported a 
role for functional hemispheric asymmetries in predicting 
switching costs (Ambrosini and Vallesi 2016). However, 
further work investigating brain-behavior correlations also 
failed to observe correlations for switching, but not for 
mixing, costs (e.g., Treit et al. 2014; Vallesi et al. 2016). 
Although non-significant effects are always difficult to inter-
pret, this might be due to the fact that at least partially simi-
lar neural and cognitive mechanisms are implicated in switch 
and repeat trials, even if at a different extent, especially when 

Fig. 9   Frontoparietal network (FPN) properties correlated with the 
mixing cost performance, for both short and long Cue-to-Target Inter-
vals (CTIs). The correlation between brain organization and cogni-
tive tasks was numerically higher for the homotopy features for both 
CTIs. FC functional connectivity, HoM homotopy

Fig. 10   A Mean homotopy maps from the OpenfMRI dataset and the 
study dataset (scaled at different Z Fisher values). B Spatial voxel-
wise correlation between the open fMRI dataset and dataset maps of 
the current study
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the two trial types occur equiprobably as in the present study 
(Braver et al. 2003; Crone 2006; Ruge et al. 2013; Vallesi 
et al. 2015). Further studies manipulating the proportion of 
switch and repeat trials are needed to sort this issue out.

Finally, the reported general homotopy pattern is con-
sistent with previous literature showing higher values of 
homotopic connectivity in sensory-motor regions and lower 
values in associative cortices, such as the prefrontal cortex 
(Garcia-Tabuenca et al. 2018; Mancuso et al. 2019; Jin et al. 
2020; Zuo et al. 2010). This pattern shows several common-
alities with the principal functional gradient recently sug-
gested by Marguiles and colleagues (2016). Brain regions 
showing similar connectivity patterns are grouped together 
along this functional axis. More specifically, the gradient 
reflects the main axis of connectivity variance spanning from 
unimodal (sensory) to transmodal (associative) brain areas 
(Margulies et al. 2016). It has been suggested that the prin-
cipal functional gradient might underlie differences in the 
underlying cortical organization, represented by a bottom-
up organization of unimodal regions and a denser top-down 
interconnectivity of transmodal regions, enabling a more 
flexible and integrated response to a different type of stim-
uli (Mesulam 2012; Vázquez-Rodríguez et al. 2019). The 
functional homotopy pattern might follow this hierarchical 
cortical organization. This assumption might be supported 
by the brain-behavioral results. Clusters showing a signifi-
cant relationship with task performance were positioned at 
the two ends of the topographical rostral-caudal gradient 
of the transmodal integrative hubs reported by Marguiles 
and colleagues (2016), involving the superior frontal gyrus 
and angular/supramarginal gyrus. These regions are both 
distant from unimodal systems and have been suggested to 
act as hubs of integration across multiple sensory modali-
ties (Margulies et al. 2016). Further studies are necessary to 
investigate this assumption and the underlying relationship 
between homotopy and functional gradients.

Strengths and limitations

This study has both strengths and limitations. The main 
merit is that the still poorly understood relationship between 
executive functions and brain homotopy was investigated 
using state-of-the-art tools for assessing both cognitive func-
tions and brain connectivity. Second, a data-driven approach 
(ICA) was implemented to determine FPN hubs, in which 
the relationship between functional homotopy and task-
switching performance was assessed. Data-driven connectiv-
ity-based parcellation might increase functional connectivity 
representation compared to existing atlases (Ren et al. 2019).

Among the limitations, we acknowledge that, since our 
focus was on young adults with a homogeneous age range, 
our results cannot be generalized to the whole lifespan. 

In this regard, our work could be considered as an ideal 
starting point to further investigate whether the relation-
ship between task-switching performance and functional 
homotopy is also evident in other age groups.

Conclusions

In conclusion, the present findings extend previous lit-
erature on the relationship between brain functional 
homotopy and cognitive efficiency to task-switching per-
formance, and show a dissociable role of homotopy in dif-
ferent fronto-parietal areas depending on task demands. 
Thus, brain homotopic connectivity does not just appear 
to be a mere epiphenomenon emerging from connectiv-
ity computations, but it is shown to underlie functional 
complexity meaningfully linked with higher cognitive 
functions.
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