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Abstract
Autophagy is a cellular response to diverse stresses within tumor microenvironment (TME) such as hypoxia. It enhances 
cell survival and triggers resistance to therapy. This study investigated the prognostic importance of HIF-1α and miR-210 in 
triple negative breast cancer (TNBC). Also, we studied the relation between beclin-1 and Bcl-2 and their prognostic relevance 
in triple negative breast cancer. Furthermore, the involvement of hypoxia-related markers, beclin-1 and Bcl-2 in mediating 
resistance to neoadjuvant chemotherapy (NACT) in TNBC was evaluated. Immunohistochemistry was performed to evaluate 
HIF-1α, beclin-1 and Bcl-2 expression whereas, miR-210 mRNA was detected by quantitative reverse transcription PCR 
(q-PCR) in 60 TNBC patients.  High HIF-1α expression was related to larger tumors, grade III cases, positive lymphovascu-
lar invasion, advanced stage, high Ki-67 and poor overall survival (OS). High miR-210 and negative Bcl-2 expression were 
related to nodal metastasis, advanced stage and poor OS. High beclin-1 was associated with grade III, nodal metastasis, 
advanced stage and poor OS. Also, high beclin-1 and negative Bcl-2 were significantly associated with high HIF-1α and 
high miR-210. High HIF- 1α, miR-210 and beclin-1 as well as negative Bcl-2 were inversely related to pathologic complete 
response following NACT.  High beclin-1 and lack of Bcl-2 are significantly related to hypoxic TME in TNBC. High HIF-1α, 
miR-210, and beclin-1 expression together with lack of Bcl-2 are significantly associated with poor prognosis as well as poor 
response to NACT. HIF-1α and miR-210 could accurately predict response to NACT in TNBC.
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Introduction

Triple-negative breast cancer (TNBC) assigns to a subgroup 
of breast cancer (BC) determined by the absence of estrogen 
receptor (ER), progesterone receptor (PR), and human epi-
dermal growth factor receptor 2 (HER2). TNBC phenotype 

is characterized by high heterogeneity, aggressive clinical 
behaviour and lack of treatment modalities [1]. Chemother-
apy is considered the approved option for TNBC treatment; 
however, patients repeatedly acquire resistance. It is now 
widely accepted that the expression of tumour microenvi-
ronment (TME)-related factors could assist substantially in 
chemoresistance [2].

Tumour hypoxia, which is the lack of oxygen within a 
tumour, is one of the most common characteristics of the 
TME due to rapid cell growth and oxygen consumption. 
Hypoxia-inducible factor (HIF-1α), a nuclear transcription 
factor, is a marker of the hypoxic TME [3]. At present, it 
is well established that hypoxia serves as an independent 
unfavourable prognostic factor in several tumours and leads 
to the ultimate failure of most anticancer therapeutics [4, 
5]. MicroRNAs (miRNAs) are classified as small non-cod-
ing, single-stranded RNAs (ribonucleic acids) which exerts 
essential roles in different fundamental processes through 
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their influence on gene expression [6]. Recently, several 
miRNAs induced during hypoxia have been recognized 
and termed hypoxia-induced miRNAs or hypoxamiRs. Of 
them, miRNA-210 (miR-210) is the master hypoxamiR [7]. 
Hypoxia has been proved to enhance autophagy in diverse 
cellular conditions, and autophagy might behave as a sur-
vival mean for hypoxic cells by recycling their cellular con-
tents [8].

Autophagy is a new focus of tumour research. Autophagy 
has a dual role; it is a barrier to hinder tumor invasion and 
supress tumorigenesis, and it is an adaptive reaction to the 
relatively harsh TME in encouraging tumor progression [9]. 
Beclin-1, the firstly recognized mammalian autophagy pro-
tein, is considered as a peculiar Bcl-2-interacting protein. 
The interplay between beclin-1 and Bcl-2 was described as 
an important regulator of autophagy and apoptosis. Disen-
gaging beclin-1 from Bcl-2 triggers autophagy. Beclin-1 per-
forms a vital role in the initiation and maturation of the 
autophagosome. Beclin-1 plays an essential role in differ-
ent biological cellular processes, such as response to stress, 
aging, and cell death [10].

Autophagy levels were described to correlate with HIF-1α 
expression and have been related to early invasion in colonic 
carcinoma [11]. Furthermore, autophagy was demonstrated 
to exert an important role in promoting chemoresistance in 
lung cancer via hypoxia-related pathway [12].

Herein, this study aimed to investigate HIF-1α expression 
and miR-210 mRNA relative expression and their clinical 
relevance in TNBC. Moreover, we analysed the relationship 
between beclin-1 and Bcl-2 and their prognostic importance 
in TNBC. This study was extended to evaluate the involve-
ment of hypoxia-related markers, beclin-1 and Bcl-2 in 
mediating neoadjuvant chemoresistance in TNBC.

Patients and methods

Study design and case selection

This is a prospective study performed at Pathology, Clini-
cal Pathology, Medical Biochemistry and Clinical Oncology 
Departments, Faculty of Medicine, Tanta University dur-
ing the period from June 2019 to June 2022. Sixty patients 
with TNBC were treated with neoadjuvant chemotherapy 
(NACT). All patients provided written, informed consent 
and approval of the institutional research ethics committee 
was obtained (Approval code: 35521/6521/6).

Eligibility criteria

Eligibility criteria included TNBC cases with no evi-
dence of distant metastasis at the beginning of the study, 
Karnofsky performance status ≥ 70, adequate bone 

marrow reserve and good renal function (creatinine clear-
ance ≥ 60 mL/min), whereas those who developed meta-
static disease, had other malignancies or non-malignant 
systemic disease as well as patients ineligible for neoad-
juvant chemotherapy were excluded.

Clinical assessment

All cases underwent full laboratory investigations to figure 
out their tolerability to NACT. Diagnosis was established 
through core biopsy obtained before starting neoadjuvant 
treatment. Clinical staging work-up included computer-
ised tomography (CT) chest, abdomen and pelvis, along 
with bone scan. TNM staging was applied according to 
the American Joint Committee on Cancer (AJCC) [13].

Histopathologic evaluation

TNBC cases were determined following the American 
Society of Clinical Oncology/College of American Pathol-
ogists (ASCO/CAP) guidelines [14] as ER and PR nega-
tive (nuclear staining in < 1% of tumour cells) and lack 
HER2 overexpression (no staining, or weak incomplete 
membrane staining in less than 10% of tumour cells by 
immunohistochemistry) or oncogene amplification [Dual-
probe HER2/CEP17 < 2.0 with an average HER2 copy 
number < 4.0 signals/cell by fluorescent in situ hybridi-
zation (FISH)]. Haematoxylin and eosin-stained sections 
were examined for the histologic type, tumour grade and 
lymphovascular invasion (LVI). Nottingham grading sys-
tem was adopted for assessment of tumor grade [15, 16].

Immunohistochemical staining

Immunohistochemical staining was performed in Dako 
Autostainer Link 48 on sections obtained from pre-NACT 
core biopsy specimens using HIF-1α rabbit monoclonal 
antibody (EP1215Y, Biocare Medical, Concord, CA, 
USA), beclin-1 mouse monoclonal antibody (5A11, Cat#: 
ABM40317, Wuhan, China) and Bcl-2 mouse monoclo-
nal antibody (CA IR614; Dako: Agilent Dako Company, 
USA). Deparaffinization and antigen retrieval through 
Dako PT Link unit along with treatment with peroxidase 
blocking reagent for 5 min were done before incubation 
with the primary antibodies for 30 min. Subsequently, 
slides were incubated with horseradish peroxidase poly-
mer reagent for 20 min and diaminobenzidine chromo-
gen for 10  min. Slides were then counterstained with 
haematoxylin.
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Assessment of immunostaining

HIF-1α exhibited mixed subcellular localization both in 
the nucleus and the cytoplasm of malignant cells. Scor-
ing was performed based on the intensity and the extent 
of immunostaining as follows: complete lack of staining, 
weak cytoplasmic staining regardless of the extent, strong 
cytoplasmic staining in < 50% of tumor cells and/or nuclear 
staining in < 10% of tumor cells were considered low expres-
sion, whereas strong cytoplasmic staining in > 50% of tumor 
cells and/or nuclear staining in > 10% of tumor cells were 
regarded as high expression [17]. Beclin-1 and Bcl-2 were 
detected as brownish cytoplasmic staining. For beclin-1, 
both the intensity and the percentage of positive tumor cells 
were evaluated. Intensity was graded as follows: 1, light yel-
low; 2, brownish yellow; 3, brownish, whereas the percent-
age of positive cells was scored as follows: 1, ≤ 10% positive 
cells; 2, 11–50%; 3, 51–75% positive cells; 4, > 75% positive 
cells. The final score was obtained by multiplying the inten-
sity and the percentage of positivity scores. Score ≤ 3 was 
classified as the low expression group; where score > 3 was 
classified as high expression group [18]. Bcl-2 expression 
was analysed using the percentage of positively stained cells. 
Cytoplasmic staining in more than 10% of tumour cells was 
regarded as positive [19].

Detection of miR‑210 mRNA Gene Expression 
by Quantitative Reverse‑Transcription PCR

Breast core biopsies were obtained from all patients 
before receiving any treatments and immediately stored 
at − 80 °C for molecular study. Total RNA was extracted 
using miRNeasy Mini kits (Cat. no. 217061; Qiagen, 
Hilden, Germany) according to the manufacturer’s 
instructions. The concentration of the extracted RNA was 
measured using a NanoDrop® 1000 spectrophotometer 
(Thermo Scientific, Wilmington, DE, USA) at 260 nm 
while the purity was checked using absorbance ratio at 
260/280 nm. The RNA was reversely transcribed using a 
MiScript® II RT Kit (Cat. no. 218161; Qiagen, Germany) 
according to the manufacturer’s protocol on a Biometra 
thermal cycler (Biometra GmbH, Gttingen, Germany), 
then stored at − 20 °C for the subsequent PCR step. The 
miR-210 mRNA expression was quantified using a miS-
cript SYBR® Green PCR Kit (Cat. no. 218073; Qiagen, 
Germany) according to the manufacturer’s guide and the 
endogenous control, RNU6B, was used for normalization. 
The reaction was performed on the Step One q-PCR sys-
tem (Applied Biosystems, CA, USA) with the following 
thermal profile: Hold at 95 °C for 20 s, then 40 cycles 
(denaturation at 95 °C for 15 s and annealing/extension 
at 60 °C for 60 s). The primer sequence of miR-210 was 
as follows: forward: 5′-CUG UGC GUG UGA CAG CGG 

CUGA-3′and reverse: 5′-AGC CGC UGU CAC ACG CAC 
AGUU-3′and for the reference gene (RNU6B): forward: 
5′- AAA ATT GGA ACG ATA CAG AGA -3′ and reverse: 
5′- AAA TAT GGA ACG CTT CAC GAA -3′. The miR-210 
relative expression was quantified on the basis of the cycle 
threshold (CT) and normalized with RNU6B expression 
with the formula 2 − ΔCT where (ΔCt = Ct (miR-210)—Ct 
(RNU6B)) [20].

Treatment protocol and evaluation 
of the pathologic response

All patients received neoadjuvant chemotherapy in the form 
of paclitaxel and carboplatin [paclitaxol 80 mg/m2 at day 
1,8,15 and carboplatin; area under curve (AUC)] 5 day 1 
repeated every 21 days, for 4–6 cycles). Adequate bone mar-
row, liver and renal functions were evaluated one day before 
each NACT cycle. Mastectomy was done after completion 
of NACT therapy. The follow-up program consisted of clini-
cal and radiological assessment every 3 months for 2 years.

Pathologic tumour response was evaluated in all cases 
according to AJCC [21]. Pathologic complete response 
(pCR) was identified as complete absence of all invasive 
tumour cells from breast tissue and regional lymph nodes.

Patients achieved pCR following surgery and completed 
their neoadjuvant cycles underwent follow up. On the other 
hand, patients who did not achieved pCR received post 
operative adjuvant chemotherapy in the form of capecit-
abine (1000- 1250 mg/m2 per oral twice daily every 14 days 
repeated every 21 days for 6 cycles).

All patients received post operative radiotherapy (RTH), 
either chest wall irradiation or whole breast irradiation. As 
regards chest wall irradiation; the target includes ipsilateral 
chest wall, the mastectomy scar and the drain if possible. 
The RTH dose is 45–50 GY in 25 to 28 fractions, with or 
without scar boost 1.8- 2 GR per fraction to a total dose of 
approximately 60–66 GY, 5 days per week. Chest wall scar 
boost may be delivered with or without bolus, by either elec-
tron or photon. In whole breast irradiation; the target is the 
breast tissue at risk. The RTH dose is either hypofraction-
ated dose of 40–42.5 Gy or conventional fractionation total 
dose,45–50 GY, in 25–28 fractions, daily 5 days per week, 
boost to the tumor bed in high risk of recurrence, dose 10–16 
GY in 4 to 8 fractions.

Regional nodal irradiation was applied for the patients 
with high risk for nodal recurrence, RTH dose 45–50 GY, 
in 25–28 fractions, daily 5 days per week.

Statistical analysis

SPSS (Statistical Package for the Social Sciences, version 
23.0) was applied to analyse data. Qualitative data were 
expressed as frequencies whereas quantitative data were 



826 Virchows Archiv (2023) 482:823–837

1 3

expressed as mean ± SD. Normality was verified using Sha-
piro–Wilk test. Difference between groups was tested using 
Chi -square, Fisher’s exact and Monte Carlo tests. Differ-
ence between means of groups was carried out using Student 
t-test for normally distributed variables and Mann–Whitney 
for non-normally distributed variables. OS was calculated 
from the date of diagnosis to the date of death, or the last 
follow-up (2 years in this study). Kaplan–Meier curves 
were plotted, and the log rank test was used for comparison 
between groups. Cox proportion hazards regression model 
was applied to evaluate the significance of various prognos-
tic factors on patients’ survival. To analyse the predictive 
power of the significant parameters for pCR, the receiver 
operating characteristics (ROC) curve was performed and 
area under the curve (AUC) value was determined. An AUC 
value of > 0.7 was considered sufficient for accurate predic-
tion [22]. P values of < 0.05 were considered statistically 
significant.

Results

Clinicopathologic characteristics of the studied 
cases

This study included 60 cases with TNBC. Table 1 dem-
onstrates the clinicopathologic characteristics of the stud-
ied TNBC cases. The mean age of the TNBC cases was 
47.48 ± 8.68 years. Tumor size had a mean of 4.33 ± 1.22 cm. 
The majority of cases were invasive breast carcinoma of no 
special type (IBC-NST) [53 cases (88.33%)]. Grade III cases 
constituted 36 cases (60%) whereas stage III was detected 
in 33 cases (55%). Forty-seven cases (78.3%) were positive 
for nodal metastasis and 33 cases (55%) displayed lympho-
vascular invasion. Ki-67 proliferation index was > 14% in 
46 cases (76.7%). By the end of follow up time, 15 cases 
(25%) have died. Representative images of H and E-stained 
sections of the studied TNBC cases are included in Fig. 1.

HIF‑1α and miR‑210 in relation to clinicopathologic 
parameters

Representative images of HIF-1α immunostaining are dem-
onstrated in Fig. 2. High HIF-1α expression was detected 
in 28 (46.67%) cases. High HIF-1α expression was sig-
nificantly associated with large tumor size, grade III cases, 
positive LVI, stage III cases and high Ki-67 expression 
(p = 0.027, 0.027, 0.017, 0.017, 0.001 respectively). Regard-
ing miR-210 expression, high miR-210 expression was sig-
nificantly associated with positive nodal metastasis (median 
1.56, range 0.15–5.10), and stage III tumors (median 1.68, 
range 0.15–5.10) [p = 0.025 and 0.033 respectively]. Table 2 

demonstrates the relation between HIF-1α and miR-210 and 
clinicopathologic characteristics of the studied cases.

Beclin‑1 and Bcl‑2 in relation to clinicopathologic 
parameters

Table 3 and Fig. 3 demonstrate beclin-1 and Bcl-2 results. 
Among the studied 60 TNBC case, 37 cases (61.67%) dis-
played high cytoplasmic beclin-1 immunostaining whereas 

Table 1  Clinicopathologic characteristics

IBC: invasive breast carcinoma, NST: no special type, pCR: patho-
logic complete response

Total
N (%)

Age (years)
  mean ± SD 47.48 ± 8.68
  Range 32–66

Menopausal status
  Premenopausal 34 (56.7)
  Postmenopausal 26 (34.3)

Size (cm)
  Mean ± SD 4.33 ± 1.22
  Range 1.8–5.9

Histologic type
  Invasive breast carcinoma—NST 53 (88.33)
  IBC with medullary pattern 4 (6.67)
  Metaplastic carcinoma 3 (5)

Pathologic grade
  II 24 (40)
  III 36 (60)

Lymphovascular invasion
  No 27 (45)
  Yes 33 (55)

Nodal metastasis
  Negative 13 (21.7)
  Positive 47 (78.3)

Clinical stage
  II 27 (45)
  III 33 (55)

Ki-67
   ≤ 14% 14 (23.3)
   > 14% 46 (76.7)

Adjuvant Chemotherapy
  No 39 (65)
  Yes 21 (35)

Pathologic response
  Pathologic Complete response (pCR) 39 (65)
  Non-pCR 21 (35)

Death
  Positive 15 (25)
  Negative 45 (75)
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positive Bcl-2 expression was detected in 25 cases (41.67%). 
Significant associations were detected between high beclin-1 
expression and grade III cases, positive nodal metastasis and 
stage III cases (p = 0.039, 0.021 and 0.003 respectively). On 
the contrary, negative Bcl-2 expression was significantly 
associated with positive nodal metastasis and stage III cases 
(p = 0.030 and 0.018 respectively).

Beclin‑1 and Bcl‑2 in relation to hypoxia‑related 
markers

Significant associations were detected between high bec-
lin-1, negative Bcl-2 and hypoxic TME. High beclin-1 and 
negative Bcl-2 were significantly related to high HIF-1α 

(p < 0.001 and 0.014 respectively) and higher miR-210 
expression (p < 0.001 and 0.001 respectively). Moreover, 
high HIF-1α expression was significantly related to high 
miR-210 expression levels (p < 0.001). In addition, the asso-
ciation between beclin-1 and Bcl-2 was significant as high 
beclin-1 expression was significantly associated with nega-
tive Bcl-2 (p < 0.001) as illustrated in Fig. 4.

Hypoxia‑related markers and autophagy in relation 
to patients’ survival

The OS rates for cases with high HIF-1α expression were 
significantly lower than those with low HIF-1α (Fig. 5A). 
The 1- and 2- year OS rates in the high HIF-1α group were 

Fig. 1  Hematoxylin and eosin (H and E) stained sections of TNBC cases (× 200). A) Invasive breast carcinoma – no special type (IBC-NST), B) 
IBC with medullary pattern, C) Metaplastic carcinoma

Fig. 2  Representative images 
demonstrating HIF-1α immu-
nohistochemical expression 
in TNBC cases (× 400). A) 
Strong cytoplasmic staining 
with nuclear expression, B) 
weak cytoplasmic staining with 
nuclear expression, C) strong 
cytoplasmic staining with some 
cells exhibiting nuclear staining, 
D) weak cytoplasmic staining 
with positive nuclear expression 
in some cells
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82% and 61% respectively compared to 94% and 88% respec-
tively in the low HIF-1α group (p = 0.016). High miR-210 
mRNA relative expression was significantly associated with 
poor OS compared to low expression (1- and 2- years OS 
rates were 90% and 87% in cases with low miR-210 levels 
versus 87% and 63% respectively in cases with high miR-
210 levels) [Fig. 5B]. Furthermore, high beclin-1 expres-
sion was significantly associated with lower OS compared 
to low beclin-1 expression (1- and 2- years OS rates were 
96% for both in cases with low beclin-1 versus 84% and 62% 
respectively in cases with high beclin-1) as demonstrated in 
Fig. 5C. As regards Bcl-2, there was a significant difference 
in OS between positive and negative groups (p = 0.014); the 
1- and 2- OS rates were 92% for both in Bcl-2 positive group 
compared to only 86% and 63% in Bcl-2 negative group 
(Fig. 5D).

To further analyse the potential factors influencing the 
prognosis of the studied cases, the multivariate Cox regres-
sion model was performed. High HIF-1α and high beclin-1 
expression were significantly associated with poor survival 

(HR, 7.561; 95% CI 1.210–47.243; p = 0.030 and HR, 
30.009; 95% CI 1.941–463.878; p = 0.015 respectively) as 
illustrated in Table 4.

Hypoxia‑related markers and autophagy in relation 
to NACT response

Figure 5 (E–H) demonstrates HIF-1α, miR-210, beclin-1 
and Bcl2 expression in relation to post NACT pathologic 
response. Cases exhibiting hypoxic TME, identified by high 
HIF-1α and high miR-210 expression, were inversely associ-
ated with pCR. Moreover, high beclin-1 as well as lack of 
Bcl-2 expression were significantly associated with lower 
rate of pCR. The ROC curve was generated to analyse the 
predictive ability of the studied markers in differentiating 
pCR from non-pCR (Fig. 6). The accurate prediction was 
obtained by HIF-1α and miR-210 (AUC > 0.7). HIF-1α dis-
played AUC of 0.727, a sensitivity of 76.2% and a specificity 
of 69.2%. AUC in miR-210 was 0.738 with a sensitivity of 

Table 2  Hypoxia-related markers in relation to clinicopathologic parameters

* significant (p < 0.05), IBC: invasive breast carcinoma, NST: no special type

Total HIF-1α expression miR-210 relative expression

Low
N = 32 (%)

High
N = 28 (%)

P value Median (Range) P value

Age (years)
mean ± SD 46.88 ± 8.32 48.18 ± 9.18 0.566 R = -0.054 0.681

  Premenopausal 34 21 (61.8) 13 (38.2) 0.134 1.15 (0.10–5.10) 0.848
  Postmenopausal 26 11 (42.3) 15 (57.7) 1.41 (0.15–3.1)

Tumor size (cm)
  Mean ± SD 4.00 ± 1.34 4.69 ± 0.96 0.027* R = 0.157 0.230

Histologic types
  Invasive breast carcinoma—NST 53 29 (54.7) 24 (45.3) 0.168 1.3 (0.10–5.10) 0.159
  IBC with medullary pattern 4 3 (75) 1 (25) 0.95 (0.80–1.10)
  Metaplastic carcinoma 3 0 (0) 3 (100) 1.63 (0.60–3.10)

Pathologic grade
  II 24 17 (70.8) 7 (29.2) 0.027* 1.05 (0.10–2.40) 0.154
  III 36 15 (41.7) 21 (58.3) 1.64 (0.15–5.10)

Lymphovascular invasion
  No 27 19 (70.4) 8 (29.6) 0.017* 1.28 (0.15–5.10) 0.275
  Yes 33 13 (39.4) 20 (60.6) 1.5 (0.10–5.10)

Nodal metastasis
  Negative 13 10 (76.9) 3 (23.1) 0.066 1.3 (0.10–2.40) 0.025*
  Positive 47 22 (46.8) 25 (53.2) 1.56 (0.15–5.10)

Clinical stage
  II 27 19 (70.4) 8 (29.6) 0.017* 1.1 (1.10–2.40) 0.033*
  III 33 13 (39.4) 20 (60.6) 1.68 (0.15–5.10)

Ki-67
   ≤ 14% 14 13 (92.9) 1 (7.1) 0.001* 0.9 (0.15–3.20) 0.063
   > 14% 46 19 (41.3) 27 (58.7) 1.54 (0.10–5.10)
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81% and a specificity of 66.7%. As regards beclin-1 and bcl-
2, the AUC were 0.685 and 0.637 respectively.

Discussion

Autophagy plays bipolar roles in cancer promotion and 
suppression. Stressful situations such as hypoxia as well 
as oxidative stress trigger autophagy to sustain the cellular 
homeostasis [23]. Recent studies throw light on autophagy 
due to its intimate relation with both tumor development and 
therapy resistance. This study was proposed to investigate 
the prognostic relevance of hypoxic TME in TNBC. Moreo-
ver, the association between beclin-1 and Bcl-2 in TNBC has 
been analysed. Also, the involvement of hypoxia-induced 
autophagy in mediating neoadjuvant chemoresistance in 
TNBC was evaluated.

In this study, HIF-1α immunohistochemical expression 
within tissue specimen as well as miR-210 mRNA relative 

expression were used to assess hypoxic TME within TNBC. 
High HIF-1α expression was detected in 28 cases (46.67%). 
Similar results were provided by Ong et al. [24], whereas 
Nalwoga et al. [25] and Yehia et al. [26] reported higher and 
lower HIF-1α frequencies respectively. Their analyses relied 
purely on the nuclear expression of HIF-1α and neglected 
the cytoplasmic staining. It is worth mentioning that, in this 
study, both nuclear and cytoplasmic localization were con-
sidered for HIF-1α evaluation. Supposing nuclear HIF-1α 
expression is indicative of its activity within the nucleus, 
HIF-1α protein is manufactured and degraded in the cyto-
plasm. Cytoplasmic expression, parallel to nuclear, is a pre-
cise feature and either cytoplasmic or nuclear localization is 
demonstrative of HIF-1α up-regulation [17].

Analysing the associations between hypoxic TME and 
tumor prognosis, the current work demonstrated significant 
associations between high HIF-1α expression and large 
tumor size, poorly differentiated and advanced stage cases, 
positive LVI and high Ki-67 proliferation index. In addition, 

Table 3  Beclin-1 and Bcl-2 expression in relation to clinicopathologic parameters

* significant (p < 0.05), IBC: invasive breast carcinoma, NST: no special type

Total Beclin-1 expression Bcl-2 expression

Low
N = 23 (%)

High
N = 37 (%)

P value Negative
N = 35 (%)

Positive
N = 25 (%)

P value

Age (years)
mean ± SD 46.70 ± 7.14 47.97 ± 9.56 0.584 48.63 ± 8.99 45.88 ± 8.12 0.230
Menopausal status

  Premenopausal 34 14 (41.2) 20 (58.8) 0.604 17 (50) 17 (50) 0.134
  Postmenopausal 26 9 (34.6) 17 (65.4) 18 (69.2) 8 (30.8)

Tumor size (cm)
  Mean ± SD 4.36 ± 1.12 4.31 ± 1.30 0.866 4.28 ± 1.29 4.39 ± 1.14 0.730

Histologic types
  Invasive breast carcinoma—NST 53 20 (37.7) 33 (62.3) 0.131 31 (58.5) 22 (41.5) 0.138
  IBC with medullary pattern 4 3 (75) 1 (25) 1 (25) 3 (75)
  Metaplastic carcinoma 3 0 (0) 3 (100) 3 (100) 0 (0)

Pathologic grade
  II 24 13 (54.2) 11 (45.8) 0.039* 12 (50) 12 (50) 0.285
  III 36 10 (27.8) 26 (72.2) 23 (63.9) 13 (36.1)

Lymphovascular invasion
  No 27 10 (37) 17 (63) 0.852 16 (59.3) 11 (40.7) 0.895
  Yes 33 13 (39.4) 20 (60.6) 19 (57.6) 14 (42.4)

Nodal metastasis
  Negative 13 9 (69.2) 4 (30.8) 0.021* 4 (30.8) 9 (69.2) 0.030*
  Positive 47 14 (29.8) 33 (70.2) 31 (66) 16 (34)

Clinical stage
  II 27 16 (59.3) 11 (40.7) 0.003* 11 (40.7) 16 (59.3) 0.018*
  III 33 7 (21.2) 26 (78.7) 24 (72.7) 9 (27.3)

Ki-67
   ≤ 14% 14 8 (57.1) 6 (42.9) 0.098 6 (42.9) 8 (57.1) 0.180
   > 14% 46 15 (32.6) 31 (67.4) 29 (63) 17 (37)
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Fig. 3  Beclin-1 and Bcl-2 
immunostaining in TNBC 
cases (× 400). A) low beclin-1 
expression, B) High beclin-1 
immunostaining, C) Negative 
Bcl-2 expression in tumor cells 
with positive immunostaining of 
the infiltrating lymphocytes, D) 
positive Bcl-2 expression

Fig. 4  Beclin-1 and Bcl-2 expression in relation to hypoxia-related 
markers: significant associations were detected between A) HIF-1α 
and beclin-1 (p < 0.001; Fisher-exact test); B) HIF-1α and Bcl-2 
(p = 0.014; Chi-square test); C) beclin-1 and Bcl-2 (p < 0.001; Chi-

square test); D) beclin-1 and miR-210 (p < 0.001; Mann–Whitney 
test); E) Bcl-2 and miR-210 (p = 0.001; Mann–Whitney test); F) 
HIF-1α and miR-210 (p < 0.001; Mann–Whitney test)
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high levels of miR-210 were significantly related to positive 
nodal metastasis and advanced cases. Furthermore, poor OS 
rates were reported with high HIF-1α expression and high 
miR-210 mRNA relative expression.

This was in accordance with Cui and Jiang [27] who con-
cluded that HIF-1α expression was an independent factor pre-
dicting poor OS and that HIF-1α expression was significantly 
associated with older age, larger tumor, high grade, positive 
nodal involvement and TNM stage in TNBC. Similarly, Dales 
et al. [28] reported a significant relationship between HIF-1α 
and poor prognosis being related to poor clinicopathological 
variables as well as shorter patients’ survival in breast can-
cer. Furthermore, HIF-1α expression has been linked to poor 
prognosis in different cancers [29–31]. On the other hand, 
Ong et al. [24] reported that HIF-1α overexpression didn’t 
provide any associations with clinicopathologic characteris-
tics in TNBC. Recently, Shamis et al. performed a system-
atic review and meta-analysis on 30 eligible studies (involv-
ing 6201 patients) on the prognostic value of HIF-1α in BC 
patients. They concluded that HIF-1α overexpression was sig-
nificantly related to worse disease-free survival and OS. They 
have also demonstrated that the study population, antibodies 
used, and scoring methods applied were shown to influence 
HIF-1α expression [32]. HIF-1α is crucial regulator of cellular 
response to hypoxia as it affects most of “hallmarks” of can-
cer. HIF-1α plays important roles in tumorigenesis, metabolic 
reprogramming, angiogenesis, immune evasion. Furthermore, 
HIF-1α influences resistance to chemotherapy and radiation 
therapy via diverse mechanisms [33].

Along with our results, Toyama et al. [34] demonstrated 
significant associations between high miR-210 and poor 
prognostic parameters in TNBC. Additionally, Wu et al. [35] 
analysed miR-210 within breast cancer tissue using q-PCR, 
they described that miR-210 expression was significantly 
correlated with nodal metastasis, high grade and advanced 
stage. On the contrary, McCormick et al. [36] revealed an 
association between HIF-1α-induced miR-210 expression 
and favourable prognostic parameters in renal cell carci-
noma. MiR-210 displays oncogenic features, as it is fre-
quently increased in different carcinomas including breast, 
lung and pancreatic cancers [37]. Plentiful studies dealing 
with the diverse genes targeted by HIF-1α-induced miR-
210 overexpression have displayed its vast involvement in 
tumor proliferation, apoptosis, angiogenesis, invasiveness, 
and treatment resistance [38].

The present study demonstrated a significant association 
between HIF-1α expression within TNBC and miR-210 
mRNA relative expression as high HIF-1α expression was 
associated with high levels of miR-210. In a study by Li et al. 
[39], miR-210 overexpression, under hypoxic conditions, was 
positively correlated with increased HIF-1α expression in 
ovarian cancer. This enhanced cellular proliferation and tumor 
growth. Besides, another study by King et al. [40] suggested 

that miR-210 elevated following hypoxia could exert essen-
tial functions in enhancing tumour progression in response to 
hypoxia. MiR-210 serves as downstream of HIF-1α, which 
is frequently upregulated in different cancers under hypoxia.

The interplay between the antiapoptotic protein Bcl-2 
and the autophagy protein beclin-1 has been demonstrated 
to coordinate the switch between the autophagy and apop-
tosis. Autophagy may stimulate or supress apoptosis based 
on diverse stresses within the TME [41]. The present study 
focused on assessing beclin-1 and Bcl-2 expression and their 
prognostic importance in TNBC. In the current work, beclin-1 
displayed high expression in 37 cases (61.67%). High beclin-1 
was significantly related to poorly differentiated cases, positive 
nodal metastasis as well as advanced stage cases. In addition, 
high beclin-1 expression was significantly related to poor OS.

Wang et al. [42] and Hamurcu et al. [43] studied beclin-1 
expression in BC and reported that beclin-1 expression was 
highest in TNBC group. They also concluded that high bec-
lin-1 was significantly correlated with poor prognostic fea-
tures. Conversely, other studies concluded that low beclin-1 
predominates in TNBC cases and that decreased beclin-1 
is associated with poor survival [44–46]. Beclin-1 has dual 
roles in tumorigenesis. It may supress tumor proliferation 
and growth by removing defective cellular compounds, or it 
may exert a cardinal role in cancer initiation and progression 
by modulating autophagy [9].

The prognostic impact of Bcl-2 varies in accordance with 
the molecular subtypes of BC [47]. Although the plausible 
significance of Bcl-2 as a prognostic factor in BC have been 
previously inspected, our study highlighted its expression 
in TNBC cases precisely. Bcl-2 was detected in 25 cases 
(41.67% of the studied cases). Lack of Bcl-2 expression was 
significantly related to positive nodal metastasis, advanced 
stage and poor OS. Additionally, negative Bcl-2 was signifi-
cantly associated with high beclin-1 expression. Our results 
were consistent with Abdel-Fatah et al. [48] who described 
that Bcl-2 loss in TNBC was accompanied with doubling the 
possibility of recurrence as well as death. Similar findings 
were achieved by others [49–51]. Contrary to our results, 
Ozretik et al. [52] concluded that elevated Bcl-2 expression 
is indicative of poor prognosis in TNBC.

Even though Bcl-2 was referred to have a pro-tumouri-
genic role, consecutive studies reported that its function in 
different cell types was more sophisticated, and it may be 
involved in growth inhibition of tumour cells [53]. Bcl-2 is 
an established anti-apoptotic mediator, however, its role in 
inhibiting autophagy is becoming more appreciated. Bcl-2 
exerts its anti-apoptotic activity via binding to pro-apoptotic 
proteins containing the Bcl-2 homology 3 (BH3) domain. 
Bcl-2 is a crucial regulator of autophagy via interacting with 
beclin-1 at BH3 domain to dampen its pro-autophagic activ-
ity. This interaction exerted a leading role in balancing the 
crosstalk between autophagy and apoptosis [54].
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Fig. 5  Hypoxia related markers (HIF-1α and miR-210), beclin-1 and 
Bcl-2 in relation OS and pathologic response to NACT in TNBC 
cases. A) HIF-1α and OS (significant, p = 0.016, Log-rank test); B) 
miR-210 and OS (significant, p = 0.045, Log-rank test, the median 
was used as a cut-off point to sort cases into low miR-210 and high 
miR-210 groups); C) beclin-1 and OS (significant, p = 0.005, Log-
rank test); D) Bcl-2 and OS (significant, p = 0.014, Log-rank test); E) 

HIF-1α and pathologic response (significant, p < 0.001, Chi-square 
test); F) miR-210 and pathologic response (significant, p = 0.002, 
Mann–Whitney test); G) beclin-1 and pathologic response (signifi-
cant, p = 0.005, Fisher-exact test); H) Bcl-2 and pathologic response 
(significant, p = 0.040, Chi-square test). OS: overall survival; NACT: 
neoadjuvant chemotherapy; TNBC: triple negative breast cancer
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Beclin-1 and Bcl-2 expression levels are basic deter-
minants as to whether apoptosis or autophagy are induced 
during tumorigenesis and chemotherapy. Bcl‐2 can bind to 
beclin‐1, via interaction with its BH3 domain, by that pre-
venting autophagy. While, separation of antiapoptotic Bcl‐2 
from beclin‐1, subsequently, stimulates autophagy [55].

Hypoxia has been exhibited to enhance autophagy in 
diverse conditions, and thus autophagy might behave as a 
survival process for hypoxic cells by means of recycling 
the cellular component. Pharmacological suppression 
of autophagy has been demonstrated to induce apoptosis 
under hypoxic conditions [8]. Moreover, hypoxia-induced 
autophagy leads to cell survival and resistance to antican-
cer therapies [56]. It has been determined that BNIP3 and 
BNIP3L are the downstream targets of HIF-1α-induced 
autophagy [57].

To our knowledge, this study is the first to address the 
relation between HIF-1α induced miR-210 overexpres-
sion and beclin-1/Bcl-2 complex in TNBC. The current 
work demonstrated that hypoxic TME within TNBC, as 
demonstrated by high HIF-1α and high miR-210 mRNA 
relative expression, was significantly associated with nega-
tive Bcl-2 and high beclin-1 expression. Growing evidence 
stated that some miRNAs could target Bcl-2. Sun et al. [11] 
studied hypoxia-induced autophagy in colonic carcinoma 
and reported a significant increase in HIF-1α and miR-210 
under hypoxic condition and that decreased miR-210 expres-
sion followed inhibition of HIF-1α. They demonstrated 
that silencing of miR-210 upregulated Bcl-2 expression in 
colonic carcinoma.

Similarly, Xu et al. [58] investigated miR-210 expression 
in gastric carcinoma, they reported that miR-210 triggers 
the oxidative stress enhanced apoptosis in gastric cancer 
cells possibly by suppressing Bcl-2. A study by Wang et al. 
[59] reported that upregulation of miR-210 decreased Bcl-2 
expression in HTR-8/SVneo trophoblast cell line and miR-
210 downregulation increased Bcl-2 expression. Moreover, 
Chio et al. [60] described that miR-210 could moderate 
hypoxia-mediated apoptosis of neurons by constraining Bcl-
2. Also, Xu et al. [61] demonstrated that miR-210 signifi-
cantly suppressed Bcl-2 expression in endometriotic cells. 
They concluded that the hypoxia-mediated miR-210 expres-
sion may enhance cell survival and activating autophagy by 
means of Bcl2/beclin-1 axis. On the contrary, a study by Qiu 
et al. [62] pointed that miR-210 inhibited neuronal apoptosis 
and that Bcl-2 expression increased in cells overexpressing 
miR-210.

Zhang et al. [63] reported that miR-146a endorsed chon-
drocytes autophagy through inhibiting Bcl-2. Additionally, 
Wang et al. [64] demonstrated that miR-204 directly targeted 
Bcl-2. They proclaimed that HIF-1α/miR-204/Bcl-2 pathway 
led to hypoxia-induced neuronal cells apoptosis.

In the interplay between apoptosis and autophagy, low 
Bcl-2 levels would indicate that cells are more susceptible to 
develop apoptosis. Nonetheless, it is notable that the expres-
sion levels of additional antiapoptotic proteins, along with 
Bcl-2 heterodimerization with Bax, are also major determi-
nants to apoptosis susceptibility. Alternatively, as binding of 
Bcl-2 to beclin-1 prevent autophagy, it is reasonable that low 
level of Bcl-2 liberates beclin-1 to activate autophagy [65].

Few studies investigating hypoxia-induced autophagy 
and its relevance to NACT response in TNBC have been 
published. In this study, high beclin-1, negative Bcl-2 along 
with hypoxic TME were significantly associated with poor 
pathologic response. Moreover, HIF-1α as well as miR-210 
expression were accurate predictors of treatment response. A 
study by Sun et al. [11] stated that HIF-1α induced miR-210 
triggered autophagy resulting in radio-resistance in colon 
cancer cells. Wu et al. [66] investigated cisplatin resist-
ance in lung cancer and concluded that HIF-1α enhanced 
autophagy via increasing the expression of BNIP3 and 
Beclin-1.

Similarly, Zou et al. [67] described that HIF-1α elevated 
beclin-1 via activation of the c-Jun pathway and proclaimed 
that the enhanced autophagy suppresses the radiotherapy-
induced reactive O2 species in lung cancer cells. Hypoxia 
was found to stimulate cytoprotective autophagy and hence 
diminishes sensitivity of TNBC cells to taxol treatment, pro-
posing that accentuating oxygen tension may be a path to 
improve chemotherapy sensitivity [68].

There are some limitations in our study, the median sur-
vival time cannot be determined as only some cases (25%) 
have experienced the event by the end of the study (less than 
half of the studied cases). In addition, the relatively small 
sample size may also have affected our results.

Long-term follow up of the studied cases is essential to 
ensure the impact of hypoxia-induced autophagy on patients’ 
survival. Further studies are mandated to clarify the cross-
talk between apoptosis and autophagy. Research on different 
tumour tissue is necessary to figure out the mechanisms reg-
ulating the influence of miR-210 on Bcl-2. A comprehensive 

Table 4  Cox regression analysis of overall survival

* significant (p < 0.05), HR: hazard ratio, CI: confidence interval

Variables Multivariate analysis

P value HR (95% CI)

Pathologic grade 0.122 0.352 (0.238–1.562)
Nodal metastasis 0.070 0.197 (0.034–1.142)
HIF-1α 0.030* 7.561 (1.210–47.243)
Beclin-1 0.015* 30.009 (1.941–463.878)
Bcl-2 0.667 0.702 (0.139–3.531)
miR-210 0.303 0.610 (0.238–1.562)
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insight of different pathways regulating hypoxia-induced 
autophagy are essential to improve the efficacy of NACT 
in TNBC.

Conclusion

High beclin-1 expression and lack of Bcl-2 are significantly 
associated with hypoxic TME in TNBC. High HIF-1α, miR-
210, and beclin-1 expression along with lack of Bcl-2 are 
significantly associated with poor prognosis as well as poor 
response to NACT. HIF-1α and miR-210 could accurately 
predict response to NACT in TNBC.
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