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Abstract

The ventrolateral thalamic nucleus (VL), as part of the ‘motor thalamus’, is main relay station of cerebellar and pallidal
projections. It comprises anterior (VLa) and posterior (VLpd and VLpv) subnuclei. Though the fibre architecture of cerebel-
lar and pallidal projections to of the VL nucleus has already been focus in a numerous amount of in vitro studies mainly in
animals, probabilistic tractography now offers the possibility of an in vivo comparison in healthy humans. In this study we
performed a (a) qualitative and (b) quantitative examination of VL-cerebellar and VL-pallidal pathways and compared the
probability distributions between both projection fields in the VL after an (I) atlas-based and (II) manual-based segmentation
procedure. Both procedures led to high congruent results of cerebellar and pallidal connectivity distributions: the maximum
of pallidal projections was located in anterior and medial parts of the VL nucleus, whereas cerebellar connectivity was more
located in lateral and posterior parts. The median connectivity for cerebellar connections in both approaches (manual and
atlas-based segmentation) was VLa > VLpv> VLpd, whereas the pallidal median connectivity was VLa ~ VLpv> VLpd in the
atlas-based approach and VLpv > VLa > VLpd in the manual approach.
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Introduction

The ventrolateral (VL) thalamic nucleus is main relay station
of cerebellar and basal ganglia (BG) projections to the cortex
Electronic supplementary material The online version of this (Asanuma et al. 1983; Sidibe et al. 1997).
article (https:/doi.org/10.1007/s00429-020-02076-9) contains Both, the deep cerebellar nuclei (esp. dentate nucleus and
supplementary material, which is available to authorized users. interposed nuclei) and output nuclei of the basal ganglia
(substantia nigra, reticulate part, and the globus pallidus,
internal part) project to the thalamus with a considerable
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Results

12 healthy right-handed (> 7th percentile) native German
speakers (10 women, 2 men) with a mean age of 25 (+4.4)
years, without history or signs of neurological disease,
were included in the MR analysis. Informed consent was
obtained from all individual participants included in the
study. For overview of methods please see Supplementary
Material.

Interestingly, atlas-based segmentation procedure
revealed a 41% (SD 2.70) bigger VL masks on the left side
and 42% (SD 2.28) bigger VL masks on the right side than
the manual outlining procedure; differences were mainly
located in top and bottom border regions. In the VL both,
manual and atlas-based segmentation, yielded to highly
congruent specific patterns in the qualitative analysis of
fibre architecture: (1) pallidal connectivity had a maximum
in more anterior and medial parts of the VL, whereas cer-
ebellar connectivity was more located in lateral and poste-
rior parts (see Figs. 1 and 2). In a second step we quantified
thalamic connectivity for both, the manual and atlas-based
method: Both methods showed a considerable amount of
overlap between cerebellar and pallidal projections (see
Fig. 3), with a medial-to lateral decreasing quotient of pal-
lidal compared to cerebellar connectivity (see Fig. 3a), an
inferior-to-superior (see Fig. 3¢) increase of pallidal con-
nectivity compared to cerebellar connectivity and a poste-
rior to anterior increase of pallidal compared to cerebellar

Fig.1 Qualitative analysis
of VL-pallidal connection
strength: a Manual segmenta-
tion b Atlas-based segmenta-
tion. All results are depicted
in the x, y and z plane; (1, 4)
x=81,(2,5) y=116; (3, 6)
z=76. Connection strength
@: 0=no connectivity (red);
1 =maximum connectivity
(yellow)
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connectivity (see Fig. 3b). As one example of descriptive
statistics we determined the median connectivity values
in both, manual and atlas-based segmentation of the VL.
For cerebellar connections, both approaches revealed a
similar connectivity pattern (VLa > VLpv> VLpd), whereas
the pallidal median connectivity values differed between
the atlas-based (VLa ~ VLpv > VLpd) and the manual
(VLpv> VLa > VLpd) approach.

Discussion

(1) We found high connectivity values to the VLa and VLp
regions for both projection systems, with an anterior-pos-
teriorly increasing gradient for cerebellar projections and a
posterior-anteriorly increasing gradient for cerebellar projec-
tions. Our results fit well with the current anatomical knowl-
edge [see Fig. 6 in Sakai et al. (1996)]. The pallido-thalamic
territory includes VApc (not part of our investigation), VLa
and dorsal part of VLp, and occasional patches of pallidal
label in VLpv and the anteromedial part of VLp. The density
of pallido-thalamic projections decreases along an anterior
to posterior gradient. Conversely, the density of cerebello-
thalamic projections increases along the same gradient, with
the cerebello-thalamic territory extending anteriorly beyond
the cell-sparse zones of the ventral part of VLp, anterome-
dial part of VLp, dorsal part of VLp to include VLa and
VApc also (Sakai et al. 1996). We found large differences in
the resulting amount of voxels, which were included in the
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Fig.2 Qualitative analysis

of VL-cerebellar connection
strength: a Manual segmenta-
tion, b Atlas-based segmenta-
tion. All results are depicted
in the x, y and z plane; (1, 4)
x=81,(2,5) y=116; (3, 6)
z=76. Connection strength
@: 0=no connectivity (red);

1 =maximum connectivity
(yellow)

segmentation procedure between the atlas-based and manual
segmentation; still the (1) qualitative and (2) quantitative
visualization remained stable. However the descriptive
statistic, as here shown for the median connectivity values
per subnuclei, evoked remarkable differences between both
segmentation procedures; this yields to the conclusion that
next to hard segmentation procedures, a common feature
in probabilistic tractography, also the examination of the
individual connectivity values seems absolutely necessary to
depict the whole truth of fiber distribution via probabilistic
tractography (Jbabdi et al. 2015).

The ventrolateral thalamus is one of the main target
regions in stereotactic treatments for movement disorders
like essential tremor (Vaillancourt et al. 2003) or Parkinso-
nian tremor (Benabid et al. 1996).

For neurosurgeons, problems in optimal targeting already
begin in the diverse nomenclatures of the ventrolateral thala-
mus, for overview please see Krack et al. (2002). The most
commonly used nomenclatures in humans are e.g. the ones
proposed by Hassler (1982) and Hirai et al. (1989). The most
commonly used nomenclatures in primates are e.g. the ones
proposed by Ilinsky and Kultas-Ilinsky (2002), Olszewski
(1952) and Macchi and Jones (1997). These diverse nomen-
clatures make the interpretation of cerebellar and basal gan-
glia fibre distributions and optimal targeting of stereotactic
surgery in the ventrolateral thalamus challenging.

Beside, also the distribution and the “communication”
between the cerebellar and pallidal projection system in
the ventrolateral thalamus are discussable. Whereas some

researchers claim a strong segregation of cerebellar and
basal ganglia projections, we recently found hints for an
informational exchange between these two systems [for
detailed discussion please see Hintzen et al. (2018)].
Another fact is, that the thalamic target for stereotactic
surgery in the treatment of e.g. tremor is not readily visible
on conventional magnetic resonance imaging. Knowledge
is based on anatomy by diverse animals and methods (e.g.
immunhistochemistry or myelin staining) or post-mortem
analyses [for detailed overview please see Hintzen et al.
(2018)]. Diffusion MRI and tractography nowadays offers
the opportunity to depict anatomical connections in vivo in
the human species [e.g. Jbabdi et al. (2015); Lerch et al.
(2017)]. But we claim to be cautious in the application of
hard segmentation procedures without including knowl-
edge of anatomical in vitro animal studies and postmortem
studies regarding the fibre distribution in the ventrolateral
thalamus. The exact targeting of cerebellar termination fields
in stereotactic surgery is though of utmost importance: For
example regarding essential tremor, tremor-related activity
is most prominent in cerebellar recipient subdivisions of the
ventrolateral thalamus, that is in Jones’ nomenclature, the
VLp [for a review see Hamani et al. (2006)]. A functional
micro-electrode mapping of ventral thalamus in essential
tremor, for example, showed that the inferior posterior ven-
trolateral thalamus and its border region plays a key role
in essential tremor pathophysiology (Pedrosa et al. 2018);
stereotactic lesioning in exactly this localisation may relieve
symptoms and will reduce the cause of relevant side effects
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Fig. 3 Quantitative analysis of VL-connectivity. Presented is the quotient derived from pallidal connectivity values divided by cerebellar values

for the right and left hemisphere in the a x-plane, b y-plane and ¢ z-plane

most effectively. Additionally the higher variability in the
z-values in the manual based segmentation in Fig. 3 shows,
that due to the less contrast and the higher difficulty in find-
ing the boundaries of the ventrolataral thalamus a higher
variability in connectivity values derived. A fact that also
has high implications for the planning of stereotactic coordi-
nates in neurosurgery in the ventrolateral thalamus because
reducing effectiveness and increasing side effects.
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