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Abstract Unravelling the neural mechanisms, which

determine performance accuracy, is one of the key con-

cepts in cognitive neuroscience. When compared to correct

responses, shorter reaction times are commonly observed

behavioural feature of errors committed in typical conflict

tasks. Yet, little is known about the origins of this phe-

nomenon. In this study, EEG and fMRI experiments were

conducted using the numerical version of the Stroop

paradigm, which yielded unique behavioural outcomes.

Particularly, errors in numerical comparison had shorter

reaction times than correct trials, whereas physical com-

parison resulted in the opposite pattern. This criss–crossing

interaction effect was used as a marker when exploring

time-courses of brain activity. Group independent compo-

nent analysis was applied to neurophysiological data and

event-related analysis was conducted on the components’

time-courses. Results revealed one centro-parietal EEG

component and one temporo-parietal fMRI neural network,

which exhibited significant task and accuracy interactions.

Showing linear increase that peaked right after the response

onset, the activity of centro-parietal EEG component was

linked to the decision variable signal, which reflects a

process of accumulating evidence until reaching an action-

triggering threshold. Both amplitude measurements and

linear fits to the signal provided evidence for distinctive

characteristics between numerical and physical compar-

isons, thereby explaining the behavioural outcomes: errors

are committed due to accumulation of evidence in favour

of the other (wrong) task instruction. The architecture of

the temporo-parietal network, which comprises bilateral

inferior temporal and intraparietal regions, is highly con-

sistent with the recently established core ‘‘number net-

work’’. These findings link perceptual decisions with the

generalized magnitude system and impart novel insights

into the neural determinants of errors in humans.

Keywords Numerical stroop � Errors � Reaction time �
Decision variable � Centro-parietal positivity � Number

network

Introduction

In the numerical version of the Stroop paradigm, partici-

pants compare simultaneously presented Arabic digits

based either on their numerical (numerical task) or physical

(physical task) dimension (Besner and Coltheart 1979;

Henik and Tzelgov 1982). Assessing the physical features

of digits is significantly faster than assessing their value

(e.g. Kadosh et al. 2007; Szucs and Soltész 2007).

Regardless of the task instructions, an incongruent trial

consists of a pair of digits in which the numerically larger

digit has a smaller font size (Fig. 1). Although size and

numerical information are processed automatically and in

parallel, they interact and evoke response competition

(Henik and Tzelgov 1982; Kadosh et al. 2007; Szucs and

Soltész 2007; Sz}ucs and Soltész 2008; Santens and Verguts

2011). As with other conflict tasks, this interference
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manifests in slower reaction times (RTs) and error rates

compared to neutral and congruent trials. While there is a

large body of work on number–size interaction, very little

is known about the origins of errors in numerical and

physical comparisons. Notably, none of the aforementioned

studies reported the RTs of erroneous responses.

As is commonly observed in conflict tasks, RTs of errors

are significantly shorter than RTs of hits (e.g. Gratton et al.

1988; Falkenstein et al. 1991; White et al. 2011). A simple

explanation of this phenomenon is that an erroneous

response is executed before the stimulus is fully processed

(Pailing and Segalowitz 2004; Danielmeier et al. 2009). An

elucidation was provided by studies using electromyogra-

phy and lateralized readiness potentials (Gratton et al.

1988; Sz}ucs et al. 2009). According to them, early pro-

cessing of task-irrelevant stimulus information overwhelms

the relevant feature of the target and triggers activation of

the incorrect motor response, resulting in a high likelihood

of error commission. If this response competition is

reduced and overcome, a delayed correct reaction is exe-

cuted. Considering that incongruent trials in both numerical

and physical Stroop tasks elicit such interference (Kadosh

et al. 2007; Szucs and Soltész 2007), one could speculate

that errors in both tasks have shorter RTs than hits. As will

be discussed later, it is not the case.

Computational and neuroimaging studies have provided

substantial insights into numerical cognition. In general,

number processing consists of two steps: the transforma-

tion of an external sensory number input to an internal

number representation, and the transformation of a

numerical representation to a task-relevant decision before

the execution of a motor response (Verguts and Fias 2008).

According to functional magnetic resonance imaging

(fMRI) studies, perceptual encoding into a numerical rep-

resentation occurs in the inferior temporal gyrus, which

selectively responds to written Arabic numerals (Shum

et al. 2013; Amalric and Dehaene 2016). The intraparietal

sulcus (IPS) acts as a cortical hub to extract quantitative

information to estimate magnitude, space, or time (Hub-

bard et al. 2005; Nieder and Dehaene 2009), all of which

are necessary when making decisions. On the other hand,

electroencephalography (EEG) studies have contributed a

comprehensive overview of the precise timing of each

processing stage. The numerical representation is evaluated

until 200 ms after the presentation of digits, as marked by

early temporo-occipital P1/N1 visual potentials (Pinel et al.

2001; Szũcs et al. 2007). Number–size interference can be

observed later (* 450 ms after stimulus onset) within the

centro-parietal positivity (CPP), also referred to as P3b

(Kadosh et al. 2007; Szucs and Soltész 2007; Sz}ucs and

Soltész 2008, 2012; Beldzik et al. 2015a).

In our previous study, in which only the numerical task

was implemented (Beldzik et al. 2015a), we applied inde-

pendent component analysis (ICA) to EEG data and suc-

cessfully isolated several functionally distinct neural

sources including two lateral temporo-occipital compo-

nents that showed early visual P1/N1 potentials, a fronto-

central component explaining all variance of error-related

negativity, and a centro-parietal component showing pro-

nounced CPP. The analysis of response-aligned event-re-

lated potentials (ERPs) revealed that the CPP increases

linearly before the response until it reaches its maximum

just after response onset. Moreover, the slope of this

increase was sensitive to all experimental conditions that

vary in RT.

This effect can be attributed to the recently established

decision variable (DV) signal. DV was first introduced by

sequential sampling models that focused on explaining

two-choice perceptual decisions (Smith and Ratcliff 2004;

Bogacz et al. 2006). According to the models, noisy sen-

sory evidence is accumulated in favour of a particular

outcome upon reaching an action-triggering threshold. DV

represents the accrual of priors, evidence, and value into a

quantity. The model has proven extremely successful at

accounting for performance on a variety of different cog-

nitive tasks (Ratcliff and McKoon 2008). It was soon

employed by neurobiologists and supported by empirical

data from single-cell recordings in monkeys (Platt and

Glimcher 1999; Gold and Shadlen 2007). According to

these studies, the build-to-threshold DV dynamics are

represented by neurons in the lateral part of IPS. The DV

signal was later isolated in human EEG studies (O’Connell

et al. 2012). The authors showed that DV is reflected by the

build-up rate of the response-aligned CPP as it exhibited

every aspect of the dynamics observed in single-neuron

counterparts. It increases steadily with incoming evidence,

peaks at the time of response execution, scales with target

detection difficulty, and accounts for trial-to-trial variance

in RT. Recently, Twomey et al. (2015) indicated that the

Fig. 1 Scheme of the numerical Stroop paradigm
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commonly observed centro-parietal P3b potential exhibits

the same accumulation characteristics as CPP, thus it

encodes the DV signal. The authors pointed out that these

effects observed at the slope of response-aligned P3b have

been overlooked in previous EEG studies, possibly due to

the spatiotemporal overlap with distinct frontal potentials.

Indeed, as demonstrated by our previous study (Beldzik

et al. 2015a), the fronto-central and centro-parietal inde-

pendent sources explained over 80% of variance of the P3b

potential. Once separated using ICA, the effects on the

slope of CPP revealed the classic build-to-threshold

dynamic.

In this study, which was a part of broader research

project, numerical and physical Stroop tasks were imple-

mented in separate experiments using EEG and fMRI. Both

experimental sessions revealed an interesting and novel

behavioural pattern of RT measurements. That is, errors

committed in the numerical task were, as expected, faster

than correct responses, whereas errors in the physical task

showed the opposite pattern of slower RTs than hits. Thus,

the goal of this study was to reveal the neural underpin-

nings of erroneous responses in the numerical Stroop

paradigm using the temporal and spatial advantages of

EEG and fMRI, respectively. Group ICA was applied to

both EEG and fMRI data to separate EEG independent

sources and identify the neural networks involved in the

task. The unique pattern of RT measurements was used as a

marker when exploring the time-courses of independent

components. Based on the results from our previous study

(Beldzik et al. 2015a), we hypothesise that the response-

locked CPP is sensitive to the task and accuracy interac-

tions. Particularly, we expect to find greater CPP amplitude

before the response and smaller linear slope coefficient.

Considering the compelling involvement of the IPS in

numerical cognition (Nieder and Dehaene 2009) and its

alleged locus of DV signal (Gold and Shadlen 2007), we

hypothesise that this brain structure shows greater

involvement in the longer taking numerical and physical

decisions, regardless of its accuracy.

Materials and methods

Participants

Thirty-four participants (mean age of 23.4 ± 2.4 years, 17

females) met the inclusion criteria for MRI scanning and

the experiment requirements: right-handedness, normal or

corrected-to-normal vision, no physical and psychiatric

disorders, being drug-free. They were informed about the

procedure and goals of the study and gave their written

consent. The study was approved by the Bioethics Com-

mission at Jagiellonian University.

Experimental task

The numerical version of the Stroop paradigm, also known

as the size congruity paradigm (Besner and Coltheart

1979), was prepared and generated using E-Prime 2.0

(�Psychology Software Tools). In the EEG experiment,

the task was presented on a 17-inch screen (luminance

300 cd/m2, brightness level 70%) located approximately

80 cm from the eyes of participants. In the fMRI experi-

ment, a mirror was placed on the head coil so participants

could see the 32-inch screen (luminance 400 cd/m2,

brightness level 50%) situated behind the scanner approx-

imately 100 cm from the mirror. In the former experiment,

a keypad was provided in front of the participants, whilst in

the latter experiment two keypads were placed in the par-

ticipants’ hands.

In the task, the stimuli were a pair of Arabic digits (from

1 to 9) of varying size (from 20 to 52 pt in steps of 4 pt) in a

black Arial font on a light grey background (Fig. 1). In the

numerical task, subjects were instructed to press a button

with the left/right index finger if the digit on the left/right

side had higher magnitude. In the physical task, they were

instructed to indicate the digit with the greater font size.

There were three congruence conditions: (1) congruent,

when the numerically larger digit was physically larger; (2)

neutral, when the two digits were of the same physical size

(numerical task) or the same two digits had a different size

(physical task); (3) incongruent, when the numerically

larger digit was physically smaller. One block comprised

160 trials, which were equally distributed between con-

gruence condition as well as left/right correct responses.

Stimuli were presented in a pseudorandom order to avoid

carryover effects. At the beginning of each block, the

instruction ‘‘numerical task’’ was presented. After 80 trials,

the instruction ‘‘physical task’’ informed participants about

the change of task. There were four blocks, each differing

in the type of feedback provided after the response (words

‘Good!’, ‘Bad!’, ‘You win!’, ‘You lose!’ after correct or

erroneous responses, respectively). However, feedback

types were not the concern of this study, thus blocks were

treated as equivalent sessions.

The stimulus was preceded by a blank screen for

300 ms. The stimulus then appeared for 350 ms and was

followed by a blank screen during which the response was

registered for 200 ms. Next, feedback or a black screen

was presented for 900 ms and was followed by the fixation

point (a hash symbol, #). The only difference in the task

protocols between the EEG and fMRI experiments was the

time intervals between the events. In the EEG experiment,

the stimulus-feedback interval was on average 1000 ms

(varying between 800 and 1200 ms), whereas the interval

between feedback and the next stimulus was on average

1600 ms (varying between 1100 and 2100 ms). Together,
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there were 4150 ms on average between trials. In the fMRI

experiment, the stimulus–feedback interval was set to a

constant 250 ms, whereas the interval between feedback

and next stimulus was on average 3400 ms (varying

between 2000 and 4800 ms). Together, there were 5200 ms

on average between trials.

Behavioural data analysis

The same behavioural analysis was applied to data from

both experiments. Accuracy and reaction times (RT) were

analysed in Statistica 12.0 (StatSoft Inc., OK, US). These

measures were subjected to a 2 9 3 way repeated measure

ANOVA with task and congruency conditions. To ensure a

clear comparison between correct and erroneous responses,

all further time course analyses were performed solely on

incongruent trials. RTs for correct and erroneous responses

in both tasks underwent a 2 9 2 repeated measures

ANOVA.

EEG data acquisition and analysis

Dense-array EEG data (HydroCel Geodesic Sensor Net,

EGI System 300; Electrical Geodesic Inc., OR, USA) was

collected from 256 channels (band-pass filtered at

0.01–100 Hz with a vertex electrode as a reference) at a

sampling rate of 250 Hz and recorded with Net Station

Software (Version 4.5.1, Electrical Geodesic Inc., OR,

USA). Further offline data analysis was conducted with the

open-source EEGLAB toolbox (Delorme and Makeig

2004). Data were digitally filtered to remove frequencies

below 0.5 Hz and above 35 Hz. Average reference was

recomputed and bad channels were automatically removed

by kurtosis measures with a threshold value of 20 standard

deviations. The choice of the threshold was adjusted based

on our previous study (Beldzik et al. 2015a) to ensure that

only true outliers (usually 5% of channels) were automat-

ically removed; for instance, electrodes not adhering to the

scalp. Next, continuous data were visually inspected to

remove channels or time epochs containing high amplitude,

high-frequency muscle noise and other irregular artefacts.

The removed channels were interpolated.

Independent component analysis at the individual level

was used to remove artefacts from the data. Due to the

large number of channels, decomposition of EEG data with

the Infomax algorithm was preceded by Principle Com-

ponent Analysis. Fifty ICs were obtained and visually

inspected for each subject. According to the characteristic

spatiotemporal pattern (Jung et al. 2000; Delorme and

Makeig 2004), components recognized as blinks, heart rate,

saccades, muscle artefacts, or bad channels were removed.

Next, epochs were extracted from - 400 to 1200 ms with

regard to stimulus presentation and were baseline corrected

from - 100 to 0 ms. Thus, both stimulus-locked and

response-locked ERPs had the same prestimulus baseline.

This choice was determined by the fact that the responses

in the numerical Stroop task occur within the same time

range (300–700 ms) as the effects on ERP amplitudes

(Sz}ucs and Soltész 2012; Beldzik et al. 2015a). In such

cases, a pre-response baseline could considerably reduce

the effects.

To obtain reliable and stable group ICA decomposition,

all incongruent trials entered the group ICA using the

EEGIFT toolbox (Eichele et al. 2011). Since the toolbox

requires the same number of trials for each subject, we

chose to remove the rearmost correct trials (as they were

substantially more numbered than incorrect trials), so that

the final trial count would be evened out to the lowest

number in the sample (i.e. 191). The number of indepen-

dent sources to extract was set to seven based on our

previous study with the numerical task (Beldzik et al.

2015a). The stability of ICA decomposition was validated

with ICASSO (Himberg et al. 2004), with 50 random ini-

tializations of the Infomax algorithm. Data were back-re-

constructed using the moo-icar option, i.e. the multivariate

objective optimization ICA with reference (Du and Fan,

2013). Since the reconstruction adds some noise to com-

ponent activity, a 35 Hz low pass filter was reapplied to the

time courses with the use of the EEGLab iirfilt() function.

To estimate the location in the brain of each independent

source, the scalp maps were imported to BESA 5.3

(MEGIS Software GmbH, Gräfelfing, Germany) and

underwent Classical LORETA Analysis Recursively

Applied (CLARA).

Component ERPs were extracted from - 100 to 700 ms

with regard to stimulus presentation and from - 400 to

400 ms with regard to reaction occurrence. ERPs were

obtained for 2 9 2 (accuracy 9 task) conditions to search

for a neural measure that accounted for the behavioural

pattern found here. Thus, besides a significant interaction, a

significant post hoc test between correct and erroneous

responses within each task was required. A repeated mea-

sures ANOVA was applied to point-by-point amplitudes

and peak latencies within the time range of recognized ERP

components. Specifically, the N1 was verified within

windows ranging from 0 to 300 ms with regard to stimulus

onset. The error-related negativity (ERN) was 0–150 ms

with regard to response onset. Finally, the CPP was verified

in the stimulus-locked window from 200 to 600 ms and the

response-locked window from - 300 to 100 ms. To protect

against Type-I errors, multiple time point comparisons

were corrected with the false discovery rate (FDR) method.

To establish the build-up rate of CPP, which represents

the accumulation, we measured the temporal slope of each

condition in each subject’s response-locked waveforms

(Murphy et al. 2015). Build-up rate was computed as the
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slope of a straight line fitted to the signal within the tem-

poral window of extending length. That is, fitting was

conducted in a stepwise fashion for time windows, which

started at - 100, - 104, - 108,…, until - 400 ms and

ended at the response onset. The coefficient of determinant,

R2, was obtained for each fit and averaged across subjects.

Since R2 represents the goodness of the fit, this way (1) the

linearity of the slope can be verified (2) the start of the CPP

build-up can be establish for each condition using maximal

R2 value measured among extending temporal windows.

Thus, maximal R2 value defined the final length of the

window for each condition and final fit to the statistical

testing. Both the slope coefficients and constant terms of

each fit underwent statistical testing using a 2 9 2 repeated

measures ANOVA.

fMRI data acquisition and analysis

Magnetic resonance imaging (MRI) was performed using a

3 T scanner (Magnetom Skyra, Siemens) with a 20-channel

head/neck coil. High-resolution, whole-brain anatomical

images were acquired using a T1-MPRAGE sequence. A

total of 176 sagittal slices were obtained (voxel size

1 9 1 9 1.1 mm3; TR = 2300 ms, TE = 2.98 ms, flip

angle = 9�) for coregistration with the fMRI data. Func-

tional T2*-weighted images were acquired using a whole-

brain echo planar pulse sequence (EPI) with the following

parameters: 3 mm isotropic voxel, TR = 2000 ms,

TE = 30 ms, flip angle = 90�, FOV 192 9 192 mm2,

GRAPPA acceleration factor 2, phase encoding A/P. The

whole-brain image (cerebellum excluded) was covered

with 35 axial slices, taken in an interleaved, ascending

fashion. The acquisition time for each session was 15 min.

Due to magnetic saturation effects, the first four volumes

(dummy scans) of each session were discarded instantly.

The standard pre-processing procedure was applied

using Analysis of Functional NeuroImage (AFNI) software

(Cox 1996). Each 3D image was time-shifted so that the

slices were aligned temporally. After head motion correc-

tion, the functional EPI data sets were coregistered to

structural scans and smoothed using a full-width at a half

maximum isotropic Gaussian kernel of 4 mm. Voxels with

low-signal intensity located outside the brain were exclu-

ded from the functional images by a clipping function.

During the scaling procedure, the percent signal change

was calculated for each voxel. Anatomical and functional

images were transformed into a coordinate system of

Talairach space (Talairach and Tournoux 1988).

Next, group ICA was conducted using the GIFT toolbox

(Calhoun et al. 2001). The estimation determining the

number of components was performed using the minimum

description length (MDL) criteria implemented in the

software (Li et al. 2007). The stability of ICA

decomposition was validated with ICASSO (Himberg et al.

2004), with 50 random initializations of the Infomax

algorithm. In the case of insufficient stability scores, ICA

was performed with the numbers neighbouring the number

estimated with the MDL criteria. Data were back-recon-

structed using the gica template option. The group average

maps were inspected to identify and discard those ICs

primarily associated with artefacts that represented signals

from large vessels, ventricles, motion, and susceptibility.

From the remaining ICs, time-courses were interpolated to

100 ms resolution and epochs were extracted - 1 to 12 s

prior to the stimulus. These epochs were baseline corrected

by subtracting the value at zero. Epochs were divided into

2 9 2 (accuracy 9 task) conditions and subjected to sta-

tistical testing. Specifically, values at the peak of hemo-

dynamic responses underwent a 2 9 2 repeated measures

ANOVA for each neural network. As with EEG data

analyses, besides the significant interaction effect, a sig-

nificant post hoc test between correct and erroneous

responses within each task was required.

Results

Behavioural results

In general, participants committed 7.8% errors and 0.5%

omissions in the EEG experiment, and 11.4% errors and

5.3% omissions in the fMRI experiment. The main effect

of the congruence condition on both error rates and RTs

confirmed the occurrence of conflict (Table 1). Since most

of the errors were committed on incongruent trials, it was

possible to base further behavioural, EEG, and fMRI data

analyses solely on incongruent trials. The numerical task

evoked more errors than the physical task (Table 2). RTs of

correct and erroneous responses showed a significant

interaction in both experiments (Fig. 2; EEG:

F(1,33) = 161; p\ 0.001; fMRI: F(1,33) = 295, p\ 0.001).

Particularly, errors in the physical task had longer RTs than

correct trials, whereas errors in the numerical task showed

the opposite pattern (Table 3). Moreover, significant and

opposite pattern in RTs was observed when comparing hits

to errors within each task.

EEG results

Seven independent sources were reliably obtained (com-

ponent stability was above 0.98) with the group ICA. Each

of the estimated EEG sources can be characterized by its

topography (Fig. 3a), the constellation of underlying brain

sources (Fig. 3b), and event-related time courses (Fig. 3c).

Local maxima of independent component source recon-

structions are listed in Table 4. Three of the components
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had clearly identifiable ERPs and matched the independent

components obtained previously (Beldzik et al. 2015a).

The fronto-central component with the source estimated in

the medial frontal cortex showed early (* 100 ms after the

stimulus onset) negativity, which can be linked to the

visual anterior N1 potential (Vogel and Luck 2000). The

activity of this component in response-locked data revealed

pronounced ERN and followed it positivity (Holroyd and

Coles 2002). The inferior temporal component with the

source estimated approximately in the right inferior tem-

poral cortex and left insula manifested in early visual

activity of temporo-occipital N1 potential (Pinel et al.

2001). No significant task and accuracy interactions were

found within these aforementioned ERP components.

The centro-parietal component (Fig. 4a) with the source

estimated in the bilateral inferior parietal cortices showed

pronounced P3b/CPP potential (Polich 2007; Twomey

et al. 2015). A significant interaction effect was found on

the amplitudes within both stimulus-locked and response-

locked ERPs (around 300 ms post stimuli and around -110

and - 18 ms prior to response; see Table 5 for details;

Fig. 4a). Average R2 values of the linear fit to the signal

before the response determined the time window in which

CPP increases linearly for each condition (Supp. Figure 1).

Maximal R2 was found for windows beginning at -352 ms

(R2 = 0.78) for numerical correct, - 142 ms (R2 = 0.91)

for physical correct, - 164 ms (R2 = 0.80) for numerical

error, and - 344 ms (R2 = 0.59) for physical error. Lower

R2 values for erroneous trials in comparison to correct ones

reflect lower number of trials, which contributed to ERPs.

The obtained slope coefficients and constant terms showed

significant interaction effect between accuracy and task

instructions (Table 5; Fig. 4b).

fMRI results

Although MDL criteria estimated 25 components on

average, ICA decomposition with a total of 29 proved most

reliable (component stability was above 0.97). All activa-

tions are reported at the FDR-corrected threshold,

p\ 0.001. Based on the literature (Kelly et al. 2010;

Varoquaux et al. 2010), 11 components were classified as

neural networks (Fig. 5; Table 6). Three maps corre-

sponded to visual areas. Two of them are commonly

observed in resting state studies (Beckmann et al. 2005;

Smith et al. 2009; Varoquaux et al. 2010): the medial visual

network, which comprised extensive activation in the lin-

gual gyrus, and the lateral visual network ranging from the

bilateral middle occipital to the superior parietal cortices.

Less commonly observed is the temporo-parietal network

involving bilateral inferior temporal gyri and intraparietal

sulcus (IPS). The executive control network usually

includes the bilateral prefrontal cortex and the core regions

Table 1 Behavioural results—

all trials
Measure Experiment Congruent Neutral Incongruent F (2,66) p value

Error rate (% of all) EEG 0.48 (0.08) 1.59 (0.13) 5.74 (0.24) 410.6 \ 0.001

fMRI 1.24 (0.15) 2.50 (0.19) 7.62 (0.35) 466.3 \ 0.001

RT of correct (ms) EEG 326.2 (3.4) 345.4 (3.5) 365.7 (3.6) 394.5 \ 0.001

fMRI 411.2 (3.5) 422.2 (3.8) 436.2 (3.9) 357.7 \ 0.001

SEs across participants are provided in parentheses

Table 2 Error rate of incongruent trials (% of all)

Experiment Num Phys t (33) p value

EEG 3.9 (1.1) 1.8 (0.7) 10.3 \ 0.001

fMRI 5.1 (1.8) 2.5 (0.9) 7.6 \ 0.001

SEs across participants are provided in parentheses

Fig. 2 Reaction time of incongruent trials in a EEG and b fMRI

experiments. Asterisk indicates Tukey’s post hoc p\ 0.001. Num

numerical task, Phys physical task

Table 3 Reaction time of incongruent trials in ms

Experiment Type Numerical Physical Post hoc

EEG Correct 400.7 (3.4) 330.6 (2.8) p\ 0.001

Errors 334.8 (3.3) 351.2 (5.7) p\ 0.001

Post hoc p\ 0.001 p\ 0.001

fMRI Correct 460.8 (2.7) 411.6 (3.2) p\ 0.001

Errors 411.8 (3.2) 422.6 (5.6) p\ 0.001

Post hoc p\ 0.001 p\ 0.001

SEs across participants are provided in parentheses
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Fig. 3 ICA results of EEG data. Independent components’ a mean scalp topography, b location in brain estimated using CLARA and c stimulus-

locked and response-locked ERPs for both tasks. R right, L left
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Table 4 Local maxima of EEG

independent components’

source reconstructions reported

in Talairach coordinates

EEG component Region Site x y z nAm/cm3

Fronto-central Cingulate R 3.5 - 23.8 24.9 0.55

Cerebellum R 3.5 - 57.7 - 31.7 0.64

Inferior temporal Posterior cingulate R 3.5 - 64.5 30.7 0.55

Inferior temporal R 38.5 - 38.1 - 10.6 0.55

Insula L - 38.5 - 10.1 2.6 0.28

Centro-parietal Inferior parietal R 31.5 - 38.1 17.5 0.39

Inferior parietal L - 31.5 - 38.1 16.9 0.22

Insula L - 38.5 - 10.6 - 3.2 0.25

Superior temporal Superior temporal R 38.5 - 51.8 16.4 0.34

Superior temporal L - 31.5 - 52.8 23.8 0.1

Occipital M - 3.5 - 79.4 2.6 0.18

Anterior cingulate M 3.5 52.4 9.5 0.15

Middle temporal Middle temporal R 38.5 - 58.2 3.7 0.46

Medial frontal M - 3.5 53.4 9.5 0.36

Insular Insula L - 31.5 - 30.7 10.1 0.23

Insula R 38.5 - 23.8 10.1 0.24

Anterior cingulate M - 3.5 25.9 38.1 0.19

central Thalamus R 24.5 - 23.8 2.6 0.16

Insula L - 31.5 - 30.7 24.3 0.13

Fig. 4 Interaction effects on centro-parietal EEG component. a ERPs

of stimulus-locked (left) and response-locked (right) data. Bars

represent mean potential within the significant time range. b Linear fit

to response-locked ERPs for each condition. Bars presents mean slope

coefficients and constant terms. Grey shading indicates significant

(pcor\ 0.05) interaction effect. Num numerical task, Phys physical

task
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of anterior cingulate and insular cortices (Smith et al. 2009;

Domagalik et al. 2012). Here, the executive control and

prefrontal networks were separated. In line with the study

of Damoiseaux et al. (2008), the default mode network was

divided into anterior and posterior parts. The left and right

frontoparietal and the auditory networks are highly repro-

ducible, as indicated by all the referenced studies. Lastly,

the network comprising the precuneus (Domagalik et al.

2012) is less often observed. Only the temporo-parietal

network achieved the established criteria of significant

interaction [Fig. 6; F(1,33) = 44.1; p\ 0.001; LSD post

hocs: numerical (Cor vs. Err) p = 0.032, physical (Cor vs.

Err) p\ 0.001, correct (Num vs. Phys) p = 0.011, error

(Num vs. Err) p\ 0.001].

Discussion

In the study, we aimed to verify the neural substrates of

correct and erroneous decisions in numerical and physical

comparisons. To achieve this goal, we focused solely on

incongruent trials as they yield the size congruity effect

(Besner and Coltheart 1979) and trigger errors. The size

congruity effect originates from the parallel processing of

physical and semantic information in the brain, which

interact and evoke response competition (Henik and Tzel-

gov 1982; Kadosh et al. 2007; Szucs and Soltész 2007;

Sz}ucs et al. 2009). Here, we replicated a common finding

that assessing the physical feature of the digits is faster than

assessing their value (Fig. 2). Errors in the numerical task

showed a typical-for-conflict task effect of shortened RTs

in comparison with correct trials (Gratton et al. 1988;

White et al. 2011). An interesting finding that has not been

reported by any previous conflict study is the effect of

longer RTs of errors in physical tasks compared to correct

trials. This pattern of cross-shaped interaction was used as

a marker for neural measurements to explore the origins of

this phenomenon.

The EEG data were analysed using group ICA (Eichele

et al. 2011) to separate functionally distinct neural sources.

Decomposition of EEG data into functionally distinct

independent sources was similar to our previous study

(Beldzik et al. 2015a), including a centro-parietal compo-

nent with a robust CPP potential. Although there was no

effect on the latency of stimulus-locked CPP, the abrupt

slope and sharp peak around the timing of response exe-

cution suggest that CPP is more accurately represented by

an ERP average aligned to subject responses (Makeig and

Onton 2009). In agreement to common findings of

decreased P3b amplitudes for more difficult and longer-to-

react conditions (West and Alain 2000; Sz}ucs and Soltész

2012), we found significant task and accuracy interaction

within the stimulus-locked P3b/CPP potential (Fig. 4a).

However, in light of the aforementioned methodological

aspects, P3b/CPP amplitude decreases for more difficult

conditions due to the temporal variability of the peak onset

(Twomey et al. 2015). Thus, analysing the response-locked

CPP is more accurate and informative approach.

As hypothesised, a significant interaction among task

and accuracy conditions was found on the slope of

response-aligned CPP around 110 ms before the response

(Fig. 4a). In light of the interpretation of Twomey et al.

(2015), this slope represents the build-up rate of accumu-

lating evidence in favour of a particular outcome. To

strengthen this association, we measured the build-up rate

by fitting a straight line to the signal before the response

onset separately for each condition (Murphy et al. 2015).

The significant accuracy and task interaction of the slope

coefficients confirmed that the build-up rates tracked the

RT pattern of each condition (Fig. 4b). In addition, the

constant terms showed the interaction effect, i.e. the value

of CPP amplitude at the onset of the response. Due to the

shared topography of the CPP signal, we cannot definitely

distinguish between correct numerical and physical

responses; however, these results indicate that each

response has a characteristic build-up rate and action-trig-

gering threshold. Following that logic, errors in the

numerical task have the same build-up characteristic as hits

in the physical task. This suggests that errors in the

numerical task were committed due to accumulation of the

Table 5 Significant task and accuracy interactions of the centro-parietal EEG component

Measurement ERP

type

Time range

(ms)

F (1,33) p value g2
p

LSD Post hoc

Num: Cor vs.

Err

Phys: Cor vs.

Err

Cor: Num vs.

Phys

Err: Num vs.

Phys

Amp Stim 276–376 22.3 0.001 0.40 0.025 0.001 0.001 0.021

Amp Resp - 132 to - 88 77.1 0.001 0.70 0.001 0.011 0.001 0.035

Amp Resp - 32 to - 4 19.6 0.001 0.37 0.018 0.001 0.009 0.002

a Resp – 157.3 0.001 0.83 0.001 0.001 0.001 0.001

b Resp – 57.0 0.001 0.63 0.011 0.001 0.015 0.001

Amp amplitude, a slope coefficient of the linear fit, b constant term of the linear fit, resp response-locked, stim stimulus-locked
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wrong evidence. In other words, evidence was accumulated

towards the decision of which digit was bigger in size

rather than magnitude. Finally, the CPP build-up rate

parameters of errors in the physical task indicate that, at

least partially, subjects accumulate wrong evidence in

favour of the numerically, instead of physically, greater

digit. This potentially explains why errors in the physical

task have longer RTs than hits.

The fMRI data were analysed in a similar manner to the

EEG data. Group ICA was used to separate neural sources,

event-related averaging was performed on components’

time-courses, and peaks of hemodynamic responses were

searched for significant task and accuracy interaction.

Eleven neural networks were obtained (Fig. 5), but only

one showed the expected pattern of activity: greater acti-

vation for correct vs. error trials in the numerical task and

greater activation for error vs. correct in the physical task.

This network involves the bilateral inferior temporal gyrus

as well as a bilateral cluster extending along the IPS to the

postcentral gyrus; therefore, it was labelled temporo-pari-

etal (Fig. 6a). The architecture of this component shows

some similarities to the dorsal attention network (Fox et al.

2005; Visintin et al. 2015); however, the lack of frontal eye

field inclusion speaks against this association.

More evident is a link to the recently established

‘number network’ (Amalric and Dehaene 2016; Nieder

2016), which comprises bilateral intraparietal, inferior

temporal, and dorsal prefrontal sites. The network is acti-

vated by all domains of mathematics such as analysis,

algebra, topology, and geometry (Amalric and Dehaene

2016). As indicated by studies using intracranial electro-

physiological recordings in humans, the inferior temporal

gyrus selectively responds to written Arabic numerals, but

not to morphologically, semantically, or phonologically

similar stimuli (Shum et al. 2013). IPS was activated dur-

ing a variety of number-processing and calculation tasks

implemented in fMRI (Pinel et al. 2004; Kadosh et al.

2005; Kaufmann et al. 2005) and is considered a key node

for the representation of the semantic aspect of numerical

quantity (Nieder and Dehaene 2009). Moreover, studies

using single-neuron recordings in the IPS of monkeys have

identified ‘number neurons’ which encode the number of

elements in a set and its cardinality or numerosity, irre-

spective of stimulus modality (see a review by Nieder

2016). In brief, the involvement of the temporo-parietal

network in the numerical Stroop paradigm is highly con-

sistent with the literature.

Due to separate EEG and fMRI experiments, we were

unable to couple independent components in the single-

trial levels; however, partial consistency might be observed

between EEG source location measurements (Fig. 3) and
Fig. 5 ICA results of fMRI data. Brain maps (a) and stimulus-locked

hemodynamic responses for both tasks (b). R right, L left

814 Brain Struct Funct (2018) 223:805–818

123



fMRI results (Fig. 6a). Particularly, the inferior temporal

EEG component had the highest source probability in the

right inferior temporal gyrus, whilst the centro-parietal

EEG component had bilateral parietal distribution of the

estimated source. Together, these results combine when

and where the numerical processing occurs (Verguts and

Fias 2008). The inferior temporal component with a source

in the inferior temporal gyrus encodes numerical/physical

sensory information into numerical representation (Shum

et al. 2013; Amalric and Dehaene 2016), whereas the

centro-parietal component with a source in IPS accumu-

lates quantitative information into the DV until reaching an

action-triggering threshold (Nieder and Dehaene 2009;

O’Connell et al. 2012). The similar pattern of amplitude

modulations by task and accuracy conditions in EEG and

fMRI measurements supports this association. Interest-

ingly, topography of the inferior temporal EEG component

indicates right hemispheric dominance, whereas fMRI data

show bilateral activations. The same discrepancy can be

observed in the literature as some studies point to the right

inferior temporal supremacy in response to selective

numbers (Park et al. 2012; Shum et al. 2013), whereas

others report bilateral activations in that brain region dur-

ing numerical cognitive tasks (Pinel et al. 2004; Amalric

and Dehaene 2016). Future studies, which implement

simultaneous EEG and fMRI recordings, might consider

verifying the link between these components and clarify

the hemispheric inconsistency of the inferior temporal

activations.

An interesting question remains regarding the nature of

the DV signal. Does it reflect accumulation of the numer-

ical quantity information (‘‘seven is greater’’) or spatial

aim-of-reach information (‘‘press left button’’)? Several

recent findings speak in favour of the latter perspective.

First, Twomey et al. (2015) indicated that the DV signal is

supramodal as it was detected during auditory and visual

oddball tasks. Second, an fMRI study implementing a

saccadic task revealed that, as opposed to regions involved

in conflict resolution, IPS exhibits strong trial-by-trial

variations with RTs (Domagalik et al. 2014; Beldzik et al.

2015b). Third, de Lafuente et al. (2015) showed using

single-neuron recordings in monkeys that when decisions

Table 6 Local maxima of

fMRI independent components

reported in Talairach

coordinates

Network Region Site x y z T

Medial visual Lingual M - 3 - 63 9 13.61

Lateral visual Middle occipital R 33 - 87 15 15.42

Middle occipital L - 24 - 93 15 11.75

Temporo-parietal Intraparietal sulcus R 42 39 60 9.61

Intraparietal sulcus L - 54 - 24 45 11.86

Inferior temporal R 57 - 57 - 3 11.81

Inferior temporal L - 51 - 63 - 3 11.11

Posterior cingulate M 0 - 54 33 13.82

Executive control Medial frontal M 0 57 15 13.96

Anterior insula L - 42 21 - 3 13.04

Anterior insula R 51 24 0 12.52

Prefrontal Middle frontal R 51 42 18 17.03

Middle frontal L - 48 42 21 14.65

Default mode—anterior Medial frontal M 0 63 6 16.06

Posterior cingulate M 0 - 51 18 14.87

Default mode—posterior Superior frontal M - 3 36 57 10.60

Posterior midline M - 3 - 51 36 13.43

Middle temporal L - 54 - 60 30 13.36

Middle temporal R 57 - 60 30 10.64

Frontoparietal left Middle frontal L - 45 54 12 9.78

Superior parietal L - 21 - 75 51 8.50

Superior parietal R 36 - 69 51 9.53

Frontoparietal right Middle frontal R 45 57 6 12.87

Superior parietal R 39 - 66 51 9.53

Auditory Insula L - 63 - 15 15 13.10

Insula R 66 - 9 15 11.53

Precuneus Precuneus M 3 - 72 39 14.21

Inferior parietal L - 33 - 57 39 10.08
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are communicated by hand movements, the reach-related

neurons from the medial IPS exhibit a gradual modulation

of their firing rates consistent with the representation of an

evolving DV. When decisions are communicated by eye

movements, neurons in the lateral IPS represent the accu-

mulation of evidence bearing on the potential targets of

saccades.

On the other hand, quantity and space are part of a

generalized magnitude system in which ‘‘two kinds of

quantity must be combined to determine behaviourally

important decision variables’’ (Gallistel and Gelman 2000;

Walsh 2003). The numerical–spatial interactions arise

from common parietal circuits for attention to external

space and internal representations of numbers (Hubbard

et al. 2005). This perspective is also supported with studies

applying single-neuron recordings in monkeys. Tudusciuc

and Nieder (2007) found anatomically intermingled single

neurons in the IPS of monkeys which encode continuous

spatial, discrete numerical, or both types of quantities. This

and several subsequent studies have provided evidence that

the IPS encodes numerosity as a perceptual category,

regardless of behavioural relevance (see review by Nieder

2016).

In summary, when one is presented with a pair of digits

that are incongruent in size and numerical value, this

sensory information is encoded in parallel in the bilateral

inferior temporal gyri, which manifests in posterior N1

activity of the inferior temporal component. This infor-

mation is then integrated in the IPS, and the DV is accu-

mulated in favour of a particular outcome until reaching an

action-triggering threshold, which manifests in CPP

potential of the centro-parietal component. These brain

regions are functionally connected into one coherent neural

network. Analysis of the DV signal for each condition

revealed characteristic build-up rates and action-triggering

thresholds for the two tasks, which differ only in the

instructions given by the experimenter. Our results suggest

that errors are committed due to accumulation of evidence

in favour of the other (i.e. wrong) task instruction. This

interpretation fully explains the behavioural pattern

observed here: errors in numerical comparisons have

shorter RTs than hits (and similar RTs to hits in physical

comparisons), whereas errors in physical comparisons

show longer RTs than hits. On a final note, our study

highlights the advantages of implementing group ICA in

both EEG and fMRI data.
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