Skip to main content

Advertisement

Log in

DNA methylation profiling identifies epigenetic signatures of early gastric cancer

  • ORIGINAL ARTICLE
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Research on the DNA methylation status of gastric cancer (GC) has primarily focused on identifying invasive GC to develop biomarkers for diagnostic. However, DNA methylation in noninvasive GC remains unclear. We conducted a comprehensive DNA methylation profiling study of differentiated-type intramucosal GCs (IMCs). Illumina 850K microarrays were utilized to assess the DNA methylation profiles of formalin-fixed paraffin-embedded tissues from eight patients who were Epstein-Barr virus-negative and DNA mismatch repair proficient, including IMCs and paired adjacent nontumor mucosa. Gene expression profiling microarray data from the GEO database were analyzed via bioinformatics to identify candidate methylation genes. The final validation was conducted using quantitative real-time PCR, the TCGA methylation database, and single-sample gene set enrichment analysis (GSEA). Genome-wide DNA methylation profiling revealed a global decrease in methylation in IMCs compared with nontumor tissues. Differential methylation analysis between IMCs and nontumor tissues identified 449 differentially methylated probes, with a majority of sites showing hypomethylation in IMCs compared with nontumor tissues (66.1% vs 33.9%). Integrating two RNA-seq microarray datasets, we found one hypomethylation-upregulated gene: eEF1A2, overlapped with our DNA methylation data. The mRNA expression of eEF1A2 was higher in twenty-four IMC tissues than in their paired adjacent nontumor tissues. GSEA indicated that the functions of eEF1A2 were associated with the development of IMCs. Furthermore, TCGA data indicated that eEF1A2 is hypomethylated in advanced GC. Our study illustrates the implications of DNA methylation alterations in IMCs and suggests that aberrant hypomethylation and high mRNA expression of eEF1A2 might play a role in IMCs development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Yang K, Lu L, Liu H, Wang X, Gao Y, Yang L, Li Y, Su M, Jin M, Khan S (2021) A comprehensive update on early gastric cancer: defining terms, etiology, and alarming risk factors. Expert Rev Gastroenterol Hepatol 15(3):255–73. https://doi.org/10.1080/17474124.2021.1845140

    Article  CAS  PubMed  Google Scholar 

  2. Correa P (1988) A human model of gastric carcinogenesis. Cancer Res 48(13):3554–3560

    CAS  PubMed  Google Scholar 

  3. Lauren P (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 64:31–49. https://doi.org/10.1111/apm.1965.64.1.31

    Article  CAS  PubMed  Google Scholar 

  4. Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, Washington KM, Carneiro F, Cree IA (2020) The 2019 WHO classification of tumours of the digestive system. Histopathology 76(2):182–8. https://doi.org/10.1111/his.13975

    Article  PubMed  Google Scholar 

  5. Bonelli P, Borrelli A, Tuccillo FM, Silvestro L, Palaia R, Buonaguro FM (2019) Precision medicine in gastric cancer. World J Gastrointest Oncol 11(10):804–29. https://doi.org/10.4251/wjgo.v11.i10.804

    Article  PubMed  PubMed Central  Google Scholar 

  6. Usui G, Matsusaka K, Mano Y, Urabe M, Funata S, Fukayama M, Ushiku T, Kaneda A (2021) DNA methylation and genetic aberrations in gastric cancer. Digestion 102(1):25–32. https://doi.org/10.1159/000511243

    Article  CAS  PubMed  Google Scholar 

  7. Niwa T, Tsukamoto T, Toyoda T, Mori A, Tanaka H, Maekita T, Ichinose M, Tatematsu M, Ushijima T (2010) Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res 70(4):1430–40. https://doi.org/10.1158/0008-5472.Can-09-2755

    Article  CAS  PubMed  Google Scholar 

  8. Meng Q, Lu YX, Ruan DY, Yu K, Chen YX, Xiao M, Wang Y, Liu ZX, Xu RH, Ju HQ, Qiu MZ (2021) DNA methylation regulator-mediated modification patterns and tumor microenvironment characterization in gastric cancer. Mol Ther Nucleic Acids 24:695–710. https://doi.org/10.1016/j.omtn.2021.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu D, Ma X, Yang F, Xiao D, Jia Y, Wang Y (2020) Discovery and validation of methylated-differentially expressed genes in Helicobacter pylori-induced gastric cancer. Cancer Gene Ther 27(6):473–85. https://doi.org/10.1038/s41417-019-0125-7

    Article  CAS  PubMed  Google Scholar 

  10. Necula L, Matei L, Dragu D, Neagu AI, Mambet C, Nedeianu S, Bleotu C, Diaconu CC, Chivu-Economescu M (2019) Recent advances in gastric cancer early diagnosis. World J Gastroenterol 25(17):2029–44. https://doi.org/10.3748/wjg.v25.i17.2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaneda A, Feinberg AP (2005) Loss of imprinting of IGF2: a common epigenetic modifier of intestinal tumor risk. Cancer Res 65(24):11236–40. https://doi.org/10.1158/0008-5472.Can-05-2959

    Article  CAS  PubMed  Google Scholar 

  12. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, Lin SM (2010) Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 11:587. https://doi.org/10.1186/1471-2105-11-587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anderson KJ, Cormier RT, Scott PM (2019) Role of ion channels in gastrointestinal cancer. World J Gastroenterol 25(38):5732–72. https://doi.org/10.3748/wjg.v25.i38.5732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu X, Feng L, Liu Y, Zhou WX, Ma YC, Fei GJ, An N, Li Y, Wu X, Yao F, Cheng SJ, Lu XH (2014) Differential gene expression profiling of gastric intraepithelial neoplasia and early-stage adenocarcinoma. World journal of gastroenterology 20(47):17883–93. https://doi.org/10.3748/wjg.v20.i47.17883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Y, Wu X, Zhang C, Wang J, Fei G, Di X, Lu X, Feng L, Cheng S, Yang A (2020) Dissecting expression profiles of gastric precancerous lesions and early gastric cancer to explore crucial molecules in intestinal-type gastric cancer tumorigenesis. J Pathol 251(2):135–46. https://doi.org/10.1002/path.5434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watanabe Y, Kim HS, Castoro RJ, Chung W, Estecio MR, Kondo K, Guo Y, Ahmed SS, Toyota M, Itoh F, Suk KT, Cho MY, Shen L, Jelinek J, Issa JP (2009) Sensitive and specific detection of early gastric cancer with DNA methylation analysis of gastric washes. Gastroenterology 136(7):2149–58. https://doi.org/10.1053/j.gastro.2009.02.085

    Article  CAS  PubMed  Google Scholar 

  17. Cristiano L (2022) The pseudogenes of eukaryotic translation elongation factors (EEFs): Role in cancer and other human diseases. Genes Dis 9(4):941–58. https://doi.org/10.1016/j.gendis.2021.03.009

    Article  CAS  PubMed  Google Scholar 

  18. Tan Y, Sun R, Liu L, Yang D, Xiang Q, Li L, Tang J, Qiu Z, Peng W, Wang Y, Ye L, Ren G, Xiang T (2021) Tumor suppressor DRD2 facilitates M1 macrophages and restricts NF-κB signaling to trigger pyroptosis in breast cancer. Theranostics 11(11):5214–31. https://doi.org/10.7150/thno.58322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun Y, Du C, Wang B, Zhang Y, Liu X, Ren G (2014) Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer. Biochem Biophys Res Commun 450(1):1–6. https://doi.org/10.1016/j.bbrc.2014.05.045

    Article  CAS  PubMed  Google Scholar 

  20. Zang W, Wang Y, Wang T, Du Y, Chen X, Li M, Zhao G (2015) miR-663 attenuates tumor growth and invasiveness by targeting eEF1A2 in pancreatic cancer. Mol Cancer 14:37. https://doi.org/10.1186/s12943-015-0315-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6(1):1–6. https://doi.org/10.1016/s1476-5586(04)80047-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Long K, Wang H, Song Z, Yin X, Wang Y (2020) EEF1A2 mutations in epileptic encephalopathy/intellectual disability: understanding the potential mechanism of phenotypic variation. Epilepsy Behav 105:106955. https://doi.org/10.1016/j.yebeh.2020.106955

    Article  PubMed  Google Scholar 

  23. Hassan MK, Kumar D, Naik M, Dixit M (2018) The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS One 13(1):e0191377. https://doi.org/10.1371/journal.pone.0191377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Q, Xiong F, Wu G, Liu W, Chen J, Wang B, Chen Y (2022) Gene body methylation in cancer: molecular mechanisms and clinical applications. Clin Epigenet 14(1):154. https://doi.org/10.1186/s13148-022-01382-9

    Article  CAS  Google Scholar 

  25. Di Mario F, Goni E (2014) Gastric acid secretion: changes during a century. Best Pract Res Clin Gastroenterol 28(6):953–65. https://doi.org/10.1016/j.bpg.2014.10.006

    Article  PubMed  Google Scholar 

  26. Duarte HO, Freitas D, Gomes C, Gomes J, Magalhães A, Reis CA (2016) Mucin-type O-glycosylation in gastric carcinogenesis. Biomolecules 6(3). https://doi.org/10.3390/biom6030033

  27. Akyala AI, Peppelenbosch MP (2018) Gastric cancer and Hedgehog signaling pathway: emerging new paradigms. Genes Cancer 9(1–2):1–10. https://doi.org/10.18632/genesandcancer.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oliveira D, Hentze J, O’Rourke CJ, Andersen JB, Høgdall C, Høgdall EV (2021) DNA methylation in ovarian tumors-a comparison between fresh tissue and FFPE samples. Reprod Sci 28(11):3212–8. https://doi.org/10.1007/s43032-021-00589-0

    Article  CAS  PubMed  Google Scholar 

  29. Kling T, Wenger A, Beck S, Carén H (2017) Validation of the MethylationEPIC BeadChip for fresh-frozen and formalin-fixed paraffin-embedded tumours. Clin Epigenet 9:33. https://doi.org/10.1186/s13148-017-0333-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Innovation Technology Project, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (No. 21kcjj-9).

Author information

Authors and Affiliations

Authors

Contributions

ZS, MJ, and XJ designed the study. ZS, XG, and RL completed the experiment. ZS, XH, JL, and XL collected the data. ZS, XH, JL, and XL analyzed and interpreted the data. ZS, XJ, and MJ prepared the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Mulan Jin or Xingran Jiang.

Ethics declarations

Ethics approval

Approval of the research protocol by the local ethics committee (Beijing Chao-Yang Hospital, Capital Medical University, NO. 2020-KE-323).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Guo, X., Hu, X. et al. DNA methylation profiling identifies epigenetic signatures of early gastric cancer. Virchows Arch 484, 687–695 (2024). https://doi.org/10.1007/s00428-024-03765-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-024-03765-0

Keywords

Navigation