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Abstract
Colorectal cancer (CRC) has a broad range of molecular alterations with two major mechanisms of genomic instability 
(chromosomal instability and microsatellite instability) and has been subclassified into 4 consensus molecular subtypes 
(CMS) based on bulk RNA sequence data. Here, we update the molecular pathological classification of CRC with an over-
view of more recent bulk and single-cell RNA data analysis for development of transcriptional classifiers and risk stratifica-
tion methods, taking into account the marked inter-tumoural and intra-tumoural heterogeneity of CRC. The importance of 
the stromal and immune components or tumour microenvironment (TME) to prognosis has emerged from these analyses. 
Attempts to remove the contribution of the tumour microenvironment and reveal neoplastic-specific transcriptional traits 
involved identification of the CRC intrinsic subtypes (CRIS). The use of immunohistochemistry and digital pathology to 
implement classification systems are evolving fields. Conventional adenoma versus serrated polyp pathway transcriptomic 
analysis and characterisation of canonical LGR5+ crypt base columnar stem cell versus ANXA1+ regenerative stem cell 
phenotypes emerged as key properties for improved understanding of transcriptional signals involved in molecular subclas-
sification of colorectal cancers. Recently, classification by three pathway-derived subtypes (PDS1-3) has been developed, 
revealing a continuum of intrinsic biology associated with biological, stem cell, histopathological, and clinical attributes.
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Introduction

Colorectal cancer (CRC) is the fourth most common can-
cer in men and women [1]. Most CRC, around 70–80%, are 
sporadic, while around 20–30% of CRC have a hereditary 
component, due to either uncommon or rare, high-risk, 
genetic tumour syndromes, such as Lynch Syndrome (LS) 
(3–4%) and familial adenomatous polyposis (FAP) (∼ 1%) 
amongst others [2, 3], or more common but low-risk alleles 
identified by genome-wide association studies (GWAS) [4, 
5]. Only 1–2% of CRC cases arise from inflammatory bowel 
diseases [6].

Molecular pathways and classification

In 2016, we provided an overview and integration of the 
molecular classification of CRC [7], emphasising that it is 
not a homogenous disease, but can be classified into different 
subtypes, characterised by specific molecular features discov-
ered over the preceding three decades. At the genomic level, 
despite a very wide range of individual gene alterations, CRC 
shows two major mechanisms of genomic instability: chromo-
somal instability (CIN) and microsatellite instability (MSI). 
Those CRC with chromosomal instability are most common 
(around ∼ 84% of sporadic CRC) and are characterised by 
gross changes in chromosome number and structure includ-
ing deletions, gains, amplifications, translocations, and other 
often complex chromosomal rearrangements. These are often 
detectable as a high frequency of DNA somatic copy number 
alterations (SCNA), which are a hallmark of most tumours 
that arise by the adenoma-carcinoma sequence [8]. Other stud-
ies have associated CIN with inactivating mutations or losses 
in the adenomatous polyposis coli (APC) tumour suppressor 
gene, which occur as an early event in the development of 
bowel neoplasia in this sequence, and/or inactivation of TP53, 
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the guardian of the genome, or other pathway members [2, 9, 
10]. The second group (around ∼ 13–16% of sporadic CRC) 
is hypermutated and shows MSI due to defective DNA mis-
match repair (MMR), often associated with wild-type TP53 
and a near-diploid pattern of chromosomal stability [11–13]. 
Furthermore, MSI CRC often shows CpG island methylation 
phenotype (CIMP), which is a feature that induces epigenetic 
instability by promotor hypermethylation and silencing of a 
range of tumour suppressor genes, including MLH1, one of 
the MMR genes [14]. The integrated molecular analysis by 
The Cancer Genome Atlas project in 2012 [15] confirmed 
this largely DNA-based classification of CRC into two major 
groups of MSI CRC (∼ 13–16%) and (2) CIN CRC (∼ 84%) 
(Fig. 1). Our previous review [7] also briefly covered CRC 
classification at the transcriptomic level by the Consensus 
Molecular Subtypes (CMS) Consortium (2015) [16], which 

analysed CRC bulk RNA expression profiling data from 
multiple studies to describe four major CMS groups, with a 
residual mixed group (Fig. 1).

While the two-class DNA-based model (CIN and MSI) iden-
tified by genomic instability identifies tumour groups that are 
clearly distinct from each other in terms of their mutational and 
copy number alterations, there is an increasing recognition that 
there remains significant heterogeneity within tumours that are 
robustly classified as CIN or MSI. The presence and extent of 
this inter-tumour heterogeneity has been the focus of numerous 
studies since our previous review, each of which has provided 
new classification models that aim to capture transcriptional 
signalling and clinical phenotypes of interest. Furthermore, 
there have been a number of studies that aim to identify and 
characterise the factors underpinning these variations, using 
modern methodologies that have enabled further insight into 
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Fig. 1   Diagrammatic summary of colorectal cancer molecular pathol-
ogy classification systems. The Cancer Genome Atlas (TCGA), 
published in 2012, used a predominantly DNA-based classification, 
splitting colorectal cancers (CRC) into a large group (84%) with chro-
mosomal instability (CIN), 13% hypermutated CRC due to deficient 
mismatch repair (dMMR) that causes microsatellite instability (MSI), 
and 3% ultramutated CRC due to proofreading exonuclease domain 
mutations in the two polymerases POLE and POLD1. The consen-
sus molecular subtype (CMS) classification, published in 2015, used 
bulk RNA sequences to classify CRC into 4 major groups, CMS1–
CMS4, with a residual ‘Mixed Features’ or transitional group. CMS1 
correlated strongly with the TCGA hypermutated group. The large 
TCGA CIN group splits into 3 CMS groups—CMS2: canonical, 
CMS3: metabolic, and CMS4: mesenchymal with the features shown. 
The Colorectal Intrinsic Subtypes (CRIS) classification, published 
in 2016, separated CRC epithelial neoplastic cells (without stro-
mal and immune components) into 5 subtypes, CRIS-A to CRIS-E. 
Most CMS1 and CMS3 cancers fell into CRIS-A (some CMS1 were 
in CRIS-B); CMS2 cancers were found within CRIS-C, CRIS-D, 
and CRIS-E; CMS4 cancers split into CRIS-B, CRIS-C, CRIS-D, 
and CRIS-E. The single-cell intrinsic consensus molecular subtype 

(iCMS) classification of CRC, published in 2022, based on single-cell 
transcriptomes identified a transcriptomic dichotomy of malignant 
cells, resulting in two intrinsic subtypes, iCMS2 and iCMS3, that 
refined the earlier CMS classification. Most CMS2 and CMS3 CRCs 
have iCMS2 and iCMS3 epithelium, respectively, whereas iCMS3 
contains the dMMR/MSI cancers and one-third of microsatellite-sta-
ble (MSS) tumours. The Pathway-Derived Subtypes (PDS) classifica-
tion of CRC, published in 2023, puts colorectal cancers into 3 sub-
types, PDS1–PDS3, with a small residual PDS Mixed group, based 
on Gene Ontology inferred pathway activation patterns, revealing a 
continuum of features associated with biological pathways, stem cell 
populations, morphological/histopathological characteristics, and 
clinical attributes. Abbreviations: dMMR, deficient mismatch repair; 
MSI, microsatellite instability; MSS, microsatellite stability; CIMP, 
CpG island methylator phenotype (-H, high or -L, low); SCNA, 
somatic copy number alteration (-H, high or -L, low); MLH1-s, 
silencing of MLH1 protein expression by promoter hypermethylation; 
BRAFm, BRAF mutation; TILs, tumour infiltrating lymphocytes; 
EMT, epithelial-mesenchymal transition; CBC, LGR5+ crypt base 
columnar stem cell; RSC, ANXA1+ regenerative stem cell; SMI, 
Stem Maturation Index
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the molecular and histological features that underpin the intra-
tumoural heterogeneity that exists within individual tumours.

History of transcriptional classifications

The clinical value of using transcriptional data as the basis 
for molecular subtyping in cancer was demonstrated more 
than two decades ago, by a series of seminal studies in breast 
cancer [17, 18]. Breast cancers were aggregated into biologi-
cally similar subtypes that aligned with prognosis and some 
previously defined clinical attributes. This pioneering work 
led to the development of tools like MammaPrint, PAM50, 
and OncotypeDx to provide information of a patient’s risk 
of relapse and potential response to chemotherapy.

In the years that followed, the use of transcriptional 
subtyping in colorectal cancer was largely confined to the 
development of risk stratifiers that could be used to identify 
patients with highest risk of disease relapse following sur-
gery in stage II CRC, culminating in the development of a 
number of FDA-approved diagnostic tests and prognostic 
assays, such as ColDx and OncotypeDx [19, 20]. However, 
more recent studies have shown that the biological traits 
associated with relapse in one subtype can be quite different 
in another, a point that weakens the value of these general 
risk stratification tools and supports molecular stratification 
as a primary assessment of the correlations between tran-
scriptional data and clinical outcomes [21].

Molecular subtyping of CRC 2010–2016

One of the primary goals of molecular subtyping is the gen-
eration of molecular biomarkers in cancer that can be used to 
stratify tumours according to clinical risk groups or biologi-
cal subtypes, which in turn provide improved understanding 
of signalling cascades that underpin tumour development 
and treatment response. As described in our previous review 
[7], the first landmark classification model in CRC that used 
multi-omic molecular information was published in 2012 
as part of The Cancer Genome Atlas (TCGA) network pro-
ject [15]. This study utilised mutational, epigenetic, mRNA, 
and miRNA information to identify molecular subtypes that 
strongly aligned with the CIN and MSI dogma, with addi-
tional substratification of the MSI group based on the level 
of mutational burden. Highly mutated CRC (∼ 16%) was 
split into two major groups: (1) hypermutated cancers (∼ 
13%) with microsatellite instability (MSI) due to defective 
mismatch repair (dMMR) or (2) ultramutated cancers (∼ 3%) 
with DNA polymerase epsilon (POLE) exonuclease domain 
mutations that inactivate the proofreading function. In con-
trast, CRC with lower mutation rates (∼ 84%) that were non-
hypermutated, microsatellite stable (MSS) cancers, with a 

high frequency of DNA somatic copy number alterations due 
to CIN, commonly showed mutations or deletions in APC, 
TP53, KRAS, PIK3CA, and SMAD4 (Fig. 1) [8, 15, 22].

In the same time period as the TCGA study was pub-
lished, numerous other studies proposed molecular subtypes 
of CRC, primarily defined using transcriptional information 
(at least 5 of them). Remarkably, despite each of them using 
similar and, in some cases, the same data, there appeared 
to be little agreement between the genes and biomarkers 
that underpinned each approach. The reasons for this may 
be attributed to both technical variations that can under-
mine cross-platform comparisons of individual gene-level 
biomarkers and also the different bioinformatic approaches 
employed by each study for identification, characterisation, 
and final classifier deployment in these datasets.

To provide clarity to the field and to enable the devel-
opment of a unified approach to molecular subtyping, an 
international consortium was assembled that included many 
of the groups that were behind the development of these 
individual approaches. This consortium, spanning more than 
15 institutes and utilising data from more than 5000 tumour 
samples, sets out to identify concordance across the previ-
ously reported subtypes, leading to the establishment of a 
new paradigm in the field, the consensus molecular subtypes 
(CMS), comprising four major groups CMS1-4 (described 
briefly in our previous review) [16] (Fig. 1). The emergence 
of this consensus approach in CRC classification enabled the 
field to have a stable reference point across pre-clinical and 
clinical research. Numerous studies quickly deployed the 
CMS approach on clinical samples, to enable retrospective 
alignment with outcome and response to treatment modali-
ties and to pre-clinical models in the hope of developing 
new understanding and potential therapeutics for these newly 
defined transcriptional subtypes.

Role and contributions of the stroma 
to transcriptome and prognosis

Previously, De Sousa E Melo et al. [23] demonstrated that 
although different prognostic signatures generally consist of 
non-overlapping sets of genes, they almost always identify 
the same group of poor-prognostic cases, suggesting that 
while individual genes are redundant, it is the most distinc-
tive overall biological features that are associated with prog-
nosis. In line with this data, multiple molecular subtyping 
studies in CRC have identified levels of fibroblast infiltration 
and genes specifically originating from cancer-associated 
fibroblasts (CAFs) as key factors in disease relapse [24–26]. 
The influence of the tumour microenvironment (TME) on 
the CMS classification and wider transcriptional signalling 
system was identified by numerous studies [24, 25], and 
the potential implication for intratumoural heterogeneity 
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in diagnostic samples due to multi-regional sampling was 
demonstrated [27].

In an attempt to remove the contribution of the tumour 
microenvironment and reveal neoplastic-specific transcrip-
tional traits, the CRC intrinsic subtypes (CRIS) were devel-
oped using profiling of tumour xenografts that filtered out 
signals from stromal and immune components [28], which 
in turn resulted in increased stability of classification. The 
CRIS approach identified five new subtypes, CRIS-A to 
CRIS-E (Fig. 1). CRIS-A was associated with MSI or KRAS 
mutations and mucinous features. CRIS-B tumours showed 
TGF-B pathway activity with EMT and a poor prognosis. 
CRIS-C cancers had elevated EGFR signalling with sensitiv-
ity to EGFR inhibitors. CRIS-D tumours showed WNT path-
way activation with IGF-2 gene overexpression or amplifi-
cation. CRIS-E had a Paneth cell-like phenotype with TP53 
mutations. This CRIS subtyping successfully categorised 
independent primary and metastatic CRC datasets.

However, while these molecular studies identified the 
transcriptional consequences of these variations, the funda-
mental role played by the stromal and immune components 
in CRC when classifying tumours into clinically valuable 
categories was clearly defined by Jass et al. in the late 1980s 
[29], who presented a histological system that outperformed 
Dukes’ staging for predicting clinical outcomes of rectal 
cancers. This system utilised information equivalent to T 
and N status, alongside information about the presence and 
extent of lymphocytic infiltration and epithelial infiltration 
at the tumour margins, features reminiscent of the traits that 
are most prominent in CMS1 and CMS4 tumours.

While the promise of the precision medicine era in CRC 
was heralded by the development of CMS and other tools, 
the absence of a large clinical impact may be seen as a fail-
ure over the last decade. There are numerous underlying 
reasons for this; however, in the next sections, we focus on 
the incompatible nature of molecular stratification within the 
turnaround times required for diagnostic decision-making.

Rapid turn‑around CMS classification 
and emergence of morphology, 
immunohistochemistry (IHC), 
and image‑based surrogates

Currently, molecular analysis of CRCs for a timely pathol-
ogy report often involves determination of proficient or 
deficient mismatch repair status, mostly by MMR immu-
nohistochemistry, using either the 2-antibody [30] or 
conventional 4-antibody approach. Some laboratories 
perform MSI testing on tumour DNA, as an alternative to 
MMR immunohistochemistry, or in combination with it 
to resolve staining discrepancies [3]. For metastatic CRC, 
mutational analysis of all RAS genes may be performed 

when oncologists are considering anti-epidermal growth 
factor receptor (EGFR) therapy. CRCs with the BRAF 
V600E substitution may show aggressive behaviour and 
could be treated with combined BRAF and EGFR inhibi-
tion. Some CRCs have overexpression of the HER2 onco-
gene that may be analysed by immunohistochemistry and/
or in situ hybridisation as they may respond to appropriate 
targeted therapy [22, 31].

Stratification of cancer patients into specific treatment 
groups, based on the molecular pathological changes of their 
tumours, has the potential to improve patient outcomes by 
delivering the right drug to the right patient. Development 
of predictive biomarkers for clinical use has relied largely 
on evaluation using low-throughput methods on single-gene 
status, for example, with KRAS mutational status in CRC 
as a predictive marker of resistance to EGFR inhibition. 
The implementation of prospective molecular stratification 
in randomised controlled trials (RCTs) such as FOxTROT 
[32] has demonstrated the feasibility of a rapid turnaround 
(within a week was the aim) for DNA extraction and RAS 
mutation analysis by pyrosequencing. In line with this 
requirement, there have been highly accurate CE-marked 
in vitro diagnostic device tools developed to deliver rapid-
turnaround and easy to interpret results [33–35]. However, 
in contrast to single-gene biomarkers, more complex multi-
gene and multi-omics classifiers can lead to a significant 
time lag between tissue processing, molecular profiling, data 
analysis, and result availability to the clinician. The ‘stand-
ard-of-care’ pathway for early stage (stage I–III) localised 
colonic or rectal cancer is shown in Fig. 2, in which radio-
logical scans and tissue samples taken during endoscopy 
can be assessed histopathologically to provide the diagnosis 
and staging of the cancer within the clinically acceptable 
timeline. As neo-adjuvant response rates improve, the tissue 
obtained at the initial diagnosis is, in some cases, the only 
pathological material retrieved from the patient and hence 
the only material on which to carry out molecular profiling. 
With advances in molecular profiling technologies, the abil-
ity to successfully extract meaningful molecular informa-
tion from even small, degraded samples increase; however, 
the time lag for feeding this information back to clinicians 
for discussion at a multidisciplinary team (MDT) meeting 
remains a critical issue. Therefore, if the potential patient 
benefit of this molecular stratification is ever to be realised, 
this process needs to be moved into rapid-turnaround pro-
spective stratification to fit with the clinical timeline. Many 
have attempted to link CRC morphological patterns with 
molecular features with varying degrees of success. How-
ever, Budinska et al. (2023) have suggested that the main 
molecular signals align with characteristic morphological 
patterns seen in CRC and they examined the extent to which 
morphotype heterogeneity impedes prognostic and predic-
tive expression-based classifiers [36].
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IHC approach to CMS classification

To circumvent the need for molecular profiling and to con-
struct a CMS classification approach that can be deployed 
in current diagnostic pathology laboratories, Trinh et al. 

[37] developed a five-marker IHC panel (FRMD6, ZEB1, 
HTR2B, CDX2, and cytokeratin) that works alongside stand-
ard MSI/dMMR testing to deliver a practical classification 
tool with 87% concordance with the ‘gold-standard’ tran-
scriptomic CMS classification. This system utilised dMMR/

Fig. 2   Typical standard-of-care pathway for early stage (stage I–III) 
localised colonic or rectal cancers. Following the patient coming to 
the pathway due to bowel symptoms, screening, or referral, endo-
scopic biopsies are taken for histopathological diagnosis (also avail-
able for some biomarker testing, such as for KRAS mutation analysis 
in certain circumstances) and combined with radiological scans to 
determine likely cancer stage, with the key cancer and patient features 

being discussed at a multi-disciplinary team (MDT) meeting for mak-
ing appropriate management decisions, including treatment of the 
patient, which may involve resection and/or adjuvant chemotherapy 
(upper panel) and/or neoadjuvant radiotherapy (middle panel) and/
or neoadjuvant chemotherapy (lower panel), with tumour response/
regression analysis made by histopathological assessment of resection 
specimens
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MSI status to define CMS1, with remaining MSS cancers 
being classified into two classes using four of the IHC mark-
ers, either an epithelial (CMS2/3 combined) or mesenchymal 
(CMS4) subtype, with epithelial content being normalised 
using pan-cytokeratin IHC. The authors acknowledged the 
lack of separation between the epithelial classes, CMS2 
and CMS3, as a limitation of this initial approach, which is 
driven by distinct biological signalling in the original CMS 
study. However, this IHC approach to CMS classification 
has not achieved widespread usage. In addition, as noted in 
other transcriptomics-based studies, the presence and extent 
of intratumoural heterogeneity and lack of standard biopsy 
sampling protocols can potentially undermine classification.

Digital pathology and image‑based H&E 
approaches

The emergence and recent rapid acceleration of the field 
of digital pathology have been facilitated by the ongoing 
development of tools like QuPath and Halo [38] that support 
the generation of methodologies reliant on deep learning and 
AI, so too will opportunities to rapidly classify diagnostic 
samples in parallel with pathologist assessment. Develop-
ment of digital pathology tools has enabled histology-based 
classification systems to be developed and applied to rou-
tine diagnostic H&E samples. Given the strong influence 
that the tumour microenvironment plays in CMS classifi-
cation, the emergence of robust image-based classification 
tools represents a rapid and cost-effective way for upfront 
decision-making in clinical trials. Using ‘ground-truth’ tran-
scriptional CMS calls from > 1200 tumours with sample-
matched H&Es and transcriptional data from both tumour 
resections and pre-treatment biopsies assembled within the 
S:CORT consortium, Sirinukunwattana et al. [39] developed 
an image-based CMS (imCMS) deep learning classifier that 
could accurately call the four CMS classes when deployed 
on independent samples (AUC = 0.84 in TCGA samples, and 
AUC = 0.85 in rectal biopsies). While the headline figures 
for concordance with transcriptional CMS calls appear simi-
lar to the IHC approach, the value of the imCMS method 
was that it could call each of the four discrete CMS classes, 
as opposed to combining CMS2 and CMS3 and segregating 
these from CMS4.

In addition, this imCMS approach did not require paral-
lel MSI/dMMR testing and IHC staining, as it was designed 
to be performed on diagnostic H&E images. More impor-
tantly, alongside the overall sample-level classification, the 
image-based approach provides an insight into tile-level 
classification that make up this overall call, enabling a more 
accurate spatial assessment of the presence and extent of 
intratumoural heterogeneity in individual samples, an issue 

that had previously been reported through multi-regional 
transcriptional assessments.

Single‑cell intrinsic CMS (iCMS) classifier

As single-cell sequencing has become more routine in tumour 
profiling studies, the emergence of molecular classification 
from these data types has the potential to add more granular-
ity to those using bulk tumour data. By using data derived 
from ~ 50,000 epithelial cells, Joanito et al. [40] developed the 
single-cell intrinsic CMS (iCMS) classification model, which 
identified two epithelial classes with distinct gene expression, 
transcriptional factor activity, and genomic profiles. In the 
single-cell data, the authors reported that the iCMS2 class 
was associated with SCNA/copy number variation (CNV) 
across many chromosomal regions, whereas iCMS3 displayed 
limited uniformity in CNVs (Fig. 1). In contrast, almost all 
MSI tumours were classified as iCMS3, and given this asso-
ciation, these tumours were also associated with mutational 
burden, CIMP, right-sidedness, and mucinous tumours. The 
authors demonstrated that this new two-class iCMS system 
could be combined with the bulk CMS four-class approach, to 
separate CMS4 tumours into new prognostic groups accord-
ing to iCMS2 (better outcome) or iCMS3 (worse outcome). 
Remarkably, although the new iCMS system was based on 
intrinsic epithelial traits, when applied to bulk tumour data, 
the iCMS classifier was unable to find any distinct underly-
ing biology within the epithelial-rich CMS2 (that accounts 
for ~ 40% of CRCs) and CMS3 subtypes, which were almost 
exclusively assigned to iCMS2 and iCMS3, respectively. 
CMS1 tumours were almost exclusively assigned as iCMS3. 
Overall, iCMS3 tumours were more likely to be associated 
with BRAF, KRAS, and PIK3CA mutations, whereas iCMS2 
tumours were associated with mutations in APC and TP53. 
The authors propose a final model, termed the intrinsic-MSI-
fibrosis (IMF) system, as the most informative as it considers 
the iCMS classification, microsatellite instability status, and 
levels of CAF-related fibrosis.

Single‑cell polyp progression

While the iCMS proposed a set of epithelial classes that are 
evident in cancer, a number of recent studies have used similar 
single-cell technologies from 62 patients, across discovery and 
validation cohorts within the COLON MAP study, to provide 
more insight into the cell states within conventional adenomas 
and serrated polyps, alongside the cancers that arise from these 
developmental pathways [41]. This work confirmed many of 
the previously defined molecular associations associated with 
these classes of precancers, including associations of APC 
abnormalities with the conventional adenoma pathway and 
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BRAF alterations with serrated polyps. This work also con-
firmed the elevation of LGR5+ cell populations (described 
later in more detail) in conventional adenomas compared with 
normal; however, in serrated polyp lesions, no such elevation 
was noted, with the authors proposing a process associated 
with metaplasia and loss of expression of the homeobox tran-
scriptional regulator CDX2. The authors proposed that these 
changes are driven, in part, as a wound-healing response with 
a regenerative stem-like phenotype (Fig. 3, 4).

A key finding in this study was that in serrated lesions, 
the presence of cytotoxic cells (CD8+ T cells, NKs, and 
gdT cells), alongside the activation of an antigen processing 
and presentation gene signature, was significantly elevated 
compared with conventional adenomas, similar traits that 
were elevated in MSI tumours compared to MSS. Impor-
tantly, however, these traits were all observed prior to the 
onset of increased mutational burden (as a result of dMMR/
MSI), providing evidence of triggers that drive activation of 
adaptive immunity in precancerous lesions that appear to be 
independent of dMMR-driven hypermutation. The authors 
utilised a set of BRAF-driven (Lrig1 CreERT2/+ ; Braf LSL-
V600E/+) and KRAS-driven (Lrig1 CreERT2/+ ; Kras LSL-
G12D/+) mouse models of serrated lesions to identify that 
it is the non-stem differentiated epithelial lineages that give 
rise to the immune activated environment.

Becker et al. [42] recently defined a continuum of bio-
logical signalling, using single-cell RNA sequencing and 

chromatin profiling, that aligned with the changes in cel-
lular states during normal-precancer-cancer progression in 
CRC using a cohort of 48 polyps, 27 normal tissues, and 6 
cancers collected from 15 patients. Importantly, these cases 
were disproportionately derived from patients with familial 
adenomatous polyposis (FAP), with 8 FAP and 7 non-FAP 
patients. The authors identified a clear elevation in the pro-
portions of components of a cancer-associated TME dur-
ing normal to cancer progression, namely, increased Tregs, 
exhausted T cells, pre-CAFs, and mature CAFs.

These TME changes track in parallel with an increase 
in stem-like epithelial cells from normal to precancer; 
however, this significant trend did not follow through in 
the cancer samples, which split evenly into groups with 
either extremely high stem-like signalling or a group with 
stem-like epithelial cells equivalent to unaffected colonic 
tissue. This latter group was suggestive of an alternative 
progression pathway from precancer to cancer in this sub-
set of cases; however, as indicated above, this may primar-
ily apply to FAP-related cases.

Stem cell classifications and plasticity

Given that epithelial cells are continuously lost due to apop-
tosis and shedding, the existence of a colonic stem cell popu-
lation that gives rise to, and replenishes, all epithelial cells 

Fig. 3   Comparison of colorec-
tal serrated polyp (‘Serrated’) 
versus conventional adenoma 
(‘Conventional’) pathway pro-
gression to cancers in terms of 
cancer histology, cancer subtype 
(CMS1/4 and PDS2 versus 
CMS2/3 and PDS1/3), selected 
cancer hallmarks (immune-rich/
stroma-rich versus MYC targets, 
canonical stem cells, prolif-
eration, PRC targets, epithelial 
differentiation, and repression), 
and clinical relapse-free sur-
vival differences
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lining the intestinal mucosa has been long established. While 
these stem cells were thought to be located towards the base 
of the crypts of Lieberkühn in the small intestine, the subse-
quent discovery and characterisation of colonic crypt base 
columnar cells (CBCs), and the rapidly proliferating self-
renewal properties they displayed, provided a critical expla-
nation for the source and maintenance of many of the key 
phenotypes observed in colorectal cancer. As studies on CBCs 
increased, the identification of key selective biomarkers, like 
LGR5+ [43] and the ability of these stem cells to serve as the 
‘cell-of-origin’ for tumourigenesis following inactivation of 
APC [44], further reinforced this hypothesis.

Although LGR5-positivity provides a marker of CBC 
stem cells, there have been numerous reports of how LGR5-
negative cells can also give rise to neoplastic lesions, par-
ticularly within inflammatory, regenerative, or desmoplastic 
stromal environments [45, 46]. The association between an 
LGR5-negative cell-of-origin and stromal/inflammatory 
lesions aligns well with the findings from the single-cell 
polyp study mentioned earlier [41] that described the domi-
nance of a differentiated regenerative-like metaplasia stem 
population in serrated polyps. In parallel, recent studies 
have highlighted that these non-canonical LGR5-negative 
stem populations may also be the drivers of CRC dissemina-
tion, tumour budding, and relapse [47], and while they may 
account for a small population in primary tumours, they are 
strongly enriched in metastatic lesions [48].

LGR5 negativity has been associated with inflamed 
tumours, and elegant recent work has demonstrated 
how stem cells and, indeed lesions overall, can shift 
between these LGR5-positive CBC and LGR5-negative 

ANXA1+ regenerative stem cell (RSC) states, defined as 
plasticity, as they adapt and respond to changes in micro-
environmental conditions (Fig. 4) [46]. At the same time, 
using heterotypic organoid co-culture models, another 
recent study revealed that the steps involved in the regula-
tion of this stem cell plasticity can be attributed to both 
cell-intrinsic and microenvironmental signalling [49], 
focusing on colonic stem cells (CSC), their regenera-
tive populations described as revival colonic stem cells 
(revCSC), alongside identification of a distinct set of 
hyperproliferative colonic stem cells (proCSC).

These studies, using both bulk and single-cell technolo-
gies, have revealed the presence and extent of heterogene-
ity in stem cell populations within CRC, providing a more 
detailed assessment of the dynamics and consequences 
of the inter- and intra-cellular signalling networks that 
are ongoing within the heterogeneous milieu of lineages 
within a tumour mass. Importantly, however, these studies 
have used different terminology to describe each of the 
possibly overlapping stem populations, meaning that there 
remains a need for detailed assessment of each of these 
biomarkers in an agreed way in order to produce more 
consistent nomenclature.

Limitations of gene‑based classifiers 
versus pathway‑based classifiers

The molecular subtyping approaches described thus far, 
using both bulk and single-cell data, rely on methodologies 
defined by the early breast cancer subtyping work of the 

Fig. 4   Transcriptomic analysis of stem cell populations in CRC 
showed variable populations of both LGR5+ /ANXA1− crypt base 
columnar (CBC) stem cells and LGR5-/ANXA1+ regenerative stem 
cells (RSC), reflecting stem cell plasticity that can respond adaptively 
to acute selective pressures, and this admixture can be assessed using 
a transcriptional molecular tool to assess the Intestinal  Stem Cell 
Index (ISC), with CMS2 and PDS1 groups enriched for LGR5+ CBC 

stem cells, whereas CMS1/CMS4 and PDS2 groups are enriched for 
ANXA1+ RSC. Combining PDS and stem cell analyses showed that 
both LGR5+ CBC and ANXA1+ RSC were fast-cycling and abun-
dant in stem-rich PDS1 and PDS2, whereas the PDS3 group was 
slow-cycling and stem-poor, containing more enterocytic differenti-
ated cells as shown by the Stem Maturation Index (SMI)
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late 1990s and early 2000s, where individual gene-level 
expression data from microarray or RNAseq served as the 
template for aggregating tumours into similar subgroups. 
In contrast, it is well understood that pathway-level data, 
where genes are arranged into experimentally validated 
pathway signatures to represent important biological sig-
nalling pathways, provides a quick and reproducible way 
to test associations between groups of samples according 
to a broad range of molecular mechanisms and phenotypes. 
Given the biological value that pathway-level data pro-
vides, almost all molecular subtyping studies may use col-
lections of such Gene Ontology signatures, like the Molec-
ular Signature Database (MSigDB), to identify significant 
associations between these pathways and their identified 
subtypes [50]. Significantly elevated signalling can then be 
used as the hallmark features in each subtype compared to 
the others; as exemplified by cell cycle activation and sig-
nalling in both WNT and MYC targets in CMS2, metabolic 
signalling pathways in CMS3, and TGF-β activation and 
EMT signalling in CMS4 [16]. Based on these successes, 
gene-level discovery followed by pathway-level charac-
terisation represents a more widely applicable approach.

Given that the end goal of many subtyping develop-
ment studies is an eventual alignment and characterisation 
with important biological phenotypes in each subtype, we 
proposed a new method that changes the sequence of this 
stepwise approach, with the aim of providing a closer link 
with molecular mechanisms and clinical phenotypes. This 
pathway-level approach should replace the initial gene-level 
clustering by directly using these Gene Ontology and bio-
logical pathway signatures as the basis for grouping samples.

Pathway‑derived subtypes

The first step in this alternative class discovery approach 
was to convert all our existing gene-level data cohorts 
into pathway-level scores prior to subtype discovery, 
across ~ 2000 signatures associated with biological pro-
cesses contained within these databases to generate a 
matrix of 640,000 + combinations of biological pheno-
types. When clustering is performed, using the methods 
in the same way as other gene-level studies, three pathway-
derived subtypes (PDS) in CRC were identified, where 
PDS1 (26%), PDS2 (31%), PDS3 (30%), and a smaller 
more heterogeneous residual ‘mixed’ group that accounted 
for ~ 13% of tumours across the CRC cohorts (Fig. 1) [51].

Comparing the PDS and CMS classifications of the same 
data revealed granularity within the largest tumour subtype 
defined as epithelial-rich with uniform signalling attributes 
in the original CMS study, CMS2 group, which was now 
split almost equally into two highly distinct transcriptional 

subtypes, PDS1 and PDS3. At the same time, as identifying 
granularity in the epithelial-rich subtypes, the PDS approach 
found that the inflammatory/stromal CMS1/CMS4 subtypes 
were combined within a single subtype, PDS2 (Fig. 4) [51].

Remarkably, despite the clearly distinct transcriptional land-
scapes observed according to PDS classification, outside of 
enrichment for BRAF mutations and fewer APC mutations, 
in the PDS2 group (these are expected within the CMS1 and 
CMS4 groups, respectively), mutational and copy number pro-
files across all key genes assessed within the WNT, MAPK, 
PIK3CA, cell cycle, or TGF-β pathways were identical in 
PDS1 and PDS3, again, the two groups that contained equal 
proportions of CMS2 tumours. Downstream characterisa-
tion of PDS groups revealed that despite the absence of any 
genomic distinctions, these transcriptionally distinct subtypes 
were dominated by highly significant differences in many of 
the key cancer-associated hallmarks used in subtyping stud-
ies. As expected, PDS2 tumours were enriched for many traits 
associated with inflammatory/immune signalling pathways, 
such as stroma-related epithelial-to-mesenchymal transition 
(EMT), TGF-β pathway activation, and interferon responses. 
However, while PDS1 tumours displayed uniform and highly 
significant elevation of cell cycle-related pathways and MYC/
WNT target activation in every single sample classified, there 
was almost universal transcriptional repression in PDS3 for 
many previously defined cancer-associated hallmarks [51].

Furthermore, while PDS1 was associated with fast-
cycling canonical stem cells (LGR5 staining and CBC 
signatures), PDS2 was associated with regenerative stem 
cells (ANXA1 staining and RSC signatures), similar to the 
observed repression for cancer-relevant hallmarks; PDS3 
was depleted/devoid of both of these stem populations and 
displayed low Ki67 staining. Although the majority of the 
previously described studies have focussed on changes in the 
stem populations, the absence of these cell populations was 
coupled with signalling in PDS3 tumours that appeared to 
indicate elevated numbers of differentiated colonic epithelial 
lineages, particularly transit-amplifying cells, enteroendo-
crine cells, and enterocytes (Fig. 4).

When H&Es were assessed either manually or using AI 
models (similar to imCMS), PDS3 tumours were indistin-
guishable from PDS1 and PDS2, and no pathological fea-
tures or differentiation/grading differences were observed. 
While the presence of a slow-cycling, stem-depleted, and 
transcriptionally repressed group that is indistinguishable 
by histology and contains the same genomic profile as other 
tumours is interesting in itself, when tested in a series of 
clinical cohorts including the PETACC-3 clinical trial, 
PDS3 tumours represented the worst stage II/III prognostic 
group in terms of relapse-free survival following surgery, 
regardless of treatment.

To complement the PDS classifier, and the numerous stem 
cell classifiers that exist, we proposed a ‘Stem Maturation 
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Index’ (SMI) classifier tool that provides a macro-view of 
overall cellular states when used in bulk data, or, when used 
in single-cell data, a comparative measurement of stem-ness 
versus differentiation for individual epithelial lineages. Impor-
tantly, this approach also offers a smoother transition between 
bulk, single-cell, and spatial transcriptomics, as it can reduce 
technical biases that undermine individual gene/probe assess-
ments across platforms, enabling a more robust assessment 
of subtle signalling pathways underpinning tumour cell iden-
tity. While the previous stem cell classifiers may suggest that 
tumour cells display one or more of these stem states, our 
PDS and SMI data indicates that ~ 25–30% of CRC are more 
aligned to features of normal-like epithelial homeostasis in 
terms of stem-to-differentiated ratios even when they display 
all the same proportions of cancer driver mutations.

Looking forward—re‑discovery of findings 
from bulk and single‑cell research in the era 
of spatial profiling

The use of bulk molecular data, which has been used here 
to describe any method that does not specifically sort dif-
ferent lineages prior to processing, typically involves the 
use of macro-dissected tissue from annotated slides, tissue 
curls or fresh/frozen tissue pieces. While estimates can be 
made about lineage abundance from annotated H&E or IHC-
stained sequential sections if available, the precise composi-
tion of the tissue sample used to generate the bulk molecular 
data remains unknown. Furthermore, although estimates can 
be made as to these abundances, a reliable estimate of the 
identity of the precise lineage(s) that each RNA/DNA signal 
arises from cannot be determined, meaning that bulk profiles 
in each of these studies only offer, in the case of RNAseq, an 
average expression value for each gene across the full milieu 
of cells that were processed in each sample.

When discussed in this context, the advantages of 
single-cell technologies and the lineage-specific resolu-
tion they bring have offered the field an intriguing insight 
into the presence and extent of both genomic and tran-
scriptomic heterogeneity within tumours. It can be argued 
that in the era of single-cell technologies, bulk profiling 
is too dated to be useful; however, as exemplified by the 
PDS study, bulk transcriptomics can still successfully be 
used as the basis for novel biological discovery and risk-
stratification that can in-turn be interrogated/validated 
with newer methods. Furthermore, although the lack of 
lineage-specific information attributed to bulk profiling 
discussed above is a limitation, the fact that serial sections 
can be used to identify the precise localisation of expres-
sion in the same tumour has enabled bulk discoveries to 
provide some insights into subtyping/biomarker research 
and translational/diagnostic pathology.

The studies described here highlight how, as technolo-
gies advance, so too does our understanding of the intricate 
mechanisms underpinning cancer development and progres-
sion, revealing a unique insight into the sometime subtle 
signalling pathways that are likely to be key to the inter-
compartmental crosstalk that drives tumour-wide responses. 
It could also be argued that many of the key findings from 
the subtyping studies over the last decade have relied heav-
ily on molecular events and histological features that were 
previously discovered and characterised using routine histo-
pathology and immunohistochemistry, as exemplified by the 
alignment between the Jass and CMS classifications, or the 
placement of well-established Vogelstein-described molecu-
lar events within previously defined polyp morphologies.

In line with this latter argument, in the same way that 
bulk profiling preceded single-cell technologies in bio-
marker development and molecular studies, the advent and 
widespread adoption of spatial-based technologies holds 
enormous potential for driving our understand on further. 
Future studies will likely begin to use parallel deep phe-
notyping methodologies in bulk and single-cell sequencing 
data from the same sample, complemented with advanced 
in situ tissue profiling using spatial transcriptomics, multi-
plex immunofluorescence/proteomics, alongside AI-based 
digital pathology. In this scenario, the signalling pathways 
and subtypes that were collapsed into an average score in 
bulk profiling could be revealed in individual cells at high-
resolution across the entire field of cancer cells and stroma 
that pathologists use to generate diagnostic reports.

It may be unsurprising that a review such as this would 
end by promoting the value of pathology in guiding the next 
wave of molecular subtyping discoveries; however, the CRC 
field is on the cusp of producing some of the largest and 
most detailed tissue-based datasets that have ever existed. 
In this new era of spatially informed molecular research, 
pathology-led studies are once again required to ensure that 
cancer discoveries are developed based on the discipline that 
bridges science and medicine.
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