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Abstract
The perception of a scene involves grasping the global space of the scene, usually called the spatial layout, as well as the 
objects in the scene and the relations between them. The main brain areas involved in scene perception, the parahippocam-
pal place area (PPA) and retrosplenial cortex (RSC), are supposed to mostly support the processing of spatial layout. Here 
we manipulated the objects and their relations either by arranging objects within rooms in a common way or by scattering 
them randomly. The rooms were then varied for spatial layout by keeping or removing the walls of the room, a typical lay-
out manipulation. We then combined a visual search paradigm, where participants actively search for an object within the 
room, with multivariate pattern analysis (MVPA). Both left and right PPA were sensitive to the layout properties, but the 
right PPA was also sensitive to the object relations even when the information about objects and their relations is used in the 
cross-categorization procedure on novel stimuli. The left and right RSC were sensitive to both spatial layout and object rela-
tions, but could only use the information about object relations for cross-categorization to novel stimuli. These effects were 
restricted to the PPA and RSC, as other control brain areas did not display the same pattern of results. Our results underline 
the importance of employing paradigms that require participants to explicitly retrieve domain-specific processes and indicate 
that objects and their relations are processed in the scene areas to a larger extent than previously assumed.

Keywords Scene perception · Parahippocampal place area (PPA) · Retrosplenial cortex (RSC) · Randomization · Object 
relations · Spatial layout · Visual search · Multivariate pattern analysis (MVPA)

Introduction

Imagine that you are presented with a scene of a room, simi-
lar to the one depicted in Fig. 1. The chances are that you 
will quickly recognize that it is an indoor scene based on 
the space constrained by the walls. The objects in the scene, 
such as the table, sofa, chairs, and their arrangement will 
inevitably give away that the scene most likely depicts not 
only a room, but also a living room. This example illustrates 
that scenes can be recognized and categorized by both the 
global shape of the space, usually referred as the global or 

spatial layout (Oliva and Torralba 2001), and individual 
objects and relations between them (Biederman et al. 1974, 
1982). The way in which the brain parses these two proper-
ties of scenes, especially the role of the scene-related areas, 
such as the parahippocampal place area (PPA) and the ret-
rosplenial cortex (RSC) is currently unclear (Epstein 2008; 
Aminoff et al. 2013). One of the reasons for the ambiguity is 
that it is difficult to disentangle both scene factors. The other 
reason may lie in common paradigms that assume automatic 
activation of scene-related perceptual processes even when 
the participants were requested to passively observe stimuli. 
Here we present a novel paradigm that systematically manip-
ulates both object and layout factors in a visual search task 
that requires active participation and guided attention. Using 
multivariate pattern analysis (MVPA), we demonstrate that 
the PPA and RSC differ in their sensitivity to the relations 
between objects in a room and to the room’s spatial layout.

Current theories of scene perception (Oliva and Tor-
ralba 2001; Torralba et al. 2006; Wolfe et al. 2011) assume 
that the initial quick impression based on the perception of 
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the spatial layout is followed by slower, but possibly more 
informative perception of objects. For example, people can 
successfully categorize scenes as urban or natural after 
seeing them for as little as 25 ms (Greene and Oliva 2009; 
Rousselet et al. 2005; see also, Potter et al. 2014). People 
are also more likely to accurately recognize a scene when 
the objects in the scene are typical for that type of scene 
(e.g., priest in a church) than when they are not (Davenport 
and Potter 2004; e.g., football players in the church—Dav-
enport 2007). It is fairly safe to say that both factors play 
important roles in scene perception (Malcolm et al. 2016).

The importance of spatial layout and objects in the 
scene is also evident in the way the human brain imple-
ments these two scene properties. The PPA, for example, 
seems to respond more strongly to spatial layout than to 
objects: empty rooms, which are characterized by walls 
and give rooms their typical layout, elicit similar activa-
tion levels to rooms filled with objects (Epstein and Kan-
wisher 1998). On the other hand, when objects usually 
found in rooms are presented separately, without the room 
to contextualize them, they do not activate the PPA nearly 
as much as empty rooms (Epstein and Kanwisher 1998; 
Epstein et al. 1999). More recent evidence (Kravitz et al. 
2011a, b) demonstrates that the PPA is sensitive to the 
properties of spatial layout of scenes (open vs. closed), 
but cannot differentiate scenes based on the information 
provided by the objects in scenes.

The RSC also responds more strongly to scenes than to 
other stimuli, but is particularly important for spatial navi-
gation (Epstein et al. 1999, 2007). The RSC will be more 
engaged than the PPA if people need to learn a route in 
an environment (Epstein 2008), navigate through a familiar 
place (Maguire et al. 1997), or recognize a scene as familiar 
(Ino et al. 2002). This also means that the RSC most likely 

needs to take into account the spatial layout as well as the 
individual objects in the scene to enable efficient navigation.

In contrast to the scene-related areas, the lateral occipital 
complex (LOC), which is generally thought to be responsi-
ble for processing object shape and category (Malach et al. 
1995; Grill-Spector et al. 1999; Vinberg and Grill-Spector 
2008), is more sensitive to individual objects in scenes than 
to layout properties of the scene (Epstein et al. 2003; Park 
et al. 2011; Harel et al. 2012).

The evidence for the importance of the spatial layout for 
PPA processing is unambiguous but the role of the PPA in 
the processing of objects in the scenes is currently unclear. 
On the one hand, object properties such as size (Konkle and 
Oliva 2012; Troiani et al. 2014), spatial distance (Cate et al. 
2011; Amit et al. 2012), and space definition (Mullally and 
Maguire 2011) are also represented in the PPA. This may 
indicate that the PPA processes object features, but these 
features also seem to directly influence spatial properties 
of scenes. It is reasonable to assume that the spatial layout 
would be influenced by these features too. On the other hand, 
there is evidence that the PPA, and the parahippocampal 
gyrus in general, may be involved in parsing functional and 
spatial relations of objects in addition to scene layout. Bar 
and colleagues (Aminoff et al. 2007; Bar et al. 2008; Cheung 
and Bar 2012, 2014) found more PPA activity when par-
ticipants perceived isolated objects with strong association 
(e.g., an oven, which is associated with a typical context 
of kitchen) than objects with weak context (e.g., a camera, 
which is found in various different situations). This contex-
tual effect, however, seems to be present only with longer 
exposure (Epstein and Ward 2010).

Our own studies on chess expertise (Bilalić et al. 2010, 
2012) highlight the importance of the PPA and RSC for the 
processing of spatial relations between objects. Chessboards, 

Fig. 1  Stimuli and design. 
There were four room types 
organized around object rela-
tions and spatial layout factors. 
Arranging objects within a 
room in a normal or a random 
fashion manipulated the object 
relations. The layout factor fea-
tured rooms with and without 
background, in this case the 
walls. Crossing the two factors 
resulted in four room types: nor-
mal with layout, random with 
layout, normal without layout, 
and random without layout
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with layout (board frame) and objects (chess pieces) essen-
tially present scenes and have activated the PPA and RSC in 
our studies, particularly in chess experts. However, when the 
objects were randomly scattered on the chessboard, experts 
activated the PPA and RSC less than when they perceived 
normal configuration of chess objects. Random configura-
tions of objects do not make sense for experts, as they cannot 
process the functional and spatial relations between objects. 
In contrast, the PPA and RSC in novice chess players, who 
do not possess this domain-specific knowledge about rela-
tions between chess objects, were not sensitive to the ran-
domization of chess objects. Other studies using the same 
randomization paradigm, but different domain-related tasks, 
which required domain-specific activities from participants, 
reproduced the same pattern of results in experts’ PPA and 
partly in RSC (Campitelli et al. 2005, 2007; Bartlett et al. 
2013).

There have been attempts to disentangle the role of spa-
tial layout from that of functional relations between objects 
in the scene-related areas, such as the PPA and RSC, but 
none of them manipulated the functional and spatial fac-
tors using the randomization paradigm. Both of the studies 
mentioned above (Park et al. 2011; Kravitz et al. 2011a) 
employed scenes that manipulated content (man-made/urban 
and natural), but did not directly investigate natural relations 
between the content elements. Harel et al. (2012) system-
atically manipulated layout and content, but due to experi-
mental control restrictions only employed one object at a 
time. Similarly, in the studies that used rooms with furniture 
(Epstein and Kanwisher 1998; Henderson et al. 2006; Harel 
et al. 2012; Kamps et al. 2016), usually only one aspect of a 
room, a single wall, with only a few objects placed against 
it, was used.

The manipulation of spatial and functional relations 
by randomization of objects has often been used as a key 
paradigm in a number of fields, such as memory (Mandler 
and Parker 1976; Mandler and Ritchey 1977; Tulving 1962, 
1983), perception (Biederman et al. 1973; Mandler and 
Johnson 1976), and expertise (Chase and Simon 1973; Erics-
son and Lehmann 1996; Vicente and Wang 1998). Recently, 
Võ and Wolfe (2013a, b) showed that spatial and functional 
information is one of the main guiding features in the per-
ception of naturalistic scenes, such as rooms, by employing 
a variation of the randomization paradigm. The randomiza-
tion paradigm may, therefore, be a way to investigate the 
roles of spatial layout and object functions in the perception 
of scenes and how they are processed in the PPA and RSC.

Randomly scattering objects within a living room disturbs 
typical spatial and function relations between those objects. 
The placement of objects within a room is often a direct 
consequence of their function—we are hardly likely to find 
a TV set on ceiling, as it would be too uncomfortable to 
watch. At the same time, the randomization disturbs objects 

but leaves the key factor of the spatial layout, the room walls, 
intact. The randomization may, therefore, present an impor-
tant test of the brain areas responsible for scene perception. 
If the PPA is mostly related to spatial layout properties, then 
the manipulation involving spatial relations between objects 
within a scene should not have a big effect. In contrast, if 
the PPA does indeed play a role in contextual perception, as 
some claim (Bar 2004; Aminoff et al. 2007, 2013; Bar et al. 
2008; Bilalić et al. 2010, 2012; Cheung and Bar 2012), then 
the randomization of objects should be reflected in the PPA 
activation even when there is no spatial layout in the scene. 
Similarly, both spatial layout and object placement within 
the scene may be important for navigation. The question 
remains, however, whether both factors will activate the 
RSC, and to what extent.

Here we tested these hypotheses by presenting scenes of 
living rooms where objects were normally allocated, i.e., in 
their natural positions, and where they were scattered ran-
domly around the room. We also manipulated the layout 
factor by presenting the rooms with and without walls (see 
Fig. 1 for an illustration of stimuli). Importantly, participants 
were asked to actively manipulate the stimuli, that is, search 
for a particular object within the room. This is in contrast to 
most previous research on scene perception, in which people 
were only required to passively observe presented stimuli1 
(Epstein and Kanwisher 1998; Park et al. 2011, 2015; Krav-
itz et al. 2011a; Harel et al. 2012; Kamps et al. 2016). The 
underlying assumption is that the main processes in scene 
perception are automatically elicited (for a review, see Harel 
2015a). There are numerous behavioral studies that demon-
strate that for simple categorizations (e.g., urban/landscape, 
animal/non-animal) explicit attentional resources may not 
be necessary (Rousselet et al. 2005; Greene and Oliva 2009; 
Poncet et al. 2012). However, there are a growing number of 
behavioral studies showing the necessity of attention for cer-
tain cognitive processes in scene perception (Potter and Fox 
2009; Cohen et al. 2011). While the debate about the role of 
attention in scene perception is highly topical in behavioral 
research (Gronau and Izoutcheev 2017; Hansen et al. 2018), 
the fMRI research still predominantly employs a passive 
paradigm which presumably relies on automatic activation.

Here we use active search and explicit attentional direc-
tion, which is in line with our previous experiments using 
the randomization paradigm (Campitelli et al. 2005, 2007; 
Bilalić et al. 2010, 2012; see also, Wan et al. 2011). In these 
experiments, it was necessary to explicitly perceive spatial 
relations between the objects within a scene to execute the 
task. The randomization paradigm in combination with 
active search produced the randomization effects in the PPA, 

1 The studies included attentional control (e.g., detection of repeated 
stimuli) but no actual domain-specific manipulation with stimuli.
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RSC, and even in the FFA (Bilalić et al. 2011). Other recent 
research on visual expertise (Harel et al. 2010; McGugin 
et al. 2014b; Wong et al. 2014) demonstrates that top-down 
processes, such as retrieval of knowledge or allocation of 
attention to different aspects of stimuli, result in different 
patterns of brain activation from situations when these pro-
cesses are not necessary (for reviews, see Harel 2015a, b; 
Bilalić 2017).

We, therefore, expect that the randomization paradigm 
combined with top-down modulation will enable us to 
uncover whether the scene brain areas are indeed sensitive 
to functional relations of objects within scenes. A number 
of older studies using the classical univariate analysis could 
not establish a link between object relations and scene areas 
(Epstein and Kanwisher 1998; Epstein et al. 1999, 2008; 
Downing 2005; Kim et al. 2011). The more sensitive MVPA, 
which we apply here, could uncover differentiation between 
categories even when there are no differences between cat-
egories in univariate analysis (Haxby et al. 2014). More 
importantly, MVPA can also establish whether it is possible 
to generalize stimuli based on object function without regard 
for other scene properties such as spatial layout of images 
(e.g., cross-generalization).

It is essential to demonstrate the sensitivity of the scene-
related areas to the randomization of objects, but it is also 
crucial to demonstrate that other similar brain areas are not 
engaged in the same processes. For this purpose, we have 
chosen two control areas, the aforementioned LOC and the 
fusiform face area (FFA). The LOC is particularly suitable 
because it has recently emerged that it not only processes basic 
object properties, but also relations between objects (Mac-
Evoy and Epstein 2011; Kim et al. 2011; Preston et al. 2013). 
The FFA, which is in the vicinity of the PPA, and as such is an 
anatomically suitable control area, is related to face process-
ing (Kanwisher et al. 1997; Kanwisher and Yovel 2006) but 
also to holistic processing in expert domains (Gauthier et al. 
1999, 2000; Bilalić et al. 2011, 2016; McGugin et al. 2012, 
2014a; Bilalić 2016). A key component of holistic processing 
is the spatial and functional relations between individual ele-
ments of the stimuli (Tanaka and Farah 1993; Cheung et al. 
2008; Richler et al. 2012), which are precisely the factor we 
manipulate with the randomization paradigm. Should the per-
ception of spatial layout and object relations in the scene not 
be confined to the PPA and RSC, the LOC and FFA are good 
candidate brain areas for finding these effects.

Method

Participants

There were 15 participants (3 female, M = 29.1 ± SD = 5). 
All participants were right-handed, had normal or 

normal-to-corrected vision, and no known neurological 
issues. The informed consent was obtained in line with 
the Institutional Review Board of the Ethics Committee of 
Tübingen University.

Tasks, stimuli and design

The room stimuli were generated using Google SketchUp 
software (http://www.sketc hup.com) to look like common 
living rooms with typical objects such as chairs, tables, 
sofas, TV sets, drawers, bookshelves, plants, and lamps. 
We initially generated 60 rooms, each containing between 
14 and 18 objects. The rooms were pilot-tested not only 
for the current task (search for an object within the room), 
but also for general recognition of the room, as well as for 
how readily discernible the main elements (e.g., walls2 and 
objects) were. In the end, we used 51 of these rooms in 
the experiment. Each of the 51 generated rooms featured 
different walls and different objects (e.g., different types of 
sofas). Each of the stimuli had four versions that systemati-
cally varied the layout and objects in rooms, which produced 
altogether 204 room stimuli. There were rooms that con-
tained the walls as background and those that did not (factor 
layout). There were rooms that featured normal arrangement 
of objects and those rooms where the objects were randomly 
scattered around the room (factor randomization). These two 
factors produced a 2 × 2 design with four different types of 
rooms (see Fig. 1). We randomized the objects within rooms 
by dividing each room into 30 parts (6 horizontally × 5 ver-
tically) and randomly generating where each object would 
be placed. In this way, we have the same objects in normal 
and random rooms, differing only in their arrangements. 
The objects in the random rooms were inevitably placed 
in uncommon spaces and we decided to use the walls in all 
instances for placement. This resulted in objects hanging 
from the wall upside down in unusual orientations. This, in 
our opinion, is less unnatural than objects presented in their 
typical orientation floating in space (see, Biederman 1981).

The dimensions of the whole stimulus were 400 × 220 
pixels. The stimuli were projected onto a screen above 
the heads of the participants via a video projector in the 
adjacent room. Participants saw the stimuli through a mir-
ror mounted on the head coil. The physical dimensions 
of the stimulus were 336 × 184 mm. The setup resulted 
in a visual field of 13.8° for the whole stimulus. The task 
was to indicate if a TV set was present in the room by 
pressing the left button of an MRI-compatible answer-pad 

2 One should note that our rooms did not have texture on the walls. 
Recent research (Lowe et  al. 2016) demonstrates that the PPA is 
sensitive to texture and future research should take this finding into 
account when designing room stimuli.

http://www.sketchup.com
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for present (yes) or the right button for absent (no). The 
pad was held in participants’ right hand. The task is 
essentially a visual search (yes–no) task with factors lay-
out (wall/no-wall) and randomization (normal/random) 
manipulated.

There were three experimental runs. A single run 
started with a baseline (gray screen with a cross in the 
middle) lasting 10 s and ended with the same baseline 
lasting 12 s. Between the baselines were presented 17 
trials of each condition making altogether 68 trials (4 
conditions × 17 trials). A single trial lasted for 3 s and 
was followed by a baseline lasting between 2 s and 9 s 
(with most baselines falling between 3 and 4 s). A black 
cross presented centrally in the baseline would turn red 
half a second before the trial was presented. That way 
the participant was warned about the upcoming trial. The 
trials were counterbalanced over four conditions for each 
participant separately using Optseq program (Dale 1999).

Localizer experiment

All participants were initially presented with a localizer 
run that featured the following stimuli categories: pic-
tures of room interiors as place category (taken from the 
Internet), pictures of faces (taken from Leube et al. 2001), 
pictures of man-made objects (taken from Brodeur et al. 
2010), pictures of normal chess positions, and pictures 
of isolated chess objects. In the localizer (see below), 
only the relevant stimuli categories were used, i.e., com-
pared. All stimuli were converted to black and white, 
spanned 250 × 250 pixels and had physical dimensions 
of 210 × 210 mm, which resulted in a visual field of 12.8°.

The localizer was a block design similar to the one 
used in the first experiment. The blocks lasted for 12 s 
and contained 6 stimuli presented for 1.75 s followed 
by a stimulus mask for 0.25 s. There were 8 blocks of 
each condition. The localizer started with a baseline 
(gray screen with a cross in the middle) lasting 12 s and 
finished with the same baseline lasting 18 s. There was 
always another baseline lasting 18 s after each of the eight 
cycles of 5 blocks (one for each condition). The presenta-
tion of blocks was counterbalanced separately for each 
participant. The task was to spot direct repetition (1-back 
task). There was one repetition in each of the blocks.

Imaging data acquisition

We acquired fMRI data using a 3T scanner (Siemens Trio) 
with a 12-channel head coil at the fMRI center in Tübin-
gen, Germany. We covered the whole brain using a standard 
echo-planar-imaging sequence with the following param-
eters: [RT] = 2.5 s; [FOV] = 192 × 192; [ET] = 35 ms; matrix 

size = 64 × 64, 36 slices with thickness of 3.2 mm + 0.8 mm 
gap resulting in voxels with the resolution of 3 × 3×4 mm3. 
Anatomical images covering whole brain with 176 sagit-
tal slices were obtained after the functional runs using an 
MP-RAGE sequence with a voxel resolution of 1 × 1×1 mm3 
(TR = 2.3 s, TI = 1.1 s, TE = 2.92 ms).

Functional univariate MRI data analysis

The preprocessing was done with SPM8 and involved spatial 
realignment to the mean image including unwarping and 
co-registration of the anatomical image to the mean EPI. 
We did not perform segmentation, normalization or spatial 
smoothing procedures because we wanted to use original 
unstandardized data for the univariate analysis (and later for 
MVPA). For the univariate analysis, we modeled the trials 
explicitly for the duration (3 s) as a single regressor for each 
stimulus type, while the baseline was modeled implicitly 
in a general linear model [hemodynamic activation mod-
eling relied upon a canonical response function, AR(1) and 
a 128 Hz high-pass filter]. We also added six movement 
parameters in the GLM to account for the variance intro-
duced through head motion. All preprocessing and analyses 
were done by SPM8.

The MarsBaR SPM Toolbox (Brett et al. 2002) was used 
to extract the percent signal change (relative to baseline) for 
each participant in each ROI depending on the room type. 
These activation levels were then plotted (Fig. 2) and ana-
lysed using F and t tests.

Multivariate pattern analysis (MVPA)

The MVPA analyses used the same preprocessing procedure 
as the univariate analysis (see above). Unlike the univari-
ate analysis, where we modeled all trials of the same type 
together, for the MVPA we modeled each single trial. We 
controlled for RT on different trials by calculating mean RTs 
across the four room types and subtracted the individual 
trial in the run from the corresponding mean. The obtained 
values were used as an additional variable at the individual 
level to control for different reaction time between different 
room types (Todd et al. 2013).

We performed the MVPA analyses using the Decoding 
Toolbox (Hebart et al. 2015). The toolbox uses support-vec-
tor-machine (SVM) method of multivariate pattern analysis 
(MVPA) to see if the localized PPAs (see below) differen-
tiate randomization and layout properties of scenes. Our 
comparisons were binary SVM classifications and centered 
around the two factors (see Fig. 3a). For the randomization 
factor we compared normal rooms versus random rooms 
when they both had layout (first randomization binary clas-
sification) and when they both were without layout (second 
randomization binary classification). The layout factor also 
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involved two binary classifications, but this time we com-
pared normal rooms with layout versus the normal rooms 
without layout (first layout binary classification) and ran-
dom rooms with layout versus random rooms without layout 
(second layout binary classification). For all classifications, 
a linear SVM with standard cost parameter, c = 1, as imple-
mented in the LIBSVM 3.0 library (Chang and Lin 2011) 
was used. The classification was based on the β values previ-
ously obtained by the GLM and all voxels in a single ROI. 
We employed a leave-one-trial-out cross validation method 
(e.g., Sterzer et al. 2008) where the dataset was divided into 
(1) a training set of N pattern vectors (vector length = num-
ber of voxels) and, (2) a validation set of two pattern vec-
tors, one from each stimulus type. We then scaled the β in 
all training sets (0-1) as well as in validation sets. The SVM 
classifier was iteratively trained on the training datasets (N) 
and then tested on an independent validation dataset. The 
individual trials were used as basic units for comparison. 
These training and validating procedures were repeated 
100 times. Percentage of successful categorization of tests 
items based on the previous independent training data was 
obtained for each comparison and for each participant. At 
the group level, we tested with one-sample, one-sided t tests 
if the average classification accuracy among the participants 
for the binary comparison in question was significantly 
greater than the chance level (50%). Given that there were 
four binary comparisons, the significance level was set at 
p = 0.0125 (the standard 0.05 significance level divided by 
the number of comparisons, 4).

Cross‑categorization MVPA

We also performed a stronger test of the influence of rand-
omization and layout factors in PPA and RSC. For the ran-
domization factor, we first trained the binary classifier on 
all possible normal versus random rooms with layout com-
parisons and validated on the same normal versus random 
comparisons, but this time on rooms without layout (see 
Fig. 3a). This way we always use the randomization com-
parison (normal vs. random) but train on rooms with layout 
and test on different stimuli—rooms without layout. We also 
checked the other direction in the cross-categorization pro-
cedure (random vs normal instead of the described normal 
vs random). The presented results were then the averaged for 
both direction (both direction produced almost identical clas-
sification accuracies, the difference being within 1%). For the 
layout factor, we trained on normal rooms with layout versus 
normal rooms without layout and validated on random rooms 
with layout versus random rooms without layout (again, we 
also tested for the other direction—normal without layout vs 
normal with layout). Here the manipulation was the layout 
comparison (with vs. without) while the randomization factor 
was constant and was used as training and testing sets. If any 

of the factors play a role in the PPA and RSC’s functioning, 
then the PPA and RSC should be sensitive even if the learned 
patterns are tested on different stimuli.

The cross-categorization procedures which start with 
the comparison between random and normal (instead of 
the normal vs random) were also conducted. The results 
were within 1% of the presented results. The group level 
analysis was the same as in the previous MVPA analysis, 
but the significance level was set at p = 0.025 because there 
were only two comparisons.

Localizer analysis

To isolate the PPA, we modeled the blocks for each condi-
tion in the localizer run while the baseline was implicitly 
modeled in a GLM. We then compared the blocks with 
places (interior of rooms) with only the blocks with faces 
(blocks with other stimuli were not compared). The vox-
els in the vicinity of the collateral sulcus that survived the 
p < 0.0001 (uncorrected) threshold were then taken as the 
PPA ROI. In three of the participants we used a less strin-
gent threshold (p < 0.001) to identify the bilateral PPAs. The 
left PPA was on average, M =665 ± SD=211 mm3, the right 
PPA, 782 ± 284 mm3. The same procedure was carried out 
for the RSC, only here we looked at the activated voxels 
near the posterior cingulate and parieto-occipital sulcus. 
In two participants, we employed a less stringent thresh-
old (p < 0.0001) than in others (p < 0.001). The left RSC 
was on average, M =430 ± SD=174 mm3, the right RSC, 
521 ± 197 mm3.

For the sake of completeness, we also isolated another 
scene region, the occipital place area (OPA). Our para-
digm is not intended to test the OPA properties and we, 
therefore, report its results in the Appendix. The OPA was 
isolated by taking the voxels around the transverse occip-
ital sulcus (OTS) which were activated at a level greater 
than p < 0.0001 when we compared the blocks of places 
with the blocks of faces. The left OPA was, on average, 
M =649 ± SD=241 mm3, the right OPA, 738 ± 203 mm3.

We also used the reverse contrast (Face vs. Place) to iden-
tify the right fusiform face area (Kanwisher et al. 1997) that 
we used as a control ROI. The voxels in the right fusiform 
gyrus that were still activated after applying the p < 0.0001 
(uncorrected) threshold were then taken as the right FFA 
ROI. The right FFA was on average 672 ± 138 mm3.

The LOC was identified by comparing man-made 
objects with the baseline and looking at the activated voxels 
around the lateral occipital area and the posterior fusiform 
gyrus. The voxels that survived the p < 0.0001 threshold 
were chosen in the ROI. The right LOC was on average 
684 ± 276 mm3.

Similar to the OPA, the visual cortex, V1, was also 
included in the control regions, although it is unclear what 
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kind of pattern of results one would expect in V1. Unlike 
the previous ROI, the V1 was not obtained functionally 
from individual ROIs of participants because we did not 
have a functional localizer for V1. We used the anatomical 
V1 (Amunts et al. 2000) provided in the Anatomy Toolbox 
(Eickhoff et al. 2005). The ROI was then used in combina-
tion with normalized functional scans. As with the other 
control ROIs, we used the right V1. The results of V1 are 
presented in the Appendix.

Anterior–posterior PPA

Recent research (Baldassano et al. 2013, 2016; Aminoff and 
Tarr 2015) suggests that the PPA may not be a homoge-
neous area as previously believed. The anterior PPA seem 
to be connected to OPA and involved in object processing, 
whereas the posterior PPA parses layout properties of scenes 
(Baldassano et al. 2013; Aminoff and Tarr 2015). Here we 
checked the activation pattern in each voxel of the individual 
ROIs for both MVPA and cross-categorization MVPA. We 
exploited the property of the PPA where its voxels follow 
anterior–posterior axis across the y coordinate with higher 
negative numbers indicating more posterior voxels. We 
calculated Pearson’s correlation between a voxel’s y value 
and MVPA classification success for each participant and 
each binary MVPA comparisons. The individual correlation 
coefficients were then Fisher z-transformed (Fisher 1921) 
and averaged for each of the four binary comparisons. The 
positive correlation indicated more success for the posterior 
voxels, while the negative correlations denoted better suc-
cess of the anterior part of the PPA.

Results

Behavior analysis

We asked participants to actively seek for an object (TV 
set) in rooms. The rooms were again categorized based 
on the randomization and layout factors and could feature 
normal and random arrangements of objects, as well as be 
with and without layout. We know that common relations 
between objects enable efficient search (Biederman et al. 
1982; Bilalić et al. 2010, 2012; Võ and Wolfe 2013a, b) 
and we expected the participants to be particularly fast in 
normal rooms and slower in random ones. This indeed hap-
pened. The participants were more accurate (83%) and faster 
(1.62 s on average) in normal rooms with layout than in 
random rooms with layout (80% and 1.82 s for accuracy and 
speed, respectively). The presence of the layout did not alter 
the pattern. The participants were still more accurate and 
faster in normal rooms without layout (79%, 1.56 s) than in 
random rooms without layout (77%, 1.73 s). When we run 

a 2 × 2 analysis of variance (ANOVA) with randomization 
and layout factors for accuracy and reaction time separately, 
we found both main factors significant or almost signifi-
cant [randomization F(1, 14) = 16.1, p < 0.001; layout F(1, 
14) = 4.4, p = 0.056 for accuracy, and randomization F(1, 
14) = 55.8, p < 0.001; layout F(1, 14) = 28.1, p < 0.001 for 
RT] and no interaction between them [F(1, 14) = 0.1, ns for 
accuracy, and F(1, 14) = 1.2, p = 0.29 for RT].

Univariate fMRI analysis

Detailed analyses are provided in the Appendix (Fig. 4). 
Here we merely summarize the results. We confirmed that 
the PPA could differentiate between the rooms with dif-
ferent layouts, but that the randomization of the objects 
within the room had no significant effect. In contrast, the 
RSC was sensitive to both factors, while the OPA was not 
reacting significantly different to the four types of rooms. 
There were also no main effects of randomization or layout 
in the control ROIs, right FFA, LOC, and V1 (see Appen-
dix, Fig. 5).

Multivariate fMRI analysis

The univariate analysis showed that the PPA responded only 
to the layout, whereas the RSC was modulated by both lay-
out and randomization. Here we present the more sensitive 
MVPA, which should have a better chance of capturing the 
PPA response to the randomization if there is indeed any 
effect. Given that MVPA is also sensitive to the effort as 
indexed by reaction time (Todd et al. 2013), the ROI activa-
tions were controlled for the RT as indicated in the method 
section. The βs used as the input for the MVPA were, there-
fore, corrected for the RT.

Figure 2a depicts the binary categorizations we used. 
Figure 2b shows the results of these binary categorization 
tests. The left PPA did not discriminate between differ-
ent randomization categories—normal rooms and random 
rooms with layout [t(14) = 1.98, p = 0.034] and normal and 
random rooms without layout [t(14) = 1.46, p = 0.08]. The 
left PPA did, however, differentiate between rooms with and 
without layout—t(14) = 3.52, p = 0.002 for normal with vs. 
normal without layout, and t(14) = 2.48, p = 0.014 for ran-
dom with vs. random without layout rooms. In contrast, the 
right PPA was sensitive to both randomization and layout 
factors. It differentiated between normal and random rooms 
with layout [t(14) = 3.62, p = 0.001], as well as normal and 
random rooms without layout [t(14) = 3.9, p = 0.001]. It also 
distinguished normal rooms with and normal rooms with-
out layout [t(14) = 3.98, p = 0.001] just as it differentiated 
between random rooms with and random rooms without lay-
out [t(14) = 3.09, p = 0.004]. The direct comparison between 
the left and right PPA in a three-way ANOVA with factors 
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layout (with-without), randomization (normal-random), and 
side (left–right) showed that the right PPA was significantly 
more successful than the left PPA [main effect side: F(1, 
14) = 15.3, p = 0.002]. The difference was driven by the ran-
domization factor [F(1, 14) = 11.9, p = 0.004] rather than by 
the layout factor [F(1, 14) = 1.6, p = 0.23].

It is important to emphasize that these analyses (and the 
others reported later) were not a result of different reaction 
time or accuracy for different room types. When we include 
only the accurate trials in the analyses, we get essentially 
the same classification accuracies. Similarly, there were no 
significant correlations between single subject classification 
accuracy of the binary comparisons and the difference in the 
reaction time of the same room types that were compared: 
normal with layout vs. random with layout [r(14) = 0.21 for 
left, and r(14) = 0.09 for right PPA], normal without lay-
out vs. random without layout [r(14) = 0.29 for left, and 
r(14) = 0.36 for right PPA], normal with layout vs. normal 
without layout [r(14) = 0.04 for left, and r(14) = 0.29 for 
right PPA], and random with layout vs. random without 
layout [r(14) = 0.28 for left, and r(14) = 0.12 for right PPA].

Following recent research (Baldassano et al. 2013), which 
suggests that the PPA was not a homogeneous region, we 
check the success rates of all individual PPA voxels. The 
Fisher’s z-transformed correlation between the y coordi-
nate, which indicated the anterior–posterior axis in the PPA, 
and the MVPA success was positive for the randomization 
comparisons (Mcorr = 0.05 ± SE = 0.09 and 0.06 ± 0.06 for 
normal vs. random rooms with layout, and normal vs. ran-
dom rooms without room, respectively) and negative for the 
layout factor (Mcorr = − 0.08 ± SE = 0.06 and − 0.14 ± 0.05 
for normal with layout vs. normal without layout, and ran-
dom with layout vs. random without layout, respectively) 
in the left PPA. The same pattern of results was found in 
the right PPA: the more anterior right PPA voxels were bet-
ter at differentiating between normal and random rooms 
(Mcorr = 0.04 ± SE = 0.06 and 0.19 ± 0.07 for normal vs. 
random rooms with layout, and normal vs. random rooms 
without room, respectively), whereas the more poste-
rior right PPA voxels distinguished better between rooms 
with and without layout (Mcorr = − 0.08 ± SE = 0.07 and 
− 0.11 ± 0.08 for normal with layout vs. normal without 
layout, and random with layout vs. random without layout, 
respectively).3

Both left and right RSC were able to differentiate between 
the four comparisons (Fig. 2), which may not be surpris-
ing given that the univariate analysis had already pro-
duced effects (see Fig. 4). The left RSC successfully dis-
tinguished between normal and random rooms with layout 
[t(14) = 2.53, p = 0.012], normal and random rooms without 
layout [t(14) = 2.55, p = 0.012], as well as normal rooms 
with and normal rooms without [t(14) = 3.67, p = 0.002], 
and random rooms with layout and random rooms without 
layout [t(14) = 2.44, p = 0.012]. The same pattern of results 
was found in the right RSC, which could also distinguish 
between different room types [normal and random rooms 
with layout—t(14) = 2.69, p = 0.009; normal and random 
rooms without layout—t(14) = 2.71, p = 0.008]; normal 
rooms with and normal rooms without—t(14) = 3.25, 
p = 0.003; random rooms with layout and random rooms 
without layout—t(14) = 3.19, p = 0.003. Unlike with the 
PPA, there was no significant difference between the right 
and left RSC (All Fs > 1). The MVPA accuracy values of the 
RSCs were also not significantly correlated with the reaction 
time participants needed to find the object in the rooms (all 
r < 0.31).

The MVPA analysis for the left OPA yielded a significant 
result in the comparison between normal and random rooms 
without layout. However, all other comparisons, including 
those for the right OPA, were not significantly reliable (see 
Appendix, Fig. 5).

The control areas, the right FFA and LOC, were not as 
successful in differentiating between the four binary com-
parisons (all comparisons, p > 0.10). The right V1 could 
only differentiate between normal and random rooms with 
layout, but all other comparisons were not significant (see 
the Appendix, Fig. 8).

Multivariate cross‑categorization fMRI analysis

The cross-categorization procedure is presented in Fig. 3a. 
Figure 3b shows the results of the cross-categorization 
procedure. The left PPA was only sensitive to layout 
[t(14) = 3.17, p = 0.004] and not to randomization of objects 
[t(14) = 0.64, ns]. The right PPA, however, responded to 
both randomization [t(14) = 3.67, p = 0.002] and layout 
[t(14) = 4.52, p < 0.001]. The RSC displayed a different 
pattern of results. Both left and right RSC were able to 
cross-categorize rooms successfully based on the randomi-
zation [t(14) = 2.53, p = 0.012 and t(14) = 2.64, p = 0.008, 
for the left and rights RSC, respectively], but the same was 
not possible based on the layout [t(14) = 1.01, p = 0.16 and 
t(14) = 1.16, p = 0.13, for the left and right RSC, respec-
tively]. The differences between the PPA and RSC are also 
evident as the right PPA was significantly more successful 
than its left counterpart in the randomization [paired t test, 
t(14) = 2.2, p = 0.042] but not in the layout (t < 1, ns). There 

3 The PPA split into anterior and posterior PPA confirms the trend of 
the anterior PPA being more responsive to the randomization factor 
and the posterior PPA to the layout factor, but the differences were 
not significant. However, we believe that the correlation represents 
the anterior–posterior division better than a simple division of the 
PPA into the anterior and posterior part because it captures the whole 
spectrum of the data along the anterior–posterior axis.
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were no differences in the success rate between the right and 
left RSC either in the randomization or layout (t < 1, ns).

The left and right OPA could not reliably cross-categorize 
rooms along the randomization or layout factor (see Appen-
dix, Fig. 6). The same results were also found for the control 
ROIs, the right FFA, the right LOC, and V1-none of them 
could cross-categorize the rooms across either of the factors 
(all p > 0.20—see Figs. 3, and 7, 8 in the Appendix).

Discussion

Our main goal was to test whether the scene-related brain 
regions, the PPA and RSC are sensitive to the relations 
between objects, as well as to the layout of the scene. We 
manipulated the common relations between objects within 
a room employing the randomization paradigm, while the 
layout factor was controlled by presenting those rooms with 

Fig. 3  MVPA cross-categorization results. a Cross-categorization 
procedure. b Cross-categorization accuracy presented in percent-
age of correctly classified instances (50% is a chance level—see the 
dotted line) of the two binary comparisons for the left and right PPA 

(top panel), for the left and right RSC (middle panel), and for the 
right LOC and right FFA (bottom panel). Error bars represent SEM. 
*p < 0.025 (corrected for multiple comparisons)
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and without the typical walls (see Fig. 1). In a visual search 
paradigm where the participants had to actively search for 
an object in rooms, the univariate analysis demonstrated that 
both the left and right PPA were sensitive only to the layout 
properties and not to the object randomization (see Appen-
dix). The left and right RSC, in contrast, were sensitive to 
both layout and object factors, which was already apparent 
in the univariate analysis. The MVPA confirmed that both 
left and right RSC can differentiate between different rooms 
taking into account both layout and objects (see Fig. 3). The 
MVPA also demonstrated that the right PPA can differenti-
ate between the rooms using the information about relations 
of the objects in the rooms. The final cross-categorization 
MVPA analysis confirmed that both the left and right PPA 
can indeed differentiate between the rooms based on the lay-
out properties irrespective of the objects in the rooms, but 
that only the right PPA can differentiate rooms using on the 
relations of objects in the room irrespective of the layout. 
In contrast, the left and right RSC could only transfer the 
information about the relations between objects, that is the 
randomization factor, to categorization of different stimuli. 
The layout factor was not strong enough in the RSC to be 
transferred for differentiation of a new class of stimuli.

Despite the evidence that the right PPA is sensitive to 
the relations between objects within scenes, it also apparent 
that both the left and right PPA respond to the layout prop-
erties of scenes. Even cross-categorization tests, where the 
properties of one type of the binary comparison are tested 
on another binary comparison, indicate that both PPAs 
are successful in differentiating between rooms with and 
without layout irrespective of their object arrangements. 
These results corroborate and extend previous findings on 
the role of spatial layout in PPA (Epstein and Kanwisher 
1998; Epstein 2008; Park et al. 2011; Kravitz et al. 2011a). 
That is, however, only one side of the story, because the 
right PPA could not only differentiate based on the relation 
between objects in the scene, but also use this information 
to differentiate between new stimuli with the same relations. 
These results indicate that the PPA’s function is related to 
both object and layout factors in scenes. This possibility may 
go a long way towards explaining seemingly contradictory 
pattern of results that we currently have when it comes to 
the PPA’s function, as there is ample evidence that the PPA 
is sensitive to layout manipulation (Epstein and Kanwisher 
1998; Park et al. 2011; Kravitz et al. 2011a), but also to 
objects and their relations (Aminoff et al. 2007; Bilalić et al. 
2010, 2012; Harel et al. 2012).

That the PPA may respond to both layout and object 
relations is supported by anatomical evidence from monkey 
studies. Unlike other scene-relevant areas such as the LOC, 
the PPA receives input from both ventral parts of V4 (Unger-
leider et al. 2008) and the dorsal visual pathway through 
the parietomedial temporal pathway (Kravitz et al. 2011b). 

It may, therefore, not come as a surprise that the human 
PPA, besides responding to spatial layout (Epstein and 
Kanwisher 1998), also displays more activity in response to 
indoor than outdoor scenes (Henderson et al. 2006) because 
indoor scenes encompass more objects. Similarly, even a 
room with a single object elicits different activation patterns 
to the same room without any objects (Harel et al. 2012; see 
also, MacEvoy and Epstein 2011).

Additional evidence for multiple functions of the PPA 
comes from a connectivity study by Baldassano et  al. 
(2013) who demonstrated that the PPA is not a homo-
geneous area. The anterior part is coupled with the RSC 
and the caudal inferior parietal lobe (cIPL), which in turn 
are connected to the anterior hippocampus (Aminoff and 
Tarr 2015; Baldassano et al. 2016). This indicates that 
memory and navigational properties are restricted to the 
anterior part. In contrast, the posterior PPA was connected 
to occipital visual regions (LOC and OPA) and was, there-
fore, responsible for objects within scenes. A developmen-
tal study on scene perception by Chai (2010) confirms the 
involvement of the PPA in the memory processes. The 
posterior part of the parahippocampal gyrus (PHG), which 
also encompasses the PPA, was the most relevant area 
for successful categorization and remembering of high-
complexity scenes that feature numerous objects. Unfortu-
nately, this study did not specifically localize the PPA and 
its anterior and posterior parts. Our study provides addi-
tional indication that the more anterior PPA voxels may be 
more sensitive to functional properties between objects in 
the scene, whereas the posterior counterparts seem to be 
more responsible for layout properties. Although the direc-
tion of the correlation between the anterior–posterior vox-
els and their categorization success was always consistent 
with this conclusion, the correlation itself was rather low.

The right PPA was more sensitive to both layout and, in 
particular, randomization than the left PPA (Fig. 3). This 
is a somewhat surprising result given that in some of the 
previous studies no big differences were found and the 
statistics on both PPA were often collapsed into a sin-
gle ROI (Epstein and Kanwisher 1998; e.g., Harel et al. 
2012; Bastin et al. 2013). On the other hand, studies that 
manipulated relations of objects (Aminoff et al. 2007; Bar 
et al. 2008; Bilalić et al. 2010, 2012) found more pro-
nounced right PPA activation, although none of these stud-
ies explicitly tested for differences as we did here. It is 
possible that the right PPA’s sensitivity to object relations 
and layout is related to its more form-specific analyses in 
visual scene processing (Walther et al. 2009, 2011). The 
left PPA, on the other hand, seems to be more specialized 
for form-abstract conceptual processes that involve con-
ceptual but not visual similarities in scenes (Stevens et al. 
2011). The exact difference in the function of the left and 
right PPAs may be one of the questions for future studies.
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Just like the right PPA, the left and right RSC seem to 
parse scenes in such a manner that both the layout prop-
erties of scene and the objects within it are processed 
together (see also Harel et al. 2012) because both the left 
and right RSC were sensitive to both factors (see Figs. 2, 
4). This was confirmed as early as the univariate analysis 
and the same pattern was also found with MVPA. How-
ever, the cross-categorization enabled us to go beyond 
this as it established that the RSC only used the informa-
tion about the object relations and not the layout for the 
differentiation of new stimuli (see Fig. 3b). One expla-
nation for this pattern of results is that objects and their 
relations may be more relevant for navigation within the 
scene environment (Epstein et al. 2007; Bastin et al. 2013; 
Aminoff et al. 2013) than the spatial layout, at least in 
this particular task. Unlike most previous research, our 
paradigm forced the participants to actively manipulate 
the stimuli, which requires knowledge retrieval about the 
object relations from long-term memory (Bilalić et al. 
2010, 2012; Võ and Wolfe 2013b). Quickly grasping the 
environment through, among other processes, recognizing 
typical objects and the relations between them, is essential 
for successful navigation within the environment.

The navigation that is necessary in our search paradigm 
may be one of the reasons why the OPA (see Appendix for 
detailed results) was relatively successful in differentiating 
between normal and random rooms. Nevertheless, only one 
such comparison was significant (e.g., normal versus ran-
dom rooms without layout in the left OPA, see Fig. 5). On 
the other hand, none of the layout comparisons was reliably 
successful. The role of the OPA in our paradigm is currently 
unclear and more research may be needed to understand its 
role in parsing object relations and spatial layout of rooms.

Our current study emphasizes a difference between para-
digms that involve passive watching of scenes and active 
use of domain-specific knowledge. The prevailing opinion 
in the fMRI community seems to be that processes related to 
scene perception are automatic and will, therefore, become 
apparent even in paradigms where participants passively 
observe scenes (e.g., Harel 2015a). This is reflected in the 
choice of the paradigms that feature passive observation of 
stimuli, a particularly convenient way for conducting stud-
ies in MRI scanners. However, the role of attention in scene 
perception is far from resolved, as one can observe in vari-
ous debates on the same or similar issues outside the fMRI 
community (e.g., Gronau and Izoutcheev 2017). Our study 
adds to the current debate using a paradigm that involves 
active use of domain-specific knowledge. More importantly, 
our study illustrates once again that other factors also influ-
ence activations in various brain areas, such as the PPA and 
RSC. These factors may require attention, but may not be its 
direct product. Attention is seen as the most commonly used 
confounding factor in fMRI studies (Esterman and Yantis 

2009). However, if it were only attentional effects driving 
the result in our study, we would most likely see them in the 
control ROIs, the right LOC and the right FFA, which are 
well known to react to attention and expectation (Summer-
field et al. 2008; Summerfield and Egner 2009). Given that 
this is not the case, it seems rather that they may well elicit 
additional processes related to domain-specific knowledge 
that are not automatically stimulated in classical observa-
tional paradigms (Harel et al. 2010, 2014).

Besides the active participation of the participants dis-
cussed above, one of the possible reasons why we man-
aged to demonstrate the right PPA’s sensitivity to object 
relations, something that proved elusive in previous stud-
ies (Epstein and Kanwisher 1998; Park et al. 2011; Kravitz 
et al. 2011a; Harel et al. 2012), is the randomization para-
digm. By directly manipulating the meaningfulness of the 
object relations within scenes and combining it with a more 
sensitive MVPA (Haynes and Rees 2006; Norman et al. 
2006), we uncovered that the right PPA was sensitive to 
object relations. One could argue that scattering objects in 
the room randomly nevertheless changes the global layout 
of the stimuli and, therefore, not only disturbs the relations 
between those objects, but also influences the spatial layout 
of the scene. This is certainly a possibility, especially in 
other outdoor categories of scenes. The rooms, however, 
have walls as typical constraints that make most of the global 
space. This is evident by the stream of research that has con-
trasted empty rooms with walls against the same rooms with 
objects (Epstein and Kanwisher 1998; Epstein et al. 1999; 
Harel et al. 2012; Bettencourt and Xu 2013; Kamps et al. 
2016), as well as rooms with and without walls to investi-
gate spatial layout (Epstein and Kanwisher 1998; Harel et al. 
2012; Kamps et al. 2016).

Despite the demonstrated advantages of the randomiza-
tion paradigm, there are also drawbacks. As a consequence 
of using multi-object stimuli typical of real life, their rand-
omization produces unnatural stimuli. Our version of rand-
omization avoids unnatural positioning of objects (e.g., float-
ing in the air) but introduces another problem as objects are 
consequently placed in their unnatural positions (e.g., a sofa 
on the ceiling is inevitably upside-down). These differences 
may, for example, produce fine graded visual differences 
between conditions. These differences may not be processed 
in the PPA and RSC but rather in early visual areas, which 
then forward the information to the high-level visual areas. 
The sensitivity of the PPA and RSC to the object function 
may then be a consequence of these differences in visual 
features and not of sensitivity to object relations. It is impos-
sible to rule out this possibility completely without addi-
tional experiments which would control for the confounds 
in the randomization paradigm. However, the pattern of 
results in the LOC, the area generally assumed to process 
visual features of stimuli (Malach et al. 1995; Grill-Spector 
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et al. 1999; Vinberg and Grill-Spector 2008), speaks against 
this possibility. The LOC was not sensitive to the layout 
manipulation, which might have been expected from previ-
ous research (Epstein et al. 2003; Park et al. 2011; Harel 
et al. 2012). The same can be said for V1 (see Appendix). 
The randomization has not produced any noticeable differ-
ences in the LOC, even when the more powerful MVPA was 
used in the analysis.

The other control area, the right FFA, also provides evi-
dence against a strong version of this hypothesis. The FFA is 
not only sensitive to multi-layered stimuli, which promotes 
holistic processing (Bilalić et al. 2016; Bilalić 2016), but 
it also seems to be sensitive to the manipulation of object 
relations caused by the randomization paradigm, at least 
with chess stimuli and chess experts (Bilalić et al. 2011; 
Krawczyk et al. 2011; Bartlett et al. 2013; Righi et al. 2013). 
As such, it is an ideal area to demonstrate sensitivity to the 
randomizations of objects within rooms. This is not the case 
here as the FFA could not differentiate based on either the 
layout or the object relations in rooms. It is possible that the 
difference between chess and room stimuli employed in the 
studies is responsible for the differing patterns of results. 
It is, however, also possible that the FFA simply does not 
process scene features necessary for scene perception and 
orientation, unlike the scene areas PPA and RSC.

Finally, the visual search paradigm inevitably produces 
different patterns of eye movement, especially when com-
bined with the randomization paradigm. This means that 
participants were allocating attention differently and per-
ceiving different objects. The obtained effects in the PPA 
and RSC, in particular on the normal and random rooms, 
could be then a product of these differing eye movements 
and consequently differently focused objects. This possibil-
ity gains credibility if we consider that different object may 
elicit different activation in the object-sensitive areas such 
as LOC. These early visual regions could then forward pro-
cessed information for further processing to the regions later 
in the visual streams such as the PPA and RSC.

Although there does not seem to be a direct way to test 
for this possibility in our design, we believe that this expla-
nation is unlikely in this particular context. The attended 
objects may be different but the same typical room objects 
still appear. It is probable that the participants will in both 
normal and random rooms pay attention to the same or simi-
lar objects. If this is not the case, one would expect that the 
control areas, the LOC and FFA, may also be sensitive to 
the same effects, at least to an extent. In particular, the LOC, 
would be expected to pick up these visual differences. LOC 
has been shown to be sensitive to contextual effects in visual 
search paradigms (Preston et al. 2013). Similarly, MacAvoy 
and Epstein (2011) also demonstrated that the LOC activity 
of the individual objects in isolation (e.g., oven, fridge) can 
be used to correctly categorize typical scenes that are made 

up of these objects (e.g., kitchen). However, the LOC could 
not differentiate between the normal and random rooms in 
our study. If the regions in the early visual stream do not 
show sensitivity towards different eye movements and con-
sequently differently attended objects, it is difficult to believe 
the effects in the later regions, the PPA and RSC, should 
reflect these differences.

The MacAvoy and Epstein study (2011) offers additional 
clues that the effects in the PPA and RSC may not be a 
consequence of possibly differently attended objects. The 
categorization of scenes based on the combination of the 
activity of its individual objects seems possible only in the 
LOC and not the PPA (MacAvoy and Epstein 2011). This 
may seem like an argument against the PPA processing of 
object relations. One needs, however, to keep in mind that 
our study uses the same type of objects—objects typical 
for rooms. The MacAvoy and Epstein study used different 
objects (e.g., oven vs. bathtub) to differentiate between dif-
ferent scenes (e.g., kitchen vs. bathroom). The MacAvoy 
and Epstein study may rule out the PPA’s parsing of seman-
tic relations between objects (e.g., Aminoff et al. 2007; Bar 
et al. 2008) but it does not rule out the processing of func-
tional and spatial relations between objects in the PPA.

Our stimuli were scenes of living rooms. This raises the 
question of whether the same findings generalize across 
other more or less similar stimuli. There are reasons to 
believe that other indoor environments, such as kitchens 
and bathrooms, would follow the same pattern of results. 
They are also made up of typical objects which are placed 
in a typical functional manner. Placing a washing machine 
on the wall and the sink on the floor may have similarly 
disruptive effects to placing a sofa on the ceiling. The situ-
ation becomes more complicated when we move outdoors 
and consider naturalistic scenes such as, for example, the 
sun over a hill. The elements in these scenes (e.g., hill) are 
arguably more difficult to manipulate than the room furni-
ture. A more natural manipulation of these scenes would 
involve rotating the whole scene to a certain degree (e.g., 
90°) or even turning it upside-down (Yin 1969). However, 
this manipulation is arguably more suited for layout prop-
erties of the scene than functional and spatial relations of 
the elements within the scene (Bilalić 2017).

The other question for future studies is whether the 
effects would be obtained in the common paradigm where 
the stimuli are passively observed. This would indeed be 
a test of the widespread assumption that scene process-
ing is at least partly automatic. Given the difficulties the 
previous studies had in establishing the role of the PPA in 
object perception in the scenes (Epstein and Kanwisher 
1998; Epstein and Ward 2010; Kravitz et al. 2011a; Harel 
et al. 2012), one can assume that the passive observation 
would not produce the same effects as in this study which 
employed active visual search. The possible no-difference 
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results in the passive observing paradigm is ultimately 
weak evidence for the role of the PPA in parsing object 
functions. That is why we believe that the active search 
paradigm employed in this study, is the better way of 
understanding the PPA’s role in the perception of objects 
within scenes.

Overall, our study does not only underline the value 
of the randomization paradigm that has been making a 
comeback in visual scene research (Võ and Wolfe 2013a, 
b), but also the importance of employing paradigms that 
require active participation and retrieval of domain-spe-
cific knowledge (Bilalić et al. 2010, 2011, 2012; Harel 
et al. 2010, 2014). These paradigms, such as the visual 
search employed here, have long been used in behavioral 
research and present an important alternative as well as 
a way to supplement the common paradigms that rely on 
passive observation and automatic retrieval.
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Appendix

Univariate fMRI analysis

Figure 4 shows the neural responses in the left and right 
PPA and RSC when the participants were actively look-
ing for an object in rooms. We first present the results of 
2 × 2 ANOVA with the main factors of randomization (nor-
mal and random rooms) and layout (rooms with and with-
out walls) for each single ROI. We then include the side 
of the ROI (left and right) as the third factor. For the left 
PPA, the neural activity was the same irrespective of the 
object arrangement in the rooms [main effect of randomi-
zation: F(1, 14) = 0.1, p = 0.99] and it did not matter if the 
room were with or without layout [interaction randomiza-
tion × layout: F(1, 14) = 1, p = 0.34]. However, the presence 
of layout modulated the neural response as the rooms with 
layout elicited stronger activation than the rooms without 
layout [main effect of layout: F(1, 14) = 48.5, p < 0.001]. 

The same pattern of results was observed for the right PPA, 
although here the randomization was almost significant [F(1, 
14) = 4.3, p = 0.06]. Again, the rooms with layout elicited 
higher activation [F(1, 14) = 96.4, p < 0.001], whereas there 
was no interaction between layout and randomization [F(1, 
14) = 0.4, p = 0.53]. There were no differences between the 
left and right PPA (2 × 2 × 2 ANOVA between layout × ran-
domization × side did not produce significant results—all 
Fs < 1).

In contrast to the PPA, both RSC regions of interest 
showed a different pattern of activation. The left RSC was 
more activated in normal rooms than in random ones [main 
effect of randomization: F(1, 14) = 7.2, p = 0.018] and was 
also more activated in rooms with layout than without lay-
out [F(1, 14) = 44.3, p < 0.001]. The pattern was consist-
ent across both factors as there was no interaction [F(1, 
14) = 1.2, p = 0.29]. The right RSC displayed the same pat-
tern of activations: more activation in normal than randomly 
arranged rooms [F(1, 14) = 6.4, p = 0.025], more activation 
in rooms with layout [F(1, 14) = 41.1, p < 0.001], and no 
interaction between the two factors [F(1, 14) = 2.5, p = 0.14]. 
The right RSC was more activated than the left RSC [main 
effect of side: F(1, 14) = 8.8, p = 0.011] and the rooms with 
layout activated more the right RSC than the left RSC 
[side × layout interaction: F(1, 14) = 12.9, p = 0.003].

The left OPA was not responding differently to nor-
mal and random room [main effect of randomization: F(1, 
14) = 1.9, p = 0.19]. The same absence of differences was 
also found between rooms with layout and without [main 
effect of layout: F(1, 14) = 0.8, p = 0.78]. The layout and ran-
domization were not engaging the left OPA [interaction: F(1, 
14) = 0.2, p = 0.89]. The same pattern of results was found in 
the right OPA: main effect of randomization was not signifi-
cant [F(1, 14) = 0.4, p = 0.56] as well as main effect of lay-
out [F(1, 14) = 1.5, p = 0.24] and interaction [F(1, 14) = 0.8, 
p = 0.78]. There were also no differences between the left 
and right OPA (2 × 2 × 2 ANOVA between layout × randomi-
zation × side did not produce significant results—all Fs < 1).

Unlike the PPA and RSC, the right LOC did not show 
any effects—see Fig. 5. Neither did randomization [F(1, 
14) = 0.1, p = 0.80] or the layout [F(1, 14) = 0.1, p = 0.72] 
played a role. There was also no interaction between the two 
factors [F(1, 14) = 0.2, p = 0.63]. The same lack of effects 
was found in the control ROI, the right FFA. The main 
effects of randomization [F(1, 14) = 0.1, p = 0.83] and lay-
out [F(1, 14) = 1.9, p = 0.19] were not significant, and there 
was no interaction between the two factors [F(1, 14) = 0.1, 
p = 0.71]. Similarly, there were no effects evident in right 
V1 [main effect of randomization: F(1, 14) = 0.3, p = 0.85; 
main effect of layout: F(1, 14) = 1.7, p = 0.22; interaction: 
F(1, 14) = 1.8, p = 0.20].

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Multivariate analyses of OPA

Similar to other scene areas, the OPA is reacting to scene 
more than to other stimuli (Bettencourt and Xu 2013). The 
OPA is also more activated when rooms with furniture are 

shown than when the same furniture is presented without the 
room confines (Bettencourt and Xu 2013). Recent studies 
suggest that the OPA is important for recognition of land-
marks through their visual features (Marchette et al. 2015), 
as well as for identifying potential paths in a scene (Bonner 

Fig. 4  Univariate fMRI results of scene-related and control regions. 
Activation levels (% signal change from the baseline) for normal 
(black) and random (white) rooms with or without layout for the left 

and right PPA (top panel), left and right RSC (middle panel), and left 
and right OPA (bottom panel)

Fig. 5  Univariate fMRI results of control areas. Activation levels (% signal change from the baseline) for normal (black) and random (white) 
rooms with or without layout for the right LOC (left panel), right FFA (middle panel), and right V1 (right panel)
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and Epstein 2017). It is currently unclear whether the OPA 
reacts and to what extent to the spatial layout and object 
placements.

As can be seen in Fig. 6, the left OPA did not quite reach 
the significance level (p < 0.0125 after correction for multi-
ple comparisons) for discriminating between normal rooms 
and random rooms with layout [t(14) = 2.48, p = 0.014], but 
did reach the significance level for differentiation between 
normal and random rooms without layout [t(14) = 3.29, 
p = 0.003]. The left OPA did not, however, differentiate 
between rooms with and without layout—t(14) = 0.01, 
p = 0.99 for normal with vs. normal without layout, and 
t(14) = 0.61, p = 0.55 for random with vs. random without 
layout rooms. We found the same tendency for right OPA, 
but the randomization comparisons did not quite reach the 
significance level [normal versus random rooms with layout: 
t(14) = 1.59, p = 0.066; normal versus random rooms without 
layout: t(14) = 2.32, p = 0.018]. There were no significant 
differences for the layout comparisons [normal rooms with 
layout versus normal rooms without layout: t(14) = 0.27, 

p = 0.40; random rooms with layout versus random rooms 
without layout: t(14) = 1.29, p = 0.11]. The direct compari-
son between the left and right OPA did not result in any 
significant effects (all Fs < 1, ns.). Similarly, there was no 
significant correlation between the MVPA accuracy in the 
OPAs and the reaction time of participants (all r < 0.23).

Figure 7 shows that the left and right OPA could not suc-
cessfully cross-categorize rooms across either randomization 
or layout factor (all p > 0.10).

Multivariate analyses of V1

Unlike the previous ROIs, the right V1 was the anatomi-
cally defined V1 which was standard for all individuals 
(for more details, see the Method section of the main 
text). The analyses were then made on the normalized 
unsmoothed functional scans, which may explain the 
inconsistent results. Figure 8 shows that the V1 could 
reliably differentiate only between normal and random 
rooms without layout [t(14) = 5.21, p < 0.001]. All other 
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Fig. 7  MVPA cross-categori-
zation results. Cross-catego-
rization accuracy presented 
in percentage of correctly 
classified instances (50% is a 
chance level—see the dotted 
line) of the two binary com-
parisons for the left and right 
OPA. *p < 0.025 (corrected for 
multiple comparisons)
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comparisons were not significant (p > 0.10). Similarly, the 
cross-categorization procedure was not reliable in the V1 
(p > 0.10).
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