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Abstract
Thyroid carcinomas exhibit various genetic alterations, including the RET and NTRK fusion genes that are targets for 
molecular therapies. Thus, detecting fusion genes is crucial for devising effective treatment plans. This study characterized 
the pathological findings associated with these genes to identify the specimens suitable for genetic analysis. Thyroid carci-
noma cases positive for the fusion genes were analyzed using the Oncomine Dx Target Test. Clinicopathological data were 
collected and assessed. Among the 74 patients tested, 8 had RET and 1 had NTRK3 fusion gene. Specifically, of the RET 
fusion gene cases, 6 exhibited “BRAF-like” atypia and 2 showed “RAS-like” atypia, while the single case with an NTRK3 
fusion gene presented “RAS-like” atypia. Apart from one poorly differentiated thyroid carcinoma, most cases involved papil-
lary thyroid carcinomas (PTCs). Primary tumors showed varied structural patterns and exhibited a high proportion of non-
papillary structures. Dysmorphic clear cells were frequently observed. BRAF V600E immunoreactivity was negative in all 
cases. Interestingly, some cases exhibited similarities to diffuse sclerosing variant of PTC characteristics. While calcification 
in lymph node metastases was mild, primary tumors typically required hydrochloric acid-based decalcification for tissue 
preparation. This study highlights the benefits of combining morphological and immunohistochemical analyses for gene 
detection and posits that lymph node metastases are more suitable for genetic analysis owing to their mild calcification. Our 
results emphasize the importance of accurate sample processing in diagnosing and treating thyroid carcinomas.
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Introduction

Thyroid carcinomas exhibit various genetic alterations [1], 
among which the fusion genes are important targets for 
molecular therapies [2–4]. Determining the presence or 

absence of these fusion genes is essential for developing 
novel therapeutic strategies. However, conducting compre-
hensive genetic analyses in every case is difficult because of 
technical and economic constraints [5, 6]. In Japan, since 
2022, the Oncomine Dx Target Test (for thyroid carcino-
mas) has been approved for the genetic characterization of 
advanced or recurrent thyroid carcinomas. This has facili-
tated widespread genetic analysis of thyroid carcinomas 
using the Oncomine Dx Target Test, which is expected to 
be performed at many hospitals. Based on this advancement, 
we conducted detailed pathological examinations of thyroid 
carcinomas in which the RET and NTRK3 fusion genes were 
identified using the Oncomine Dx Target Test. This study 
aimed to elucidate the specific pathological characteristics 
associated with the RET and NTRK3 fusion genes and effec-
tively identify cases likely to exhibit one or both of these 
fusion genes in routine diagnostic work. Additionally, we 
aimed to characterize the specimens that were most suitable 
for genetic analysis.
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Materials and methods

In the present study, we enrolled patients with thyroid car-
cinoma from the Kanagawa Cancer Center (Yokohama, 
Japan) who were tested using the Oncomine Dx Target 
Test between May 2022 and October 2023. The rationale 
for using the Oncomine Dx Target Test, which is approved 
for use in Japan for patients with advanced or recurrent 
thyroid carcinoma, was driven by clinical reasons (the test 
was outsourced). In addition to detecting the BRAF, RAS, 
and other mutations, it also targets fusion genes for iden-
tification, including ABL1, ALK, AXL, BRAF, ERBB2, 
ERG, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, MET, 
NTRK1, NTRK2, NTRK3, PDGFRA, PPARG , RAF1, RET, 
and ROS1. Among these cases, those in which the fusion 
genes were detected were selected. Basic clinicopathologi-
cal data, including age; sex; type of fusion gene; histo-
logical findings; fusion gene partners; tumor, nodes, and 
metastases (TNM) classification (UICC 8th edition); and 
outcome, were obtained from electronic medical records 
and pathological diagnostic reports. The response to radio-
active iodine (RAI) therapy follows the American Thyroid 
Association Guidelines [7]. Subsequently, the specimens 
were thoroughly reviewed to validate these data and con-
duct additional pathological analyses. These analyses 
included assessing the presence or absence of papillary 
thyroid carcinoma (PTC) nuclei, counting mitoses per 10 
high-power fields, determining the presence or absence of 
squamous solid nests, and performing immunohistochemi-
cal analyses using BRAF V600E (Clone: VE1), Ki-67 
(Clone: 30–9), and Pan-TRK (Clone: EPR17341). PTC 
nuclei were assessed based on a previous report using a 
3-point scoring system, with a score of 2 or higher being 
defined as PTC nuclei [8]. Furthermore, based on a previ-
ous report, we also assessed whether “BRAF-like” atypia 
or “RAS-like” atypia was present [9]. The primary tumor 
was analyzed; however, in cases where the primary tumor 
could not be obtained, recurrent lymph node metastases or 
metastases in other organs submitted for the Oncomine Dx 
Target Test were used. Given the known high frequency 
of RET fusion genes in diffuse sclerosing variant of PTC 
(DSVPTC) [10–12], we adopted the diagnostic criteria 
based on a previous report for identifying relevant fac-
tors in this study [9]. At the structural level, the patterns 
of papillary, follicular, and solid/trabecular/insular (STI) 
structures were analyzed, and their percentages out of 
the total were evaluated. Only the percentages of papil-
lary, follicular, and STI structures were included, exclud-
ing other structures from the denominator. The degree of 
fibrosis and calcification was also evaluated. The degree 
of fibrosis was expressed as a percentage of the total 
tumor lesions. For calcification, two distinct types were 

evaluated: psammoma bodies (a small, concentrically 
layered calcification formed around a necrotic tumor cell 
nucleus, typically found within the tumor stroma and lym-
phatic vessels [13]), and coarse calcification. Henceforth, 
the term “calcification” will refer exclusively to the latter, 
that is, coarse type. Calcification was evaluated on a scale 
of 0–3B. Each level was defined as follows: 0, no obvious 
calcification; 1, psammoma bodies or calcified nests that 
did not require a decalcification procedure; 2A, requiring 
only ethylenediaminetetraacetic acid (EDTA)-based decal-
cification for less than half of the specimens; 2B, requiring 
only EDTA-based decalcification for more than half of the 
specimens; 3A, requiring hydrochloric acid-based decalci-
fication for less than half of the specimens; 3B, requiring 
hydrochloric acid-based decalcification for more than half 
of the specimens. When both EDTA and hydrochloric acid 
decalcification were present, hydrochloric acid decalcifica-
tion was prioritized.

Results

In our hospital, 74 thyroid carcinoma cases were tested 
using the Oncomine Dx Target Test between July 2022 
and October 2023. This excludes one case in which the test 
was canceled owing to a low tumor cell count and prior 
hydrochloric acid decalcification. The histological types 
are as follows: PTC in 66 cases, follicular thyroid carci-
noma (FTC) in three cases, poorly differentiated thyroid 
carcinoma (PDTC) in four cases, and medullary thyroid 
carcinoma (MTC) in one case. No anaplastic thyroid car-
cinomas were present. Genetic analysis revealed that PTC 
primarily exhibited the BRAF V600E mutation (47 out of 
66 PTC cases, 71.2%), whereas FTC exclusively showed 
RAS mutations (three out of three FTC cases, 100%). The 
RET fusion gene was detected in eight cases (8/74, 10.8%), 
whereas the NTRK3 fusion gene was detected in one case 
(1/74, 1.4%). No other fusion genes, including ALK, ROS1, 
and PPARG , were detected. Detailed data are summarized in 
Supporting Information 1. Among the nine cases exhibiting 
the fusion genes, the median patient age was 53 years, and 
the male-to-female ratio was 2:7. None of the nine patients 
in this study had a history of radiation exposure. For the 
response to RAI therapy, six cases exhibited a “structural 
incomplete response,” two cases exhibited an “indeterminate 
response,” and one case did not receive RAI therapy. In the 
cases with the fusion genes, primary tumors were confirmed 
in only seven cases (1, 2, 4, 6, 7, 8, and 9) in our hospital. 
Moreover, in two cases (3 and 5), we could not obtain the 
primary tumor because they involved surgeries performed 
at external hospitals. Most of the patients were diagnosed 
with PTC. Only one patient (case 9) exhibited lymph node 
metastases characteristics of a PDTC. All of the obtained 
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cases, except for PDTC in case 9, had PTC nuclei. In addi-
tion, detailed examination revealed “BRAF-like” atypia in 
cases 2–4, 6, 8, and 9, and “RAS-like” atypia in cases 1, 5, 
and 7 (Fig. 1b–c). Note that case 9 was assessed only on the 
primary tumor, as the lymph node metastases had progressed 
to PDTC. The mitoses of the primary tumors were all < 1 
per 10 high-power fields. Lymphatic invasion was observed 
in two cases (cases 1 and 4; 28.6%, 2/7), whereas vascular 
invasion was observed in all cases. Squamous solid nests 
were confirmed in three cases (cases 1, 2, and 4; 42.9%, 
3/7). Immunohistochemical examination revealed a median 
Ki-67 labeling index of 1.3% for primary tumors. All cases 
were negative for BRAF V600E, both in immunoreactivity 
(Fig. 2c) and mutations. Immunoreactivity of Pan-TRK was 
negative in case 7 (Fig. 2d), which had the ETV6::NTRK3 
fusion gene. These clinicopathological data are summarized 
in Table 1. Pathologically, in primary tumors, the median 
percentage of papillary structures was 50%, and follicular 
and STI structures were observed (Fig. 2a, b) while lymph 
node metastases exhibited a more pronounced papillary 
structure. The prevalence of STI structures in the lymph 
node groups was low. Moreover, dysmorphic clear cells, 
identified by highly compressed nuclei and pale-to-clear 
cytoplasm, were observed to varying degrees in all cases 
except case 4 (Fig. 1a, b). The median percentage of fibrosis 
in the primary tumors was 40%. In the lymph node groups, 
the median percentages were 20% in the N1a group and less 
than 10% in the N1b group. A decalcification procedure 
was necessary in the majority case of primary tumors but 
it was not needed for the N1b lymph node except for one 
case (Fig. 3a–d and Table 2). Furthermore, in our study, 
while none of the nine cases completely matched the essen-
tial criteria for DSVPTC [9], several distinct characteristics 

were observed. These included a predominantly young and 
female patient population and significant occurrence of RAI 
resistance. Additionally, features such as intraglandular dis-
semination, lymphatic invasion, squamous solid nests, and/
or chronic thyroiditis were confirmed in some cases. Varying 
degrees of fibrosis and patterns of follicular or STI structures 
were also observed across many cases. These data are sum-
marized in Supporting Information 2.

Discussion

Recently, the importance of molecular-targeted drugs in the 
treatment of thyroid carcinoma has been increasingly rec-
ognized [3, 4, 14–16]. Although the significance of BRAF 
inhibitors is well established, the role of targeted therapies 
for the fusion genes (such as RET, NTRK, ALK fusion genes) 
is also important [17, 18]. Notably, BRAF mutations are 
mutually exclusive with these fusion genes [19, 20]. There-
fore, the efficient detection of these fusion genes is important 
for the selection of appropriate molecular-targeted therapies. 
Of course, recent advancements in preoperative molecular 
testing for genes have significantly aided early thyroid carci-
noma diagnosis [1, 3, 15, 16]. However, limitations such as 
sampling variability and the heterogeneous nature of cancer 
can affect the comprehensiveness of these tests [21, 22]. The 
cost of testing is also an issue [21, 23, 24]. Considering eco-
nomic and insurance constraints, it is important to establish 
a process that can detect cases with these fusion genes from 
routine diagnostic work. Our study, which analyzed surgical 
specimens, complements this approach by providing a more 
comprehensive molecular and histological assessment.

Fig. 1  Representative microscopic images of a thyroid carcinoma 
with fusion genes in the high-power fields. a Carcinoma cells in the 
primary tumor exhibit the characteristic “dysmorphic clear cell.” It 
was defined as a cell with highly compressed nuclei and clear to pale 
cytoplasm (Case 2, H&E stain, original magnification × 400, scale 
bar, 100  µm). b Carcinoma cells in lymph node metastases exhibit-
ing typical eosinophilic (pink) or pale-to-clear cytoplasm. The former 
contributed to the typical pink intranuclear cytoplasmic inclusions, 
whereas the latter contributed to the washed-out-like intranuclear 
cytoplasmic inclusions. So-called “BRAF-like” atypia was present. 

Some cells also showed highly compressed nuclei and dysmorphic 
clear cells. These morphologic characteristics were observed in both 
decalcified primary tumors and non-decalcified lymph node metas-
tases, indicating morphologic consistency between the different 
specimens (Case 3, H&E stain, original magnification × 400, scale 
bar, 100 µm). c Carcinoma cells in primary tumors exhibit so-called 
“RAS-like” atypia characterized by round nuclei, powdery chromatin, 
and lack of intranuclear cytoplasmic inclusions (Case 7, H&E stain, 
original magnification × 400, scale bar, 100 µm)
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In thyroid carcinoma, the frequency of RET fusion genes 
ranges from approximately 6 to 10% [25–28], which aligns 
with our results. Similarly, the frequency of NTRK fusion 
genes ranges from 2 to 7% [26, 29–32]. However, the fre-
quency of NTRK fusion genes in our study was lower. This 
discrepancy could be attributed to several factors. First, 
in our analysis, we used the Oncomine Dx Target Test, 
approved in Japan only for advanced or recurrent cases. Sec-
ond, our study had a comparatively small sample size. Final, 
the detection of the NTRK fusion gene using the Oncomine 
Dx Target Test could be limited owing to difficulties in cov-
ering relevant intron regions, in which the NTRK fusion 
breakpoints commonly occur [33]. The frequency of ALK 
fusion genes in thyroid carcinoma ranges from approxi-
mately 1 to 4% [34–36], with a slightly higher frequency 
of 6% in pediatric PTC cases [37]. However, in our study, 
we did not detect any ALK fusion genes, which may have 
the same issues as those found with NTRK fusion genes. 
Moreover, our patient cohort included advanced cases, most 
of which were RAI therapy-resistant. This might introduce a 
selection bias. In addition, among the 66 PTC cases (10/66, 
15.2%), ten exhibited no identifiable genetic alterations. A 
recent report indicates that the categorization of such PTC 

cases with no initial driver event identification as “dark mat-
ter” PTCs might be premature [9]. The absence of detect-
able genetic alterations in these cases may be because of 
limitations of the testing methods and may require a more 
comprehensive diagnostic approach, if necessary.

In our histological analysis, we observed the presence 
of non-papillary (follicular and/or STI) structures, com-
pressed nuclei, and cells with clear to pale cytoplasm 
(reminiscent of dysmorphic clear cells), along with nota-
ble fibrosis and calcification. These features were prevalent 
in several cases, suggesting distinct histological patterns. 
Given that BRAF V600E mutations in papillary thyroid 
carcinomas are associated with distinct morphological fea-
tures, including a well-developed papillary architecture 
[38], it can be hypothesized that non-papillary structures 
may be more pronounced in thyroid carcinomas with RET 
and/or NTRK3 fusion genes. In addition, case 7, the sole 
case with a detected NTRK3 fusion gene, exhibited “RAS-
like” atypia. Each case with a RET fusion gene presented 
distinct morphologic features, with some cases showing 
“BRAF-like” atypia (cases 2–4, 6, 8, and 9) and others 
exhibiting “RAS-like” atypia (cases 1 and 5). This variabil-
ity in cases with RET fusion genes and “RAS-like” atypia 

Fig. 2  Representative microscopic images of thyroid carcinoma with 
fusion genes in the middle-power fields. a Despite the occurrence 
of papillary thyroid carcinoma, the cancer cells exhibited follicular 
structure in addition to papillary structure (Case 6, H&E stain, origi-
nal magnification × 100, scale bar, 400 µm). b Carcinoma cells exhibit 
small solid or insular structures without the characteristics of poorly 
differentiated thyroid carcinoma, such as convoluted nuclei, signifi-
cant mitotic activity, and tumor necrosis (Case 6, H&E stain, origi-

nal magnification × 100, scale bar, 400 µm). c Immunohistochemical 
staining for BRAF V600E. Carcinoma cells showed negative immu-
noreactivity (Case 6, immunohistochemistry, clone: VE1, original 
magnification × 100, scale bar, 400  µm). d Immunohistochemical 
staining for Pan-TRK. Carcinoma cells showed negative immunore-
activity (Case 7, immunohistochemistry, clone: EPR17341, original 
magnification × 100, scale bar, 400 µm)



Virchows Archiv 

Ta
bl

e 
1 

 C
lin

ic
op

at
ho

lo
gi

ca
l fi

nd
in

gs
 o

f t
hy

ro
id

 c
ar

ci
no

m
as

 w
ith

 th
e 

RE
T 

or
 N

TR
K

 fu
si

on
 g

en
es

PT
C

, p
ap

ill
ar

y 
th

yr
oi

d 
ca

rc
in

om
a;

 P
D

TC
, p

oo
rly

 d
iff

er
en

tia
te

d 
th

yr
oi

d 
ca

rc
in

om
a;

 +
 , 

po
si

tiv
e/

pr
es

en
t; 

-, 
ne

ga
tiv

e/
ab

se
nt

; <
 1,

 le
ss

 th
an

 1
 p

er
 1

0 
hi

gh
-p

ow
er

 fi
el

ds
; A

W
D

, a
liv

e 
w

ith
 d

is
ea

se
; 

D
O

D
, d

ie
d 

of
 d

is
ea

se
; N

S,
 n

o 
sp

ec
im

en
. T

hi
s 

ta
bl

e 
su

m
m

ar
iz

es
 th

e 
cl

in
ic

op
at

ho
lo

gi
ca

l d
at

a 
of

 n
in

e 
th

yr
oi

d 
ca

rc
in

om
a 

ha
rb

or
in

g 
th

e 
R

ET
 o

r N
TR

K
 fu

si
on

 g
en

es
. T

N
M

 c
la

ss
ifi

ca
tio

ns
 (U

IC
C

 
8t

h 
ed

iti
on

) a
re

 p
rim

ar
ily

 b
as

ed
 o

n 
pa

th
ol

og
y 

(“
p”

), 
w

ith
 “

cM
1”

 in
di

ca
tin

g 
cl

in
ic

al
 e

vi
de

nc
e 

of
 d

ist
an

t m
et

as
ta

si
s. 

Th
e 

de
si

gn
at

io
n 

“r
” 

de
no

te
s 

re
cu

rr
en

ce
s. 

Pa
th

ol
og

ic
al

 a
ss

es
sm

en
ts

 p
rim

ar
ily

 
re

fle
ct

 th
e 

fin
di

ng
s 

of
 in

iti
al

 s
ur

ge
rie

s 
fo

r p
rim

ar
y 

tu
m

or
s. 

Th
e 

nu
m

be
r o

f m
ito

se
s 

pe
r 1

0 
hi

gh
-p

ow
er

 fi
el

ds
 is

 d
es

cr
ib

ed
. “

N
S”

 w
as

 u
se

d 
fo

r c
as

es
 la

ck
in

g 
pr

im
ar

y 
tu

m
or

s 
(c

as
es

 3
 a

nd
 5

). 
H

ow
-

ev
er

, c
on

fir
m

at
io

n 
of

 n
uc

le
ar

 fi
nd

in
gs

 o
f “

BR
AF

-li
ke

” 
at

yp
ia

 o
r “

RA
S-

lik
e”

 a
ty

pi
a 

an
d 

fo
r B

RA
F 

V
60

0E
 im

m
un

oh
ist

oc
he

m
ic

al
 e

va
lu

at
io

n,
 m

et
as

ta
tic

 ti
ss

ue
s w

er
e 

us
ed

 in
 c

as
es

 3
 a

nd
 5

 b
ec

au
se

 
of

 th
e 

in
ab

ili
ty

 to
 c

on
fir

m
 th

e 
pr

im
ar

y 
tu

m
or

. C
as

e 
9,

 in
 w

hi
ch

 o
nl

y 
ly

m
ph

 n
od

e 
m

et
as

ta
si

s m
et

 th
e 

cr
ite

ria
 fo

r p
oo

rly
 d

iff
er

en
tia

te
d 

th
yr

oi
d 

ca
rc

in
om

a,
 is

 n
ot

ed
 in

 th
e 

ta
bl

e,
 w

ith
 a

 m
ito

tic
 c

ou
nt

 
of

 le
ss

 th
an

 o
ne

 in
 th

e 
pr

im
ar

y 
tu

m
or

. T
he

 re
sp

on
se

 to
 ra

di
oa

ct
iv

e 
io

di
ne

 th
er

ap
y 

fo
llo

w
s 

th
e 

A
m

er
ic

an
 T

hy
ro

id
 A

ss
oc

ia
tio

n 
G

ui
de

lin
es

, a
nd

 o
ut

co
m

es
 a

re
 re

po
rte

d 
in

 m
on

th
s 

si
nc

e 
th

e 
su

bm
is

-
si

on
 to

 th
e 

O
nc

om
in

e 
D

x 
Ta

rg
et

 T
es

t

A
ge

Se
x

H
ist

ol
og

y
Fu

si
on

 g
en

e 
pa

rtn
er

s
TN

M
 c

la
ss

ifi
ca

-
tio

n
Ly

m
-

ph
at

ic
 

in
va

si
on

Va
sc

ul
ar

 
in

va
si

on
M

ito
si

s
Sq

ua
m

oi
d 

so
lid

 n
es

ts
K

i-6
7 

LI
N

uc
le

ar
 fi

nd
-

in
gs

BR
AF

 
V

60
0E

 
(I

H
C

)

Re
sp

on
se

 to
 

ra
di

oa
ct

iv
e 

io
di

ne
 th

er
ap

y

O
ut

co
m

e

C
as

e 
1

16
Fe

m
al

e
PT

C
C

C
D

C
6:

:R
ET

pT
1a

, p
N

1b
, 

cM
1 

(lu
ng

)
 +

 
 +

 
 <

 1
 +

 
6.

0
“R

AS
-li

ke
” 

at
yp

ia
-

St
ru

ct
ur

al
 

in
co

m
pl

et
e 

re
sp

on
se

AW
D

 w
ith

 a
 

fo
llo

w
-u

p 
of

 
11

 m
on

th
s

C
as

e 
2

22
Fe

m
al

e
PT

C
N

C
O

A4
:: 

RE
T

pT
2,

 p
N

1b
, 

cM
1 

(lu
ng

)
-

 +
 

 <
 1

 +
 

1.
1

“B
RA

F-
lik

e”
 

at
yp

ia
-

St
ru

ct
ur

al
 

in
co

m
pl

et
e 

re
sp

on
se

AW
D

 w
ith

 a
 

fo
llo

w
-u

p 
of

 
6 

m
on

th
s

C
as

e 
3

29
M

al
e

PT
C

N
C

O
A4

:: 
RE

T
pT

4a
, p

N
1b

, 
cM

1 
(lu

ng
)

N
S

“B
RA

F-
lik

e”
 

at
yp

ia
-

In
de

te
rm

in
at

e 
re

sp
on

se
AW

D
 w

ith
 a

 
fo

llo
w

-u
p 

of
 

3 
m

on
th

s
C

as
e 

4
51

Fe
m

al
e

PT
C

C
C

D
C

6:
:R

ET
In

iti
al

: p
T3

a,
 

N
1b

, p
M

0
Re

cu
rr

en
ce

: 
rM

1 
(lu

ng
)

 +
 

 +
 

 <
 1

 +
 

2.
9

“B
RA

F-
lik

e”
 

at
yp

ia
-

St
ru

ct
ur

al
 

in
co

m
pl

et
e 

re
sp

on
se

AW
D

 w
ith

 a
 

fo
llo

w
-u

p 
of

 
7 

m
on

th
s

C
as

e 
5

53
Fe

m
al

e
PT

C
ER

C
1:

: R
ET

In
iti

al
: u

nk
no

w
n

Re
cu

rr
en

ce
: 

rM
1 

(m
ul

tip
le

 
or

ga
ns

)

N
S

“R
AS

-li
ke

” 
at

yp
ia

-
N

D
D

O
D

 w
ith

 a
 

fo
llo

w
-u

p 
of

 
8 

m
on

th
s

C
as

e 
6

57
Fe

m
al

e
PT

C
C

C
D

C
6:

:R
ET

pT
2,

 p
N

1b
, 

cM
1 

(lu
ng

)
-

 +
 

 <
 1

-
2.

8
“B

RA
F-

lik
e”

 
at

yp
ia

-
St

ru
ct

ur
al

 
in

co
m

pl
et

e 
re

sp
on

se

AW
D

 w
ith

 a
 

fo
llo

w
-u

p 
of

 
8 

m
on

th
s

C
as

e 
7

59
M

al
e

PT
C

ET
V6

::N
TR

K
3

pT
3b

, p
N

1b
, 

cM
1 

(lu
ng

)
-

 +
 

 <
 1

-
0.

0
“R

AS
-li

ke
” 

at
yp

ia
-

In
de

te
rm

in
at

e 
re

sp
on

se
AW

D
 w

ith
 a

 
fo

llo
w

-u
p 

of
 

9 
m

on
th

s
C

as
e 

8
70

Fe
m

al
e

PT
C

C
C

D
C

6:
:R

ET
pT

3a
, p

N
1a

, 
pM

1 
(lu

ng
)

-
 +

 
 <

 1
-

0.
3

“B
RA

F-
lik

e”
 

at
yp

ia
-

St
ru

ct
ur

al
 

in
co

m
pl

et
e 

re
sp

on
se

AW
D

 w
ith

 a
 

fo
llo

w
-u

p 
of

 
5 

m
on

th
s

C
as

e 
9

72
Fe

m
al

e
PD

TC
ER

C
1:

: R
ET

pT
1b

, p
N

1b
, 

rN
1 

(s
up

ra
cl

a-
vi

cu
la

r l
ym

ph
 

no
de

), 
cM

0

-
 +

 
 <

 1
-

1.
3

“B
RA

F-
lik

e”
 

at
yp

ia
-

St
ru

ct
ur

al
 

in
co

m
pl

et
e 

re
sp

on
se

AW
D

 w
ith

 a
 

fo
llo

w
-u

p 
of

 
12

 m
on

th
s



 Virchows Archiv

in cases with NTRK fusion genes is consistent with that in 
a previous report [9] and underscores the morphological 
distinctions associated with these specific genetic changes. 
In addition, dysmorphic clear cells were observed in both 
decalcified primary tumors and non-decalcified lymph 
node metastases, indicating morphological consistency 
between the different specimen preparations. Despite the 
small number of cases, the overall morphology of the cases 
with the RET fusion gene and the NTRK3 fusion gene was 
similar. This finding is consistent with that of a previous 
report on sarcoma cases with these fusion genes [39]. In 
this study, all cases with detected fusion genes exhibited 
negative immunoreactivity for BRAF V600E. These find-
ings suggested a high probability of the presence of the 
RET or NTRK fusion genes in cases with various structural 
patterns, dysmorphic clear cells, and background fibrosis 
and/or calcification. However, as confirmed in case 4, the 
absence of these morphological characteristics does not 
indicate the absence of these fusion genes, emphasizing 
the limitations of morphological assessment alone. Nev-
ertheless, the negative immunoreactivity for BRAF V600E 
in all cases indicates that the combination of morphologi-
cal analysis with immunohistochemistry may improve the 
prediction for thyroid carcinoma harboring the RET and/or 
NTRK fusion genes. It should be noted, however, that Pan-
TRK immunohistochemistry may not always yield positive 

results in cases with the ETV6::NTRK3 fusion gene, as 
previously reported [9].

Meanwhile, our cases exhibited some similarities to those 
of DSVPTC. These included a relatively young patient popu-
lation and the occurrence of RAI resistance. Intraglandular 
dissemination, lymphatic invasion, squamous solid nests, 
and/or chronic thyroiditis were noted in some cases. Addi-
tionally, varying degrees of fibrosis and patterns of follicular 
or STI architecture were observed across many cases. How-
ever, it is important to recognize that in Japan, the Oncomine 
Dx Target Test is used primarily in advanced or recurrent 
cases. This specific limitation for the use of the test may 
explain the lack of definite DSVPTC in our series. Despite 
this, the clinicopathological similarities we observed sug-
gest a potential association between thyroid carcinomas with 
detected fusion genes and DSVPTC. Furthermore, some 
reports have suggested that thyroid carcinomas with the 
RET and/or NTRK fusion genes tend to be aggressive [28, 
29, 40, 41]; our findings indicate a more complex scenario. 
Although all our cases showed low mitotic activity and a 
low Ki-67 labeling index, distant metastases were observed 
in cases 1–8, and a PDTC component was present in case 9. 
This implies that the level of aggressiveness was not fully 
captured by these markers.

We would like to shed some light on the challenges and 
considerations in decalcification processes, particularly 

Fig. 3  Macroscopic and microscopic images of primary tumors and 
lymph node metastases in thyroid carcinomas with fusion genes. a 
Macroscopic image of the thyroid gland in Case 7 showing exten-
sive calcification and sclerosis (gross view; scale bar, 30,000 µm). b 
Microscopic image of the thyroid gland in Case 7, showing severe 
calcification. Owing to the severe calcification, hydrochloric acid-
based decalcification was required to prepare the slide (H&E stain, 
original magnification × 40, scale bar, 1000  µm). c Macroscopic 

image of the lymph node metastasis in Case 3. As the clinician had 
informed pathologists that there was a large lymph node metastasis, 
an intentional partial incision was made for proper formalin fixa-
tion (gross view; scale bar, 30,000 µm). d Microscopic image of the 
lymph node metastasis in Case 3. The slide has a rough appearance 
due to the presence of psammoma bodies; however, a decalcification 
procedure was not required for slide preparation (H&E stain, original 
magnification × 20, scale bar, 2000 µm)
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in thyroid carcinoma harboring fusion genes and varying 
degrees of calcification. In our hospital, the choice between 
EDTA-based and hydrochloric acid-based decalcification 
depended on the degree of calcification. EDTA-based decal-
cification is preferred to preserve nucleic acid quality [42, 
43], which is important for detecting fusion genes. How-
ever, in cases of more severe calcification, which prevents 

sectioning for pathological diagnosis, hydrochloric acid-
based decalcification is required despite the risk of affecting 
nucleic acid quality [42, 43]. In this study, significant calci-
fication was observed in many primary tumors that required 
hydrochloric acid-based decalcification. In contrast, calcifi-
cation in the lymph node metastases, particularly in the N1b 
group, tended to be mild. These findings suggest that lymph 

Table 2  Assessment of 
structural and morphological 
fibrosis, and calcification 
patterns between primary 
and nodal lesions in thyroid 
carcinomas

STI, solid, trabecular, and insular; HPF, high-power field; NM, no metastasis; NS, no specimen. This table 
provides a detailed account of the structural distribution, dysmorphic clear cell counts in 10 HPFs, fibrosis 
percentages, and calcification intensity for the primary tumor and N1a and N1b lymph node groups. For 
Case 3, only the N1b lymph node group data were available because the primary and N1a group surger-
ies were performed at an external hospital. For Case 5, histological data were not available as both the 
primary and lymph node surgeries were performed at an external hospital. Case 8 lacked data for the N1b 
lymph node group owing to the absence of metastasis in that group. The structural patterns were assessed 
for papillary, follicular, and STI structures, and the proportion of each category out of the total number 
of observed structures was calculated. Dysmorphic clear cells were reported as the total count observed 
across 10 HPFs, irrespective of individual field counts. Fibrosis was quantified as a percentage of the entire 
tumor mass, with instances of mild fibrosis (< 10%) denoted by “ < 10.” Calcification was assessed using a 
six-point scale: 0, no obvious calcification; 1, psammoma body or calcified nests that did not require decal-
cification; 2A, requiring only EDTA-based decalcification for less than half of the specimens; 2B, requiring 
only EDTA-based decalcification for more than half of the specimens; 3A, requiring hydrochloric acid-
based decalcification for less than half of the specimens; 3B, requiring hydrochloric acid-based decalcifica-
tion for more than half of the specimens

Structural distribution (%) Dysmorphic clear 
cells (10 HPFs)

Fibrosis (%) Calcifi-
cation 
intensityPapillary Follicular STI

Case 1 Primary 90 10 0 6 40 2A
N1a 90 10 0 10 20 1
N1b 90 10 0 10 20 1

Case 2 Primary 50 10 40 9 20 1
N1a 90 10 0 0  < 10 1
N1b 90 10 0 2  < 10 1

Case 3 Primary NS
N1a NS
N1b 60 0 40 8  < 10 1

Case 4 Primary 90 10 0 0 20 3B
N1a 100 0 0 0  < 10 3B
N1b 100 0 0 0  < 10 1

Case 5 Primary NS
N1a NS
N1b NS

Case 6 Primary 50 20 30 10 40 3A
N1a 100 0 0 3  < 10 0
N1b 100 0 0 0  < 10 1

Case 7 Primary 60 40 0 7 80 3B
N1a 100 0 0 1 30 2B
N1b 100 0 0 0 10 1

Case 8 Primary 10 90 0 9 40 3B
N1a 10 90 0 3 60 3B
N1b NM

Case 9 Primary 10 90 0 10 90 3B
N1a 90 0 10 3 40 3B
N1b 40 0 60 8 10 3A



 Virchows Archiv

node metastases, particularly those in the N1b group, may 
be more suitable for genetic analysis of thyroid carcinoma 
cases. The reason for the mild calcification in the lymph 
node metastases is unclear. In our study, younger patients, 
such as those in cases 1 and 2, exhibited mild calcification 
of the primary tumor. This finding implies that mild calci-
fication in lymph node metastases may reflect their recent 
occurrence compared to primary tumors. As these metastatic 
cells are derived from a late-stage primary tumor, their stay 
in the lymph nodes is relatively short, which may result in 
mild calcification. However, as lymph nodes are located in 
adipose tissues and are covered by a capsule [44], it may 
be necessary to remove the surrounding adipose tissue and 
make special incisions to obtain the specimen to ensure 
proper formalin fixation for genetic analysis.

In conclusion, our study has identified unique patho-
logical characteristics associated with the RET and NTRK3 
fusion genes in thyroid carcinoma cases, such as non-papil-
lary structures, compressed nuclei, dysmorphic clear cells, 
calcification, and similarities with DSVPTC. These charac-
teristics could serve as indicators for considering fusion gene 
testing. Additionally, our analysis of the varying degrees 
of calcification between primary tumors and lymph node 
metastases, particularly in the N1b group, underscores the 
importance of precise sample processing for efficient genetic 
analysis. Put together, these insights contribute to a more 
targeted approach in the molecular diagnosis and treatment 
of thyroid carcinomas (details in Supporting Information 3).

Limitations

This study has several limitations. This study involved a lim-
ited number of cases and subjective pathology analysis. As 
the Oncomine Dx Target Test is approved only for advanced 
or recurrent thyroid carcinoma cases in Japan, there may 
have been bias in the analyzed cases. Moreover, decisions 
regarding the selection of decalcification procedures (EDTA- 
or hydrochloric acid-based) depended on the judgment of the 
clinical laboratory technicians.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00428- 024- 03777-w.
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