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Gradients of connectivity distance are anchored in primary cortex
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Abstract Connectivity between distant cortical areas is a

valuable, yet costly feature of cortical organization and is

predominantly found between regions of heteromodal

association cortex. The recently proposed ‘tethering

hypothesis’ describes the emergence of long-distance

connections in association cortex as a function of their

spatial separation from primary cortical regions. Here, we

investigate this possibility by characterizing the distance

between functionally connected areas along the cortical

surface. We found a systematic relationship between an

area’s characteristic connectivity distance and its distance

from primary cortical areas. Specifically, the further a

region is located from primary sensorimotor regions, the

more distant are its functional connections with other areas

of the cortex. The measure of connectivity distance also

captured major functional subdivisions of the cerebral

cortex: unimodal, attention, and higher-order association

regions. Our findings provide evidence for the anchoring

role of primary cortical regions in establishing the spatial

distribution of cortical properties that are related to func-

tional specialization and differentiation.

Keywords Topography � Spatial organization �
Connectivity � Cortical organization

Introduction

The distance between cortical regions is a major determi-

nant of connectivity in the cortex (Ercsey-Ravasz et al.

2013; Roberts et al. 2016; Betzel et al. 2016). Most cortico-

cortical connections project locally (Markov et al. 2011),

making the occurrence of long-distance connections a

noteworthy feature of cortical organization. Perspectives

from graph theory propose that distant connections balance

their higher wiring cost by improving network efficiency

(Kaiser and Hilgetag 2006; Bassett and Bullmore 2006;

Achard and Bullmore 2007; Bullmore and Sporns 2012;

Collin et al. 2014; Hahn et al. 2014). This concept of

network optimization can account for the observed fre-

quencies of connection lengths. However, distant projec-

tions are not evenly dispersed throughout the brain, rather

demonstrating higher density between regions of hetero-

modal association cortex (Mesulam 1990; Sepulcre et al.

2010). Understanding their uneven spatial distribution

requires additional principles unique to the development

and functional organization of the cerebral cortex.

In contrast to the long connections extending between

heteromodal association areas, connections within uni-

modal cortex—especially within primary sensory and

motor areas—are largely restricted to adjacent areas

(Felleman and Van Essen 1991; Sepulcre et al. 2010). The

distance between interconnected areas can thus be taken as
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a distinguishing feature between unimodal sensorimotor

cortex and the large-scale networks of heteromodal asso-

ciation regions (Sepulcre et al. 2010; Buckner and Krienen

2013).

Theories of cortical differentiation emphasize primary

cortical regions for establishing the spatial layout of the

cortex: locations of primary cortex are proposed to serve as

anchor points around which other areas are arranged (Rosa

and Tweedale 2005; Buckner and Krienen 2013). Buckner

and Krienen (2013) further articulated this theory as the

‘tethering hypothesis’. They propose that the unique

characteristics of association regions—such as their long-

range reciprocal connections—emerge as a result of their

distance from developmental constraints and hierarchical

network structure that determine the specialization of pri-

mary regions during cortical ontogenesis. Untethered from

these constraints, association cortex gains its specialized

functions through the long-distance connections it forms.

Here, we investigate the spatial distribution of distances

between interconnected areas within the framework of the

tethering hypothesis. We hypothesize that the further a

region is situated from primary cortex, the more distant are

its connections. To address these questions, we (1) describe

each point on the cortical surface based on its average

geodesic distance to highly connected areas (which we will

refer to as ‘distance-to-connected-areas’), (2) investigate its

spatial covariance with respect to the locations of primary

cortex, and (3) explore the relationship with functional

networks. Unlike Euclidean distance, which has been pre-

viously implemented as a heuristic of white matter paths,

geodesic distance measures distance along the cortical

sheet and thus enables us to directly assess the implications

of relative spatial positions across the cortical surface. In

the current study, the geodesic distance between two points

on the cortical surface refers to the shortest direct path

along the surface mesh. Unlike the geodesic distance

measure used in graph theory, which measures the number

of edges between points, the current implementation

measures spatial distance.

Materials and methods

Data acquisition

Participants

Data were obtained as part of a larger project conducted at

the Max Planck Institute for Human Cognitive and Brain

Sciences, Leipzig, Germany. Recruitment criteria were as

follows: no previous or current clinical diagnosis of psy-

chiatric or neurological condition, no drug consumption in

the last six months, and MRI compatibility. For the current

analysis, age was restricted to a range between 18 and

40 years to mitigate developmental and aging-related

variance in brain structure and function. Insufficient quality

of imaging data was determined by excessive head motion

(mean framewise displacement[2 mm), poor coregistra-

tion according to visual inspection, and poor signal-to-

noise ratio. These were considered exclusion criteria for the

current analysis. The final sample consisted of N = 77

subjects (41 female, mean age 25.3 years, stand. dev.

3.6 years). All subjects gave written informed consent. The

study was approved by the Ethics Committee of the Faculty

of Medicine, Leipzig University.

MRI data

Magnetic resonance imaging (MRI) data were collected on

a Siemens Magnetom Verio 3 Tesla scanner. A structural

image was acquired using an MP2RAGE sequence

(TR = 5000 ms, TE = 2.92 ms, TI1 = 700 ms,

TI2 = 2500 ms, flip angle 1 = 4�, flip angle 2 = 5�, voxel

size = 1.0 mm isotropic, duration = 8.22 min; Marques

et al. 2010). Four resting-state functional MRI scans were

acquired using a multiband EPI sequence (TR = 1400 ms,

TE = 39.4 ms, flip angle = 69�, multiband acceleration

factor = 4, voxel size = 2.3 mm isotropic, 64 slices, 657

volumes, duration = 15.30 min; Feinberg et al. 2010;

Moeller et al. 2010). Sequences were identical across runs

with the exception of alternating phase encoding and slice

orientation (AC–PC axis and aligned to orbitofrontal cor-

tex) to vary the spatial distribution of signal loss across

runs. During resting-state scans, participants were instruc-

ted to fixate on a crosshair. Field maps (TR = 680 ms,

TE1 = 5.19 ms, TE2 = 7.65 ms, flip angle = 60�, voxel

size = 2.3 mm isotropic, 64 slices) were obtained sepa-

rately for each resting-state run to correct for magnetic field

inhomogeneities.

Data analysis

MRI preprocessing

MRI data were preprocessed using FSL 5.0, FreeSurfer

5.3.0, AFNI, ANTs 2.1.0-rc3, dcmstack 0.7.dev, C3D

1.0.0, CBS Tools 3.0 and streamlined in a reusable pipe-

line1 using Nipype (Gorgolewski et al. 2011).

For structural preprocessing, the background of each

subject’s T1-weighted image was removed using CBS

Tools (Bazin et al. 2014). The masked image was used for

cortical surface reconstruction using FreeSurfer’s full ver-

sion of recon-all (Dale et al. 1999; Fischl et al. 1999).

1 https://github.com/NeuroanatomyAndConnectivity/pipelines/blob/

master/src/lsd_lemon/lsd_resting.py.
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For functional preprocessing, the first five volumes of

each resting-state run were excluded. Spatial transforma-

tions of the functional volumes included motion correction,

distortion correction, and coregistration to the structural

image. Transformation parameters for motion correction

were obtained by rigid-body realignment to the sixth vol-

ume of the original time series (Jenkinson et al. 2002). A

temporal mean image of the realigned time series was

rigidly registered to the field map magnitude image

(Jenkinson and Smith 2001) and unwarped (Jenkinson et al.

2012) to estimate transformation parameters for distortion

correction. The unwarped temporal mean was then rigidly

coregistered to the subject’s structural scan (Greve and

Fischl 2009) yielding transformation parameters for

coregistration. The obtained spatial transformations were

then combined and applied to each volume of the original

time series in one single interpolation. To mitigate

remaining motion artifacts, the six motion parameters and

their first derivatives were included as nuisance regressors

in a general linear model (GLM). They were regressed out

for each voxel’s time series along with regressors repre-

senting intensity-defined temporal outliers (Nipype’s rapi-

dart2), and linear and quadratic trends. From the residual

time series, six principal components of signal fluctuations

in white matter and cerebrospinal fluid (assumed to reflect

physiological noise) were derived and included as addi-

tional regressors in a second GLM (Behzadi et al. 2007).

The denoised time series were temporally filtered to a

frequency range between 0.01 and 0.1 Hz, mean centered

and variance normalized (Rokem et al. 2008).

The preprocessed time series in each subject’s native

volume space were then sampled to the fsaverage5 surface

template (FreeSurfer mri_vol2surf). First, for each node on

the subject’s native surface mesh, time series were sampled

from voxels within the central 80% cortical depth along the

surface normal, then averaged and projected to the surface.

Time series were mapped and down-sampled to the template

surface using spherical surface registration and were spa-

tially smoothed with a Gaussian kernel of 6 mm FWHM.

In 15 subjects, slight imprecision in coregistration

affected the most posterior nodes of the occipital pole. In

such cases, the surface outline of the anatomical image

traced gray matter beyond the extent of the functional

image, leaving some surface nodes with no data to sample

from during surface projection. On average, eight nodes

were affected in this subgroup (0.07% of the total number

of nodes), with the highest number being 145 (1.4%). For

these nodes, time series were spatially interpolated on the

surface by iteratively averaging from immediate neighbors

that contain functional data. The interpolation process

inflates similarity between neighboring regions—thereby,

artificially increasing their local connectivity and distorting

the measure of distance-to-connected-areas presented here.

Masking out the affected regions at the subject level would

have led to varying numbers of nodes across subjects,

which is problematic for group averaging. On the other

hand, creating a mask at the group level would have led to

complete data loss for the affected nodes, despite the

majority of subjects having good data there. Hence, we

opted for spatial interpolation, having its shortcomings and

implications for the proposed measure in mind.

Subject-level analysis3

Functional connectivity For each subject, connectivity

matrices were created separately for each hemisphere.

Functional connectivity between each pair of cortical nodes

was quantified by temporal correlation of their time series

(Pearson product–moment correlation coefficient) and

entered in a node-by-node matrix of functional connectiv-

ity. Correlation matrices were created for each resting-state

scan separately and combined across scans by averaging

matrices.

Distance along the cortical surface Distance along the

cortical surface was measured by an algorithm for

approximating the exact geodesic distance on triangular

meshes (O’Rourke 1999).4 In contrast to a straight line in

three-dimensional space (Euclidean distance), geodesic

distance describes the shortest path between two nodes

along the cortical surface and captures the relative spatial

layout of regions within the cortical surface. Distances

were quantified on each subject’s native surface mesh.

Correspondence with template space was achieved via

spherical surface meshes. Each fsaverage5 node was

assigned to the closest node within the native space. This

resulted in a node-by-node matrix of geodesic distance for

each hemisphere of the subject in fsaverage5 space. To

adjust for differences in brain size, the overall distance

distribution for each subject was normalized to a range

between 0 and 1. For comparison, we repeated this analysis

using Euclidean distance.

Characterizing distance-to-connected-areas We com-

puted each node’s distance-to-connected-areas by its

average geodesic distance to functionally connected nodes.

The workflow is illustrated in Fig. 1. For each node sepa-

rately, connectivity was thresholded by the node’s 2%

2 http://nipy.org/nipype/interfaces/generated/nipype.algorithms.rapi

dart.html.

3 https://github.com/soligschlager/distconnect/tree/master/subject_

level
4 https://code.google.com/archive/p/geodesic/ and https://github.

com/margulies/topography/tree/master/utils/dist_matrix.
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highest connectivity. Distances to these nodes were then

averaged, yielding the overall distance-to-connected-areas

for that node. To avoid results specific to an arbitrary

threshold choice, the workflow was repeated for a range of

percentiles (top 30, 25, 20, 15, 10, 5%). Applying a node-

wise threshold instead of defining an overall threshold

attempts to adjust for differences in correlation strengths

across nodes. Maps of distance-to-connected-areas were

created for each resting-state scan separately as well as for

the combined ones. For comparison, they were also cal-

culated using Euclidean distances.

Group-level analysis5

Group maps of distance-to-connected-areas For group-

level maps of distance-to-connected-areas, the individual

maps based on the combined scans were averaged across

subjects. For visualization, values across the surface were

projected onto the inflated cortical surface.6 For ease of

interpretation, the distance was rescaled to millimeters.

Spatial distribution of distance-to-connected-areas To

investigate the anchoring role of primary cortex in the

spatial distribution of connectivity distance, group-level

distance-to-connected-areas was correlated with distance

from primary cortex. A map of distance to the nearest

primary cortex was created as follows: fsaverage5 Free-

Surfer labels of the calcarine sulcus, temporal transverse

sulcus, and central sulcus served to demarcate the cortical

landmarks of primary cortex. Seed regions for calculating

geodesic distance were taken from the sulcal depths of the

labels (outlined in green, Online Resource Fig. 1). Geo-

desic distance to the closest seed node was assigned to each

node outside these seed regions. In a secondary step, the

prefrontal areas anterior to the intermediate frontal sulcus

were excluded from the correlation as they deviated from

the overall pattern of increasing connectivity distance with

distance from primary cortex (Fig. 3a).

We then assessed how frequent the arrangement of

distance-to-connected-areas and its systematic relationship

with distance from primary cortex might occur by chance.

To this end, network topography was permuted and both

the distance-to-connected-areas and its relationship to the

new locations of primary cortex were recalculated.

Specifically, retaining the number of spatially continuous

patches in the 17-network parcellation (n = 42 comprising

network patches[25 vertices; Yeo et al. 2011), we gen-

erated random patches on the cortical surface and matched

them by size to the original network patches. Functional

connectivity in this new network arrangement was modeled

using a binary graph with edges linking the surface vertices

within, but not between networks. For each new network

topography and its corresponding model connectivity, the

distance-to-connected-areas and its topographical correla-

tion with new locations of primary cortex was computed.

This procedure was iterated 1000 times to generate an

empirical frequency distribution of correlations under

random network topography. This procedure was repeated

using the original network arrangement and compared to

the frequency distribution based on random topography to

estimate the probability of a systematic relationship

between distance-to-connected-areas and distance from

primary cortex under a random network topography.

Distance-to-connected-areas and functional net-

works For each network (17-network template by Yeo

et al. 2011), the distance-to-connected-areas within its

spatial extent was sampled to create network-specific dis-

tributions of underlying distance-to-connected-areas. Sort-

ing distributions by increasing mean suggested three

Fig. 1 Calculation of distance-to-connected-areas. a Geodesic dis-

tance. To capture spatial relationships of areas across the cortical

surface, we measured the geodesic distance between nodes. In

contrast to Euclidean distance (i.e., a straight line between two points;

black), geodesic distance refers to the shortest path along the surface

(purple). b Maps of distance-to-connected-areas describe each node’s

average distance to functionally connected areas along the cortical

surface. Computation for one example node: the ipsilateral functional

connectivity for this node was thresholded to select nodes of highest

connectivity only. The seed node’s geodesic distance to all selected

nodes was averaged resulting in its characteristic distance-to-

connected-areas

5 https://github.com/soligschlager/distconnect/tree/master/group_

level
6 https://github.com/juhuntenburg/brainsurfacescripts/blob/master/

plotting.py.
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groups of networks. To confirm this observation, distribu-

tions were then compared between each pair of networks

using the Jensen–Shannon divergence measure. k-means

clustering was applied to the Jenson–Shennon divergence

matrix to group the networks (Fig. 4c).

Post hoc tests on method choices To avoid obtaining

results specific to an arbitrary threshold choice, we asses-

sed the effect of several thresholds (30, 25, 20, 15, 10, 5,

2% highest connectivity per node) on the resulting group-

level maps, the standard deviation across the group, and

their test–retest reliability (Online Resource Fig. 2a–c).

Test–retest reliability was measured using the intraclass

correlation coefficient (ICC). Furthermore, we assessed the

effect of threshold on defining consistent groups of net-

works (as described above, Online Resource Fig. 3).

We compared maps of geodesic distance-to-connected-

areas with those based on Euclidean distance. Subject-

specific difference maps were created by subtracting

Euclidean from geodesic maps. Difference maps were then

averaged across subjects to identify regions of high dis-

crepancy at the group level (Online Resource Fig. 2d).

Results

Distance-to-connected-areas increases with distance

from the primary cortex

Distance-to-connected-areas was shortest in primary sen-

sorimotor regions and peaked in higher-order association

areas (Fig. 2). Notably, the shortest distances precisely

delineated cortical landmarks of primary areas, bounding

the lip of the calcarine sulcus that delineates the primary

from the secondary visual cortex, the temporal transverse

sulcus of the primary auditory cortex, and the upper banks

of the central sulcus, which demarcates the primary motor

and somatosensory cortex. At the 2% connectivity thresh-

old, distance-to-connected-areas in all primary regions

consistently ranged between 15 and 40 mm. With further

distance from these regions, the distance-to-connected-ar-

eas progressively increased, peaking at approximately

100 mm in regions of the superior temporal sulcus, middle

temporal gyrus, angular gyrus, precuneus, and caudal pre-

frontal cortex. One notable exception was located within

the caudalmost portion of the intermediate frontal sulcus,

homologous to cytoarchitectonically defined area 46,

which demonstrated a decrease in distance-to-connected-

areas compared to adjacent prefrontal regions. Other

regions showing relatively short distance-to-connected-ar-

eas compared to surrounding regions included the posterior

cingulate cortex (PCC), rostral anterior cingulate cortex

(ACC), and posterior insula.

We investigated this spatial arrangement further by

comparing the map of distance-to-connected-areas with

that of geodesic distance from primary sensorimotor areas

Fig. 2 Group-level distance-to-connected-areas. a Group-level maps

of distance-to-connected-areas (at 2% connectivity threshold) formed

a consistent topographical pattern: distance-to-connected-areas was

shortest in primary cortex and longest in association cortex.

Specifically, the measure precisely delineated primary cortical

regions: shortest distances lined the temporal transverse sulcus

(primary auditory cortex, left box), the central sulcus (primary motor

and somatosensory cortex, left box), and the calcarine sulcus (primary

visual cortex, right box). With further distance from these regions,

distance-to-connected-areas increased progressively, reaching peak

values in higher-order association areas (lateral temporal, inferior

parietal lobule, superior and middle frontal gyri). b Histogram of

group-level distance-to-connected-areas
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(Fig. 3a). In general, the further an area was located from

the primary cortical landmarks, the greater were its dis-

tance-to-connected-areas (Spearman’s r = 0.7, p B 0.01,

slope = 0.6; Fig. 3). This relationship was present

throughout the cortex, with the exception of prefrontal

areas anterior to the intermediate frontal sulcus, described

above.

To estimate how frequent this systematic relationship

might occur by chance, we assessed the probability of

correlation between the distance-to-connected-areas and

the distance from primary cortex under random network

topography. Correlations between connectivity distance

and distance from primary cortex were distributed nor-

mally between r = -0.54 and r = ?0.66. The binary

connectivity model based on the original network

arrangement captured the topography of connectivity dis-

tance well (spatial correlation of r = 0.74 between the

original and model distance-to-connected-areas; Online

Resource Fig. 4a). Here, the correlation between distance-

to-connected-areas and distance from primary cortex was

r = 0.59, corresponding to a probability of p\ 0.002 to

occur by chance under random network topography (On-

line Resource Fig. 4b).

Distance-to-connected-areas distinguishes classes

of functional networks

Intrinsic functional networks (Yeo et al. 2011; 17-network

template in Fig. 4a) systematically differed in their dis-

tance-to-connected-areas. Figure 4b shows the distribution

of distance-to-connected-areas specific to each network.

Using Jenson–Shannon divergence as a distance metric

between all pairs of distributions, k-means clustering was

applied to identify three network groups (Fig. 4c, d).

Reflecting the spatial continuity of sensory and motor

networks, the distance-to-connected-areas was shortest in

visual and somatomotor networks (purple cluster in

Fig. 4c). In general, intermediate distance-to-connected-

areas was observed in the dorsal and ventral attention

networks (orange cluster in Fig. 4c), while the highest

distances were present in the default mode and fronto-

parietal control networks consistent with their distributed

nature (yellow cluster in Fig. 4c).

Impact of connectivity threshold and distance

measure

While maps of distance-to-connected-areas largely corre-

sponded across different thresholds (30–2% highest con-

nectivity per node), there were some notable deviations

associated with both more lenient as well as stricter

threshold choices.

Distances decreased with stricter thresholds (Online

Resource Fig. 2a), as would be expected given the inverse

relationship between connection strength and length (Erc-

sey-Ravasz et al. 2013). At stricter thresholds (2–5%

highest connectivity per node), maps showed greater spa-

tial variance in distance-to-connected-areas (Online

Resource Fig. 2a) and precisely delineated primary cortical

regions (see Fig. 2). Lenient thresholds (20–30% highest

connectivity per node) did not provide a clear delineation

between the primary visual and adjacent association cortex

(Online Resource Fig. 2a). Similarly, stricter thresholds

Fig. 3 The spatial progression of distance-to-connected-areas across

the cortical surface was investigated with relation to locations of

primary cortex. a Distance from primary cortex. The map shows the

geodesic distance from the closest node of a primary cortical region

(green outline: depth of the calcarine sulcus, temporal transverse

sulcus, and central sulcus). Prefrontal areas anterior to the interme-

diate frontal sulcus were excluded from the correlation as they

deviated from the overall pattern of increasing connectivity distance

with distance from primary cortex. b Distance-to-connected-areas

showed a systematic relationship with distance from primary cortex

as shown by the spatial correlation between the map of distance-to-

connected-areas (shown in Fig. 2) and the map of distance from

primary cortex (Spearman’s r = 0.7, p B 0.01, slope = 0.6). These

findings show that the spatial distribution of distance-to-connected-

areas is anchored in locations of primary cortex
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resulted in more functionally coherent network clusters

(Online Resource Fig. 3).

At lenient thresholds (20–30% highest connectivity per

node) the visual cortex demonstrated among the highest

distance-to-connected-areas despite being unimodal. We

attribute this finding to the overall shape of the cortex. At

these thresholds, a node’s average distance includes major

parts of the cortex—and hence a region’s position within

the cortical surface influences its distance-to-connected-

areas.

Distance-to-connected-areas varied more across indi-

viduals using stricter thresholds (Online Resource Fig. 2b).

For all thresholds, regions of greater distance-to-con-

nected-areas tended to vary more across individuals (On-

line Resource Fig. 2b). ICC did not show a

notable dependence on threshold choice (Online Resource

Fig. 2c). ICC was lower in regions impacted by suscepti-

bility artifacts such as orbitofrontal cortex.

Overall, maps of distance-to-connected-areas were

similar using either geodesic or Euclidean distance—

especially when using strict thresholds (Online Resource

Fig. 2d). For all thresholds, areas of longer distance-to-

connected-areas showed a greater difference between the

two distance metrics. Geodesic distance-to-connected-ar-

eas appeared to capture more variance across the cortex

than Euclidean distance (Online Resource Fig. 2a).

Discussion

Our findings are consistent with previous maps of cortical

connectivity distance (Sepulcre et al. 2010). The current

study introduced the geodesic distance metric to measure

distance along the cortical surface, preserving relative

spatial positions irrespective of folding or expansion

(Griffin 1994). We found that a region’s distance to func-

tionally connected cortical areas increased with distance

from primary sensorimotor regions. By describing the

average distance-to-connected-areas from each point on the

bFig. 4 Broad domains of cortical functions are marked by distance-

to-connected-areas. a Intrinsic networks (17-network template by Yeo

et al. 2011). b Network-specific distributions of distance-to-con-

nected-areas. c This matrix shows pairwise comparisons between the

network distributions using the Jenson–Shannon divergence measure.

k-means clustering of this matrix revealed three network groups that

are broadly similar in functionality: sensorimotor (purple), attention

(orange), and higher-order cognitive functions (yellow). d Class

membership projected to the fsaverage5 surface. SMb somatomotor,

Vc visual, SMa somatomotor, Vp visual, DAb dorsal attention,

L limbic, Dc default, Dd default, DAa dorsal attention, Cc

frontoparietal control, VA ventral attention, S salience, Da default,

Ca frontoparietal control, Db default, Cb frontoparietal control
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cortical surface, we observed a consistent topographic

pattern of shortest distances within unimodal cortex and

longest within heteromodal cortex (Fig. 2). Further analy-

sis of this spatial progression revealed a more subtle rela-

tionship with the location of primary cortical landmarks

(Fig. 3). Rather than a sharp distinction between uni- and

heteromodal regions, we observed a linear increase in

connectivity distance the further regions were located from

the primary cortex. This relationship was attributable to

precise topographical organization of connectivity in the

cortex, as it was found unlikely to occur under random

network topography (p\ 0.002). These findings point to

the anchoring role of primary cortical regions in estab-

lishing the spatial organization of connectivity patterns.

The role of primary areas as cornerstones for the spatial

arrangement of surrounding regions finds support in theo-

ries from both cortical ontogeny and phylogeny. According

to the tethering hypothesis (Buckner and Krienen 2013),

association cortex emerges owing to the cortical expansion

that buffers it from the constraints of molecular gradients

and thalamic inputs that lead to the specialized differenti-

ation of primary areas. The properties of association cortex

are proposed to result from being untethered from the

hierarchies imposed by primary regions. In the present

study, the longest distance-to-connected-areas occurred in

regions of disproportionate cortical expansion during pri-

mate evolution (Hill et al. 2010). Under this framework, we

hypothesize consistent topographic patterns of distance-to-

connected-areas in other primates, with differences in the

proportion of cortex dedicated to distributed and distant

connectivity.

Maps of cortical myelination (Glasser and Van Essen

2011) and cortical thickness (Wagstyl et al. 2015) follow

similar spatial gradients and distinguish unimodal from

heteromodal association cortex. Wagstyl et al. (2015)

showed that cortical thickness increases with geodesic

distance from primary regions. Their results also revealed a

relationship with structural hierarchies in the macaque

monkey, linking distance from primary cortex to cytoar-

chitectonic differentiation. Their findings provide further

support for the anchoring role of primary cortex in shaping

cortical differentiation.

We observed several deviations from the overall pattern

of long distance-to-connected-areas for regions far from

primary cortex. One such deviation was a marked decrease

in connectivity distance in the caudalmost portion of the

intermediate frontal sulcus, homologous to cytoarchitec-

tonically defined area 46. This decrease in connectivity

distance compared to surrounding regions is due to its

extensive connectivity with premotor and inferior parietal

cortex, adjacent to the pre- and postcentral sulcus (cf.

ventral attention network as noted in Yeo et al. 2011).

Other regions that departed from the overall pattern

included rostral ACC, posterior insula, and PCC. In addi-

tion to primary sensorimotor regions, these regions, too,

demonstrated relatively short connectivity distances. The

rostral ACC and posterior insula, in particular, constitute

interoceptive cortex, which is involved in the perception of

the body’s internal state (Barrett and Simmons 2015).

Observing a similar distribution of shorter connectivity

distance in both interoceptive and exteroceptive cortex

(e.g., visual, auditory, and somatosensory cortex) suggests

that patterns of progressively longer distance-to-connected-

areas may constitute an organizational feature underlying

cortical processing hierarchies.

The distance between areas is a major determinant of

cortical connectivity (Ercsey-Ravasz et al. 2013; Roberts

et al. 2016; Betzel et al. 2016). However, while the overall

relationship of connectivity with distance can account for

various topological features, it cannot account for the

location of hubs in association cortex (Roberts et al. 2016).

The maps of distance-to-connected-areas presented here

show that the relationship of connectivity with distance is

not the same across cortical regions. The variance of this

relationship—especially its progression of increasing con-

nectivity distance toward the association cortex—and the

spatial distribution of cortical hubs might be related to a

common developmental mechanism. A recent model of

brain network development explored possible mechanisms

by which long-range connection form in the cortex. The

model suggests that areas which develop earlier in network

formation can establish longer connections (Kaiser et al.

2009). As a mature layer structure appears earlier within

association areas during neuronal migration (Rakic 2002),

it is reasonable that these areas begin forming their con-

nections sooner, giving rise to the pattern of distance-to-

connected-areas we observe.

Overall, we found shorter distance-to-connected-areas

for stronger functional connectivity (Online Resource

Fig. 2a: distance-to-connected-areas decreases with stricter

connectivity thresholds). This pattern resembles findings

from tract-tracing studies that quantified cortico-cortical

connections in the macaque monkey. For example, Markov

and colleagues (2011, 2013) found that local connections

form the vast majority throughout the cortex with little

discriminative power between regions, whereas long-range

connections are sparse and low weight, but specific to a

region’s connectivity profile. In this regard, the existence

of only a few strong functional connections between distant

areas may reflect the sparsity of long-range connections in

the structural connectome. Our findings provide evidence

that this sparsity systematically varies across the cortex and

is mediated by proximity to the primary sensorimotor

cortex. The higher occurrence of distant connectivity in

regions of distributed networks (e.g., default mode and

frontoparietal networks) further suggests that the similarity
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of connectivity profiles among these regions is less

dependent on their mutual distance from each other (cf.

Markov et al. 2013).

Approaches such as stepwise connectivity (Sepulcre

et al. 2012) or network depth (Taylor et al. 2015) charac-

terize cortical regions in terms of their topological distance

from primary cortex (describing the number of connection

steps traversed across the functional network graph) and

have been interpreted in terms of perceptual convergence,

information integration (Sepulcre et al. 2012; Sepulcre

2014), and functional abstraction (Taylor et al. 2015).

Here, we assessed the topographical distance of regions

from primary cortex (describing the geodesic distance

along the cortical surface). The three network groups of

distance-to-connected-areas (unimodal, attention and

higher-order cognition) largely overlap with the three main

stages of stepwise connectivity (primary/secondary, mul-

timodal, cortical hubs). Progressive increases in distance-

to-connected-areas may be one of the structural features by

which the cortex achieves hierarchies of information inte-

gration and perceptual convergence.

In summary, we observe a trend of increasing distance

to functionally connected areas that spatially progresses

with distance from primary cortical areas. These findings

indicate the importance of integrating the topography of

cortical connectivity into the search for wiring principles

and their relationship to functional specialization.
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