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Abstract
The pale spear-nosed bat Phyllostomus discolor, a microchiropteran bat, is well established as an animal model for research 
on the auditory system, echolocation and social communication of species-specific vocalizations. We have created a brain 
atlas of Phyllostomus discolor that provides high-quality histological material for identification of brain structures in reliable 
stereotaxic coordinates to strengthen neurobiological studies of this key species. The new atlas combines high-resolution 
images of frontal sections alternately stained for cell bodies (Nissl) and myelinated fibers (Gallyas) at 49 rostrocaudal levels, 
at intervals of 350 µm. To facilitate comparisons with other species, brain structures were named according to the widely 
accepted Paxinos nomenclature and previous neuroanatomical studies of other bat species. Outlines of auditory cortical 
fields, as defined in earlier studies, were mapped onto atlas sections and onto the brain surface, together with the architectonic 
subdivisions of the neocortex. X-ray computerized tomography (CT) of the bat’s head was used to establish the relationship 
between coordinates of brain structures and the skull. We used profile lines and the occipital crest as skull landmarks to line 
up skull and brain in standard atlas coordinates. An easily reproducible protocol allows sectioning of experimental brains in 
the standard frontal plane of the atlas. An electronic version of the atlas plates and supplementary material is available from 
https ://doi.org/10.12751 /g-node.8bbcx y

Keywords Chiroptera · Phyllostomatidae · Cytoarchitecture · Myeloarchitecture · AChE · NADPH

Introduction

The pale spear-nosed bat Phyllostomus discolor (Wagner 
1843) is a medium sized microchiropteran bat with a geo-
graphic distribution ranging from Central America to the 
northern part of South America (Kwiecinski 2006). Body 
size of adult animals is ~ 10 cm with a wing span of ~ 42 cm. 

Based on volumetric comparisons of brain structures in bats, 
Phyllostomus discolor with its relatively large neocortex and 
high encephalization index has been classified as belong-
ing to the group of ‘progressive’ chiroptera as opposed to 
‘basal chiroptera’ (Pirlot and Stephan 1970; Stephan and 
Pirlot 1970). Phyllostomus discolor uses echolocation for 
orientation and hunting, but also olfaction and vision when 
lighting conditions are appropriate. Phyllostomus discolor 
is omnivorous, but mostly feeds on fruit, nectar and pollen 
and occasionally on insects. Echolocation calls are short 
(~ 1–3 ms), downward frequency modulated (90–40 kHz), 
multiharmonic and are emitted through the nostrils. Phyl-
lostomus discolor roosts predominantly in hollow trees in 
colonies up to 400 individuals of both sexes (Kwiecinski 
2006) (Fig. 1).

Phyllostomus discolor is well established as an animal 
model for behavioral and neurobiological research on echo-
location and social communication. The peripheral and 
central auditory system, the vocal motor system and the 
visual system of Phyllostomus discolor have been the sub-
ject of intense research over the last decades (peripheral and 
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central auditory system: Bartenstein et al. 2014; Esser and 
Kiefer 1996; Firzlaff et al. 2007; Firzlaff and Schuller 2003; 
Goerlitz et al. 2008; Greiter and Firzlaff 2017a, b; Heinrich 
et al. 2011; Hoffmann et al. 2008a, b; Linnenschmidt and 
Wiegrebe 2019; Vanderelst et al. 2010; vocal motor system: 
Fenzl and Schuller 2002; Fenzl and Schuller 2005; visual 
system: Hoffmann et al. 2016, 2019; Kugler et al. 2019; 
Rother and Schmidt 1982). However, as no brain atlas for 
Phyllostomus discolor has previously been published, only 
one of the earlier studies mentioned above involved neuro-
anatomy beyond basic localization of recording sites. The 
single exception was a study of the auditory cortex (AC) in 
Phyllostomus discolor (Hoffmann et al. 2008b) that identi-
fied several AC subfields based on both neurophysiological 
and neuroanatomical criteria.

A brain atlas is also essential for comparative studies. 
Phyllostomus discolor has become a valuable animal model 
in studies of the evolution of species-specific communi-
cation (Esser 1994; Esser and Schmidt 1989; Lattenkamp 
et al. 2018). Phyllostomus discolor is one of the bat species 
recently discovered to be capable of vocal learning (Knörn-
schild 2014; Vernes and Wilkinson 2020), a trait observed in 
only few mammalian species (Janik and Slater 1997; Tyack 
2020). New approaches, including the use of molecular 
genetic techniques, aim to identify the neuronal substrates 
and brain structures underlying this behavior, for example by 
mapping the distribution of language related genes FoxP1, 
FoxP2 and CntnaP2 (Rodenas-Cuadrado et al. 2015, 2018).

The stereotaxic brain atlas of this species will enable 
scientists from multiple disciplines to reliably target brain 

structures in neurophysiological and connectional studies, 
and to align and compare their data with the results of immu-
nohistochemical and molecular genetic studies utilizing a 
standardized anatomical representation of the Phyllostomus 
discolor brain.

Bats have a highly diverse biology and anatomy which is 
also observed in their brain structures, and the macromor-
phological differences are such, that it is nearly impossible to 
describe a ‘typical bat brain’ (Schneider 1957). This underlines 
the necessity for a distinct brain atlas of Phyllostomus discolor.

However, although there is considerable variety in chi-
ropteran brains, in the preparation of our stereotaxic brain 
atlas for Phyllostomus discolor, we referred to previous brain 
atlases of several other bat species that were used for com-
parison. A cytoarchitectural atlas of the common vampire 
bat, Desmodus rotundus murinus, a species closely related to 
Phyllostomus discolor, presents frontal sections with a com-
bined nerve fiber and cell stain (lugol fast blue-cresyl violet) 
and many delineated brain structures. However, although 
somewhat useful, there are some limitations of this earlier 
atlas, including poor representations of brain areas in the his-
tological material and the absence of stereotaxic coordinates 
(Bhatnagar 2008). An atlas of the short-tailed fruit bat, Car-
ollia perspicillata (Scalia et al. 2013), a species also closely 
related to Phyllostomus discolor, uses NeuN and Nissl as 
cell stains for quality sections and depicts comprehensible 
structural delineations of anatomical structures. High reso-
lution frames for thalamus and amygdala are also added to 
this atlas. However, unfortunately, this atlas is restricted to 
the forebrain and also lacks a stereotaxic reference frame. 
A third atlas we consulted is the three-dimensional digi-
tal brain atlas of the mustached bat, Pteronotus p. parnellii 
(Washington et al. 2018) which is an MRI atlas with labels 
for gross brain structures. Valuable information was also 
gathered from the atlas of the microchiroptera brain of Myo-
tis montivagus, a ‘basal chiroptera’, and the megachiropteran 
Rousettus amplexicaudatus from Baron et al. (1996) and 
Rousettus aegyptiacus (Schneider 1966).

The stereotaxic brain atlas of the bat Phyllostomus dis-
color presented here combines high-quality histological 
material for identification and delineation of brain structures 
with X-ray computerized tomography (CT). The latter yields 
internal contours and outlines of the skull which helped to 
calibrate the relationship between brain and skull coordi-
nates. The brain atlas provides a common reference frame in 
stereotaxic coordinates for data from different experiments 
and laboratories, making it possible to reliably target brain 
structures for a wide range of experimental approaches. A 
clearly written and easily reproducible protocol provides 
instructions and procedures for sectioning experimental 
brains in the frontal plane of the atlas.

Fig. 1  Phyllostomus discolor in the roost
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Methods and results

Animals

Five adult spear-nosed bats (Phyllostomus discolor, body 
weight: 40–49 g) were used for this study. The animals origi-
nated from a breeding colony in the Department of Biology II 
of the Ludwig-Maximilians-University in Munich. The brain 
of one animal was processed for cyto- and myeloarchitectural 
features for the atlas plates. The brains of three more animals 
were processed for the detection of the calcium-binding pro-
teins parvalbumin, calbindin and calretinin, and acetylcholine-
esterase, acetylcholine-transferase, NADPH-diaphorase and 
zinc to gather additional information for the labeling of brain 
structures. Two additional brain series from neurophysiologi-
cal experiments stained for cytochrome oxidase were available 
for comparison. A CT scan of the head of one animal was 
performed to establish the relationship between the stereotaxic 
coordinates of brain structures and skull coordinates.

All experiments were conducted in accord with the NIH 
“Guide for the Care and Use of Laboratory Animals” (2011) 
and also performed in agreement with the principles of 
laboratory animal care and the regulations of the “German 
Law on Animal Protection” (209.1/211-2531-68/03 Reg. 
Oberbayern).

CT imaging

The head of the animal was fixed and preserved in 4% 
paraformaldehyde (PFA) and then dried for approximately 
20 min before scanning with a Skyscan 1076 microCT 
machine (Bruker, Kontich, Belgium) at the MCT group of 
the University Antwerpen (Belgium). Scans were performed 
with a resolution of 35 μm. The resulting shadow-images 
were processed with conebeam reconstruction software that 
accompanies the scanner, using a Feldkamp Reconstruction 
algorithm.

Histology

Three animals were perfusion-fixed with 4% PFA. For the 
detection of zinc, another animal was perfused with a solu-
tion of the modified Timm method according to Danscher 
(1981). All animals were deeply anaesthetized with Barbital 
(16 mg/mL solution, 0.1 mL/10 g body weight). When a 
deep anesthetic state was reached, marked by a complete 
loss of the flexor reflex at lower limbs and wings, the animals 
were perfused transcardially with 0.9% saline (supplemented 
with 0.1% heparin) followed by 4% PFA (in 0.05 M PBS, 
pH 7.4).

The angle between the head and body axis during perfu-
sion was carefully positioned in the atlas animal, to be about 

110° since this angle influences the macroscopic orientation 
of the most caudal part of brainstem and spinal cord (and 
consequently influences the sectioning plane of the brain 
most caudally). The brain used for the atlas was postfixed in 
the skull with 4% PFA (in 0.05 M PBS, pH 7.4) at 4 °C for 
7 days, to best preserve the brain shape before removal and 
processing for cyto- and myelinated fiber architecture. The 
other brains were postfixed up to 24 h. Cryoprotection for 
freeze cutting was achieved by soaking the brains in 30% 
sucrose in 0.05 M phosphate buffer solution for 12 h. The 
brains were cut on a cryostat (LEICA CM 3050S, Leica 
Biosystems, Wetzlar, Germany) into four series of 40 µm 
thick frontal sections. The stain for acetylcholine-esterase 
was performed according to Hedreen (Hedreen et al. 1985). 
The NADPH-diaphorase stain followed the protocol of Vin-
cent and Kimura (Vincent and Kimura 1992). The sections 
of the atlas brain were directly mounted on gelatin-coated 
slides and dried overnight. Alternating section series were 
stained on-slide either for cell bodies (Nissl) or for myeli-
nated fibers (Gallyas 1979). Sections were imaged with a 
virtual slide microscope (VS120 S1, Olympus BX61VST, 
Olympus-Deutschland, Hamburg, Germany) at 10 × magnifi-
cation using the proprietary software dotSlide® (Olympus).

Atlas coordinate system

The coordinate system of the Phyllostomus discolor brain 
atlas follows the conventional definition of anatomical sec-
tioning planes in which frontal sections (‘sp’ in Fig. 2) are 
cut perpendicular to the brainstem axis (Fig. 2). In Phyllos-
tomus discolor, the brainstem axis parallels the horizontal 
tangential plane passing through the most dorsal points of 
the cerebrum and the most dorsal point of the cerebellum 
(Fig. 2). This plane is chosen as the origin for the dorsoven-
tral dimension of the coordinate system, with negative val-
ues in the ventral direction. The medio-lateral dimension is 
zeroed to the midsagittal plane (Fig. 2) with negative values 
on the right side, and positive values towards the left side of 
the head. There are two sets of coordinates for anterior–pos-
terior position: the anterior–posterior position of the atlas 
brain plates is indicated relative to the rostral beginning of 
the neocortex (yStart of Neocortex = 0; increasing values from 
anterior to posterior levels) and additionally, coordinates are 
given relative to the occipital crest (yOccipital crest = 0; with 
decreasing values from caudal to rostral levels) as an exter-
nal skull landmark (Fig. 3).  

Stereotaxic reference system

The coordinate system of the brain atlas was chosen to pro-
vide a viable baseline orientation of brain and head in a 
stereotaxic device. This orientation of the head enables a 
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comfortable positioning of the animal and is suitable for 
electrophysiological experiments, tracer injections and 
optogenetic approaches. The alignment of the skull in the 
atlas brain coordinate system has been defined via CT. For 
this purpose, the CT scan was re-sliced in standard coordi-
nates into 50 µm thick frontal slices with the open source 
program AMIDE: A Medical Imaging Data Examiner 
(amide.exe 1.0.4, ©Andreas Loening, https ://amide .sourc 
eforg e.net/; GNU GPL).

Characteristic parasagittal outer skull profile lines of the 
CT are accessible during experiments and can be used to 

determine the baseline orientation of the skull. The occipital 
crest marks the abrupt decline of the occiput and is used 
as stereotaxic origin for the anterior–posterior coordinate 
(occipital crest, yOccipital crest = 0). The parasagittal profile line 
and occipital crest coordinate, together with the symmetrical 
medio-lateral profile of the skull, define the baseline orien-
tation of the skull in vivo to achieve a best fit of the brain 
in atlas coordinates. This profile-oriented stereotaxic pro-
cedure was described in detail in Schuller et al. (1986) and 
is recommended as standard adjustment procedure. It has 
been successfully used in Phyllostomus discolor in many 
studies involving forebrain and midbrain structures (Borina 
et al. 2008, 2011; Bartenstein et al. 2014; Fenzl and Schuller 
2002, 2005; Firzlaff and Schuller 2007; Firzlaff et al. 2006, 
2007; Greiter and Firzlaff 2017a, b; Genzel et al. 2015; 
Heinrich et al. 2011; Hörpel and Firzlaff 2019; Hoffmann 
et al. 2008a, b, 2010, 2013, 2015, 2016, 2019). These studies 
used a lab-internal series of Nissl stained sections that were 
relocatable to the present atlas series and fitted to the skull 
profile used here. The skull profile also matches well the 
contours of the cranium of Phyllostomus discolor presented 
by Kwiecinski (2006).

The stereotaxic standard position can be maintained 
throughout a series of experiments from the very begin-
ning, by initially scanning the skull profile, then performing 
the experimental procedures in the stereotaxically oriented 
brain, and finally sectioning the brain in the same stereotaxic 
orientation as provided in the brain atlas. For this purpose 

Fig. 2  View of fixed Phyllostomus discolor brain, positioned for 
embedding. In the lower part of the figure the brain is shown in the 
acrylic glass box used for embedding (cubical volume indicated by 
fine dotted lines, front and back walls removed). The brain is posi-
tioned on 3 pins protruding from the base so that the plane defined by 
the most dorsal elevation of cerebrum and cerebellum (horizontal tan-
gential plane) as well as the axis through the brainstem, are aligned 
parallel to the base. The anterior and posterior surfaces of the embed-
ding block define the frontal sectioning plane (sp) perpendicular to 
the horizontal tangential plane and to the brainstem axis. A pin pro-
truding from a bracket over the front and back walls of the box (only 
partly shown) prevents brain movement when the embedding medium 
is poured into the box. In the upper part of the figure the mid-sagittal 
plane is drawn in a top view of the brain

Fig. 3  Atlas coordinate system and stereotaxic reference system. 
Montage of CT image of mid-parasagittal skull with the abrupt 
decline of occipital crest and the side-view image of the brain in 
standard orientation of the atlas. The red dotted line corresponds to 
the outer skull profile of the parasagittal CT image 1000 µm lateral 
to midline. The horizontal tangential plane through the most dorsal 
points of cerebrum and cerebellum and the brain stem axis is indi-
cated by black dashed lines

https://amide.sourceforge.net/
https://amide.sourceforge.net/
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the fixed brains are embedded in an acrylic glass box (Fig. 2, 
lower part) following a well-defined protocol (see Radtke-
Schuller et al. 2016).

The protocol for positioning the brain for sectioning is 
straightforward. In short, the brain is positioned on the sup-
porting needles of the embedding case so that the midsagit-
tal plane of the brain is aligned parallel to the long side of 
the chamber, and that the virtual plane comprising the most 
dorsal points of the cerebrum and the cerebellum is parallel 
to the bottom plane of the embedding chamber. The latter 
adjustment provides a reproducible frontal sectioning ori-
entation, whereas the former is important for the left–right 
symmetry of the sections. After stabilization of the brain in 
the desired position by a holding needle in a bracket from 
the top of the chamber, the embedding medium (a freshly 
prepared gelatin-albumin-glutaraldehyde or egg-yolk-glut-
araldehyde mixture) is poured into the volume around the 
brain. Hardening of the block takes about 2–3 min. As the 
side walls, the holding bracket and the adjustable needles of 
the embedding chamber are detachable, the block can easily 
be removed from the box. After shock freezing in dry ice the 
block is directly mounted with its hind surface on the cutting 
platform of the cryostat. Due to the prior orientation of the 
brain in the embedding chamber the desired frontal section-
ing plane is reached without further adjustment of the block 
in the cryostat. Further details of the embedding chamber 
and the procedure (developed for another bat species) can 
be found in Schuller et al. (1986).

Alternatively, it is also possible to section the brain in 
the standard atlas plane without embedding. In this case the 
brain is positioned upside down on a flat surface so that it 
is seated with the cerebellum and cerebrum on the base. 
Then part of the brain is cut off perpendicular to the base to 
create a surface for mounting the brain’s portion of interest 
on the cryostat platform. By subsequent sectioning of the 
brain parallel to this cutting surface the resulting sections 
correspond best to the frontal plane of the atlas.

Selection of atlas series and preparation of plates

The series for the new atlas consists of high-quality histo-
logical sections stained for cells (Nissl) and myelin (Gallyas) 
and matches the previous, successfully used, unpublished 
series.

To assess how representative the atlas series is within the 
pool of available Phyllostomus dicolor brain series (N = 7), 
the distance between rostral start and caudal end of the corti-
cal hemispheres was evaluated for comparison. The average 
of this distance amounted to 11.093 mm with a standard 
deviation of 0.544 mm. The distance in the atlas brain is 

11.086 mm, which signifies that the atlas brain is a valid rep-
resentative of the average sized brain in this bat species. The 
comparison of the atlas brain series with the CT indicated 
a shrinkage of 8–9%, so that the virtual in vivo thickness of 
the sections (40 µm) amounts to 43.75 µm. This shrinkage is 
in the generally observed range for cryo-protected frozen-cut 
brains with PFA fixation.

There are 49 plates in the atlas. Nissl-stained and adjacent 
myelin-stained sections (Gallyas) at equidistant intervals of 
350 µm (every 8th section) and every 7th CT section were 
taken to represent the 49 anterior–posterior (ap) levels. Dis-
tortions of the sections due to histological processing were 
compensated by cautiously adjusting the sections to opti-
mize the congruency between outlines of histological sec-
tions and appropriate CT slices. Slight differences between 
the adjusted histology sections and the corresponding CT 
images do remain and can be judged by the overlay of struc-
tural delineations onto the CT as represented on the abbre-
viation subplates of the atlas. In the most caudal atlas plates 
(plate # > 45) the sections were less commensurate to the 
CT slices as the head/body angle of the atlas animal during 
perfusion fixation slightly deviated in orientation from that 
of the CT scan.

The contrast and brightness of the images of the sections 
were corrected with Photoshop (CS6, Adobe Systems, San 
Jose, CA, USA). The images were arranged in the atlas 
coordinate frame using CorelDraw graphics suite version 20 
(2018) (Corel Corporation, Ottawa, ON, Canada). All out-
lines and delineations were drawn in CorelDraw on the base 
of the Nissl-stained section of each atlas plate. The structural 
boundaries seen in the corresponding myelin-stained section 
generally correlate well with these outlines.

An overview of the plate location in side and top view of 
the brain is presented in Fig. 4.

The plate at each ap-level consists of four subplates, as 
illustrated in the examples of Fig. 5a–d. The first subpanel 
depicts a montage of the Nissl stained half-section with the 
mirrored adjacent myelin-stained half-section (Fig. 5a). The 
second subpanel combines the Nissl stained half sections 
with delineations of the anatomical structures on the mir-
rored translucent (30%) Nissl section (Fig. 5b). The third 
subplate consists of an abbreviation list and the CT slice 
with the contours of the anatomical structures (Fig. 5c). 
The forth subplate shows the myelin-stained half sections 
with Nissl-derived delineations of the anatomical structures 
superimposed onto the mirrored translucent (30%) myelin-
stained half section Fig. 5d).

The inset in the upper left corner of subpanels indi-
cates the anterior–posterior plate location in a lateral brain 
view which is also shown in numerical form relative to the 
most rostral “Start of Neocortex”, as well as relative to the 
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Fig. 5  a First subplate of atlas plate 19. It consists of a montage of a 
Nissl-stained half-section with the mirrored adjacent myelin-stained 
half-section. The inset in the upper left corner indicates the anterior–
posterior plate location in a lateral brain view which is also shown in 
numerical form relative to the most rostral “Start of Neocortex” as 
well as relative to the “Occipital crest” (in the lower right corner). b 
Second subplate of atlas plate 19. It combines the Nissl stained half 
section (left side) with delineations of the anatomical structures on 
the mirrored translucent (30%) Nissl section (right side). Inset and 
coordinate indications as in (a). c Third subplate of atlas plate 19. It 
consists of an abbreviation list and the CT slice with overlaid con-
tours of the anatomical structures. d Fourth subpanel of atlas plate 19. 
It shows the myelin-stained half section (left side) with Nissl-derived 
delineations of the anatomical structures superimposed onto the mir-
rored translucent (30%) myelin-stained half section (right side). Inset 
and coordinate indications as in (a)

▸

“Occipital crest” in the lower right corner of the 3 subplates 
5A, B, D.

Anatomical structures, nomenclature, 
and abbreviations

Anatomical structures were identified on the basis of cyto- 
and myeloarchitecture and by their relative locations. Addi-
tional brain series stained for chemo- and immunoarchitec-
ture (calcium-binding proteins parvalbumin, calbindin and 
calretinin, and acetylcholine-esterase, acetylcholine-trans-
ferase, NADPH-diaphorase and zinc in various combina-
tions) were consulted to support the structural identification. 
High-resolution images of one of these series with neighbor-
ing sections stained for NADPH-diaphorase, AChE and cells 
(Nissl) are presented as supplementary material (https ://doi.
org/10.12751 /g-node.8bbcx y). Examples for zinc stained 
sections are depicted in Hoffmann et al. (2008b).

In general, since no unified neuroanatomical nomen-
clature exists to date (Swanson 2015), we have used the 
widely accepted Paxinos nomenclature and abbreviations 
for naming structures (as far as applicable) to ease compari-
son between species, including the rat (Paxinos and Watson 
2007; Paxinos et al. 2009 and Zilles 1985 for cortex), the 
mouse (Franklin and Paxinos 2008; Watson and Paxinos 
2010), the monkey (Paxinos et al. 2008), the gerbil (Radtke-
Schuller et al. 2016) and the ferret (Radtke-Schuller et al. 
2018). The already established terms for the AC fields of 
Phyllostomus discolor (Hoffmann et al. 2008b) were adopted 
and also mapped onto the atlas sections (borders marked by 
stars and field names are abbreviated in italic characters) and 
onto the brain surface (Fig. 6). Furthermore, we also adopted 
previous terms for auditory midbrain and brainstem nuclei 
for which bat specific terminology was already established. 
Abbreviations for nuclei and cortical regions are shown in 
uppercase characters, abbreviations for fiber tracts and fis-
sures in lower case characters.

Delineations of functional and structural areas of the 
Phyllostomus discolor cortex in top and side views are 
depicted in Fig. 6. Outlines are horizontal and lateral pro-
jections of the atlas brain delineations in the plates.

An electronic version of the atlas plates, an index of 
abbreviations, an index of structures and the supplemen-
tary material is available at https ://doi.org/10.12751 
/g-node.8bbcx y.

Additional publications on bat neuroanatomy (and those 
implicitly including neuroanatomical data on bats) taken into 
account for comparison are listed in the separate bibliogra-
phy below ‘References’.

Fig. 4  Anterior posterior location of the atlas plates on the Phyllosto-
mus discolor brain indicated by gray gridlines. Top: view from above, 
bottom: side view. Distance between plates is 350 µm

https://doi.org/10.12751/g-node.8bbcxy
https://doi.org/10.12751/g-node.8bbcxy
https://doi.org/10.12751/g-node.8bbcxy
https://doi.org/10.12751/g-node.8bbcxy
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Fig. 5  (continued)
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