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Abstract
High-multiplex tissue imaging (HMTI) approaches comprise several novel immunohistological methods that enable in-depth, 
spatial single-cell analysis. Over recent years, studies in tumor biology, infectious diseases, and autoimmune conditions have 
demonstrated the information gain accessible when mapping complex tissues with HMTI. Tumor biology has been a focus of 
innovative multiparametric approaches, as the tumor microenvironment (TME) contains great informative value for accurate 
diagnosis and targeted therapeutic approaches: unraveling the cellular composition and structural organization of the TME 
using sophisticated computational tools for spatial analysis has produced histopathologic biomarkers for outcomes in breast 
cancer, predictors of positive immunotherapy response in melanoma, and histological subgroups of colorectal carcinoma. 
Integration of HMTI technologies into existing clinical workflows such as molecular tumor boards will contribute to improve 
patient outcomes through personalized treatments tailored to the specific heterogeneous pathological fingerprint of cancer, 
autoimmunity, or infection. Here, we review the advantages and limitations of existing HMTI technologies and outline how 
spatial single-cell data can improve our understanding of pathological disease mechanisms and determinants of treatment 
success. We provide an overview of the analytic processing and interpretation and discuss how HMTI can improve future 
routine clinical diagnostic and therapeutic processes.
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Introduction

Antibody-based immunohistological methods have ena-
bled great advances in the field of biosciences and in our 
understanding of pathological processes on a molecular and 
cellular level. Conventional immunohistochemistry (IHC) 
and immunofluorescence have been immensely influential 
in deciphering the phenotypic and functional architec-
ture of tissue in health and disease. In surgical pathology, 

immunoassays are routinely implemented as auxiliary 
methods for in situ detection of single biomarkers and pro-
tein expression patterns on fresh-frozen or formalin-fixed, 
paraffin-embedded (FFPE) tissue sections [1]. The gained 
information significantly guides diagnostic processes, thera-
peutic decision-making, and patient risk stratification. For 
example, the examination of cell cycle regulators (e.g., p16, 
p53, bcl-2), growth stimulatory axes (e.g., estrogen and pro-
gesterone receptors, members of the epidermal growth fac-
tor receptor family such as EGFR and HER2), and immune 
checkpoint molecules including PD-1 and PD-L1 has added 
to the granularity of cancer classification systems and influ-
ences treatment choices [2, 3].

In recent years, flow- and droplet-based single-cell tech-
nologies, capturing gene transcription (single-cell RNA 
sequencing) and protein expression (multiparametric flow 
cytometry, mass cytometry), have promoted further efforts 
to increase our understanding of complex and heteroge-
neous pathological states on a single-cell level. With the 
rise of high-resolution, high-multiplex tissue imaging 
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(HMTI) platforms, immunohistological investigation of 
spatial tissue functionality and organization is combined 
with single-cell resolution [4]. As a major improvement 
over existing molecular histopathology methods that are 
mainly performed single-parametrically, these platforms 
extend the simultaneously captured information to a mul-
titude of cellular subsets, including innate and adaptive 
immune cells, stromal cells, and tumor cells by allowing 
multiparametric assays and enable in-depth characteriza-
tion of crucial cell–cell interactions within their respective 
spatial context. Different approaches have overcome the 
limitations of spectral overlap in conventional fluorescence 
techniques and increased the possible target number to 
more than 50 targets [5]. The produced datasets pose a 
challenge for the interpretation and analysis, but addressed 
with proper computational tools and machine learning 
strategies, the potential to improve patient care strategies 
and clinical workflows is unprecedented.

Here, we provide an overview over existing HMTI tech-
niques and how their application can improve our under-
standing of disease mechanisms and the refinement of 
treatment strategies. We then discuss challenges of how to 
process, analyze, and interpret findings with these imaging 
approaches. Finally, we outline how HMTI can be imple-
mented into clinical routine pathology and decision-making 

to improve and optimize diagnostic and therapeutic 
processes.

Antibody‑based high‑multiplex tissue 
imaging methods

While conventional antibody-based imaging techniques such 
as IHC and immunofluorescence are limited to two to three 
or four to seven markers, respectively, due to the spectral 
overlap limitation, multiplex imaging approaches overcome 
this obstacle in a variety of ways [6, 7]. Antibody-based 
HMTI approaches differ regarding immunolabeling meth-
ods and the corresponding tag detection. The most estab-
lished methods use DNA oligonucleotide–tagged, fluoro-
phore-tagged, or metal-tagged antibodies. Methods using 
fluorescence often implement cyclic staining and detection 
to avoid spectral overlap, while metal-tagged technologies 
using mass spectrometry have lower interference and can 
acquire samples all-in-one (Fig. 1).

Fluorophore‑tagged antibody‑based HMTI methods

Multiplex fluorescence imaging of more than 90 markers 
within a single tissue sample was described as early as 2006 

Fig. 1   Overview over existing antibody-based high-multiplex tissue 
imaging techniques. Existing antibody-based HMTI approaches use 
fluorophore-, DNA-, or metal-tagged antibodies for target identifica-

tion. Various systems with different characteristics and limitations are 
commercially available
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[8]. The underlying concept of the technologies that evolved 
from this technique is mostly referred to as multiplexed 
immunofluorescence (MxIF) or tissue-based cyclic immu-
nofluorescence (t-CyCIF). These fluorescence-based HMTI 
approaches extend conventional fluorescence microscopy by 
cyclical staining protocols [9], allowing multi-marker pan-
els through successive bleaching or removal of the fluores-
cent dye–tagged antibodies after each staining and imaging 
cycle. The cyclic incubation with bleaching reagents and 
antibodies overcomes the limitation of spectral overlap of 
fluorochromes but prolongs the imaging process proportion-
ally to the number of markers included. Compared to other 
HMTI modalities, fluorescence-based technologies are the 
most established due to the broad availability of knowhow, 
instruments, and reagents [10]. Commercially available, 
automated platforms for multiplex immunofluorescence with 
up to eight markers, such as Vectra® Polaris™, have proven 
great value and reliability as high-throughput technologies in 
predictive studies of patient outcomes [11, 12]. Development 
of similar, widely available, and automated HMTI platforms 
with compatible panels could offer consistent standardiza-
tion and reliable intersample comparability for routine clini-
cal application. Limitations of the fluorophore-tagged anti-
bodies include autofluorescence, incomplete bleaching, and 
tissue destruction [5].

DNA‑tagged antibody‑based HMTI methods

Technologies that use DNA-tagged antibodies, such as in 
CO-Detection by indEXing (CODEX) or Immunostaining 
with Signal Amplification By Exchange Reaction (Immu-
noSABER) [13, 14], have more recently evolved as alter-
native HMTI platforms. The core principle of these tech-
nologies is the combination of immunostaining with DNA 
oligonucleotide–linked antibodies and sequential readout 
using complementary DNA oligonucleotides bound to fluo-
rophores. After immunostaining of the tissue samples with 
currently up to 60 DNA-tagged antibodies, fluorophore-
tagged complementary DNA sequences are cyclically 
hybridized and washed out of the stained tissue, thereby 
rendering a subset of the DNA-linked antibodies visible 
during a multicyclic run. After hybridization within each 
cycle, imaging with a fluorescence microscope is performed. 
Nuclear staining with DAPI or Hoechst is performed in each 
cycle for cellular alignment.

While the first CODEX system used primer extension 
by DNA polymerase and fluorophore-tagged dNTP analogs 
for barcode detection [13], current CODEX systems use 
fluorophore-tagged complementary DNA sequences [15, 
16]. In the case of ImmunoSABER, antibodies are linked to 
a short DNA sequence called bridge strand. The respective 
complementary DNA strand is independently extended to 
a controlled length with a short repetitive sequence using 

primer exchange reactions, producing so-called concate-
mers [17]. After hybridization of the concatemer with the 
antibody-linked bridge strand, the repetitive sequences of 
the concatemer serve as complementary binding sites for 
fluorophore-labeled imager strands. The utilization of repeti-
tive sequences with definable length in the ImmunoSABER 
system allows for a range of signal amplification. Within the 
CODEX system, signal amplification has been described by 
means of peroxidase-conjugated secondary antibodies that 
activate tyramide-conjugated DNA barcodes [18]. Depend-
ing on available filters and the fluorescence microscope 
used, multiple fluorophores for different DNA barcodes 
can be imaged simultaneously to reduce acquisition times. 
The panel size for multiplexed imaging with DNA-tagged 
antibodies is in practice limited by the amount of available 
non-cross-reactive DNA barcodes, underscoring the need to 
expand the range of suitable tags through identification and 
validation of a broad range of theoretical DNA sequences 
[19].

Metal‑tagged antibody‑based HMTI methods

As an alternative to fluorescence-based HMTI approaches, 
mass spectrometry (MS)–based HMTI technologies detect 
the isotope mass of metal-tagged antibodies. The MS-based 
cytometry by time-of-flight (CyTOF) platform offers the 
advantage to simultaneously detect a high number of iso-
tope tags with minimal spectral interference and has been 
established for single-cell suspension cytometry over the last 
decade [20]. Imaging mass cytometry (IMC) [21] extends 
the use of the CyTOF system by attaching a tissue imaging 
instrument to the sample inlet line. Using a high-energy laser 
beam to ablate the tissue, the tissue is vaporized pixel by 
pixel and conducted into the CyTOF system as an ion cloud 
for MS analysis. The focus of the laser determines the imag-
ing resolution to currently 1 µm, and acquisition times lie 
around 60 min per mm2. On the other hand, multiplexed ion 
beam imaging (MIBI) [22] is a standalone MS-based imag-
ing system that uses a primary ion beam to release a second-
ary ion cloud from the stained tissue for MS analysis. The 
ion beam can be focused to a minimal spot size of 250 nm, 
and slides can be rescanned repetitively; however, this comes 
at the cost of longer acquisition times. In both MS-based 
technologies, primary antibodies are conjugated to poly-
mers loaded with heavy metal isotopes that do not naturally 
occur in organic tissues, mainly isotopically purified lantha-
nide metals. This allows for the simultaneous detection of 
40 + biomarkers in FFPE tissues with low background signal 
and high sensitivity, no autofluorescence of tissue, and mini-
mal spectral overlap. However, this prerequisite currently 
limits the panel size to around 50 markers, for which rea-
gents are commercially available. The investigated tissue can 
be stained with a master mix of primary metal-conjugated 
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antibodies without the need of cyclic staining or acquisition. 
Additionally, MS-based technologies allow the combination 
of multimodal target detection, as demonstrated for the use 
of protein and RNA-detecting antibodies [23].

Synergistic potential with spatial 
transcriptomics and spatial metabolomics

HMTI methods extend far beyond antibody-based tissue 
imaging. Other single-cell or high-throughput technolo-
gies, such as transcriptomics or metabolomics, have also 
been adopted to include spatial resolution. Early approaches 
in spatial transcriptomics by means of fluorescence in situ 
hybridization (FISH) allowed the identification of single-
RNA molecules but were limited in the amount of targets 
[24]. The introduction of novel technologies, such as mul-
tiplex error-robust FISH (MERFISH) [25] or sequential 
FISH (seqFISH +) [26], originated the technical develop-
ment towards high-resolution transcriptomics by allowing 
measurements of hundreds to thousands of different RNA 
molecules on single-cell level without the need for tissue 
dissociation. In these technologies, RNA identification is 
accomplished by decoding the binary or temporal barcodes 
generated for each RNA molecule during the sequential 
hybridization and imaging cycles. First, target RNA mol-
ecules are hybridized with encoding probes that are flanked 
by readout sequences. Fluorophore-tagged readout probes 
that bind to the readout sequences are then introduced to 
the labeled tissue in successive cycles [4]. Another commer-
cially available RNA imaging technology is RNAscope®, 
which relies on signal amplification with branched DNA 
constructs. Target RNA molecules are bound by pairs of 
Z-probes that are successively bound by target-specific 
preamplifier molecules. These preamplifiers offer multiple 
binding sites to amplifiers that are in turn bound by mul-
tiple fluorescent label probes, resulting in selective signal 
amplification with low background signal [27]. RNAscope® 
technology can be applied to FFPE tissue and offers up to 
12-plex imaging.

In general, the respective HMTI methods are not neces-
sarily confined to the detection of a single type of target 
molecule. Recent concepts and protocols have describe 
simultaneous or successive imaging of both proteins and 
RNA in tissue, e.g., by including RNAscope®-derived 
branched DNA constructs with metal-tagged label probes 
in IMC panels [23], or combining CODEX and RNAscope® 
[28]. The SM-omics platform achieves further integration of 
synergistic readouts, as it combines antigen detection with 
DNA-barcoded antibodies with spatial transcriptomics in 
one analytic system [29]. Additionally, novel technologies 
such as CosMx™ [30] are directly applicable for both RNA 
and protein imaging.

Another emerging spatial omic technology is spatial 
metabolomics. Technological improvements have recently 
increased the resolution of metabolomic imaging approaches 
to allow the identification of peptides, lipids, and drugs on a 
single-cell level [31]. Mostly relying on MS-based metabo-
lite identification, e.g., matrix-assisted laser desorption/ioni-
zation, spatial metabolomic technologies aim to differentiate 
cell populations within tissue samples with spatially distinct, 
corresponding metabolomic profiles.

While these technologies are not routinely used in surgi-
cal pathology, metabolomic imaging has been shown to dif-
ferentiate tumor from normal tissue based on distinct meta-
bolic profiles [32], to aid patient stratification by identifying 
tumor subpopulations [33], and to predict treatment response 
to neoadjuvant therapy [34]. As an alternative to MS-based 
metabolomics, Raman spectroscopy offers metabolomic 
spatial profiling by measuring inelastic scattering of pho-
tons. The sample is illuminated with monochromatic light, 
and after interaction of the light photons with the tissue, the 
detected Raman scattering, whose characteristics depend on 
the spatial occurrence of distinct chemical bonds, allows to 
draw conclusions about the metabolomic profile of the tis-
sue [35]. While Raman spectroscopy is clinically most often 
applied in a surgical context [36, 37], the recent development 
of Raman-active nanoparticles has improved the usefulness 
of Raman microscopy as a method of multiplex metabolomic 
imaging in both fixed and live cells [38, 39].

In summary, spatial profiling of transcriptome and 
metabolome complement existing antibody-based HMTI 
approaches, and the integration of spatial multiomic infor-
mation into clinical decision-making will aid many fields to 
move towards personalized medicine [6].

Machine learning approaches as novel 
predictive and analytic tools for HMTI data

HMTI techniques pose unique challenges for data analysis 
and interpretation. For biologically meaningful interpreta-
tion, the produced raw data, i.e., pixel intensities for each 
acquired marker, need to be transformed into single-cell 
data through cell segmentation. Various segmentation tools 
have emerged to define cell boundaries and assign pixels to 
the respective cell, both supervised, human-trained machine 
learning algorithms (e.g., RetinaMask, StarDist, Ilastik) 
[40–42] as well as unsupervised, automated deep learn-
ing models (e.g., FeatureNet, CellPose, CellSeg, Mesmer) 
[43–46]. The resulting single-cell dataset includes marker 
intensity values, meta-variables such as object area or eccen-
tricity, as well as spatial X/Y coordinates (centroids) for each 
cell. By identifying cell populations through one of various 
cell phenotyping approaches [20, 47, 48], spatial abundance, 
activity, and interaction patterns become interpretable for 
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univariate and regression analysis of outcome, or they can 
serve as features in multivariate modeling approaches with 
classical machine learning algorithms (Fig. 2). While con-
ventional machine learning requires a preprocessed data-
set of derived features, deep learning approaches unite the 
steps of feature extraction and classification, using neural 
networks to produce predictive models. Deep learning can 
prove advantageous particularly in large datasets, independ-
ent of dimensionality of the dataset: using H&E-stained 
images as training data, Kather et al. demonstrated how 
neural networks can offer highest accuracy in the prediction 
of tumor characteristics [49] or outcomes [50] from ubiqui-
tously available digital histology slides.

Clinically relevant pathology insights 
uncovered by high‑multiplex tissue imaging

The described HMTI platforms offer unprecedented insight 
into the spatial single-cell structure of pathologies. Tumor 
pathology has been a major focus in initial applications of 
HMTI, as interindividual and intraindividual tumor hetero-
geneity complicate diagnostic and therapeutic optimization 
and HMTI provides an avenue to globally capture these 

complex tissues. Specifically, thorough characterization of 
the complex cellular interactions within the tumor microen-
vironment (TME) [51] represents a field of highest interest. 
In the immune TME, the identification of novel biomark-
ers for immunotherapy response and the detection of new 
molecules or mechanisms that can be targeted with future 
innovative treatments could drastically improve patient 
outcomes. Other complex pathologies with a distinct histo-
logical footprint, such as autoimmune or infectious diseases, 
are also starting to reveal novel biology from HMTI studies 
[52]. However, widespread adoption of these technologies 
is still in its infancy and biological discoveries are yet to be 
clinically implemented. In the following paragraphs, we will 
present existing examples of clinically relevant information 
uncovered with HMTI approaches for a variety of relevant 
conditions, thereby demonstrating how spatial single-cell 
analysis can help define molecular biomarkers for clinical 
applications.

Breast cancer

Important classifiers in the pathological evaluation of breast 
cancer, one of the most frequent of all human tumor types, 
are immunohistological parameters: HER2 status and the 

Fig. 2   Levels of information and analysis workflow for high-multi-
plex tissue imaging approaches. HMTI data contain information that 
can be analyzed on multiple levels. They allow gathering of subcellu-
lar information close to the optical limit of microscopy (~ 0.3 µm per 
pixel), functional aspects of single cells, single-cell phenotypes and 
cell–cell interactions, as well as superordinate levels of the organiza-
tion, such as cellular neighborhoods [76] or tissue schematics [84]. In 

contrast to hematoxylin and eosin (H&E) staining or single paramet-
ric IHC, HMTI allows generating single-cell datasets for multivariate 
modeling, thereby enabling accurate risk stratification (high vs. low) 
or prediction of therapy response. The CODEX image (bottom left) 
was reproduced from [76] under a Creative Commons CC-BY 4.0 
license
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expression of estrogen and progesterone receptors are rou-
tinely used to determine breast cancer subtype and to guide 
optimal treatment plans accordingly [53–55]. In the case 
of HER2 positivity, trastuzumab, a monoclonal antibody, 
should be considered as effective neoadjuvant treatment 
option before surgery and hormone receptor status influ-
ences the adjuvant therapy regimen with endocrine therapy 
[56]. While currently available treatment regimens continue 
to change, particularly with the introduction of the anti-
body–drug conjugate trastuzumab-deruxtecan for HER2-low 
expressing tumors [57], immunodetection methods serve as 
established tumor subclassification tools to analyze tumor 
cell phenotype and functional state. But not only the tumor 
cell properties define the success of therapies and the prog-
nosis of breast cancer. The TME, i.e., the mutual influence of 
cancer cells and their surrounding cells, such as innate and 
adaptive immune cells, fibroblasts, or other stromal cells, 
plays a critical role in the development and progression of 
solid tumors [51, 58]. In this context, HMTI approaches 
offer the advantage of enabling the simultaneous detection 
of multiple cell subsets, even in combination with functional 
markers, by allowing for comprehensive antibody panels. In 
triple-negative breast cancer, Keren et al. could distinguish 
three different archetypes of tumor-immune interaction, 
namely cold, compartmentalized, and mixed tumors [59]. 
This difference in spatial architecture was accompanied by 
contrasting expression patterns of immunoregulatory pro-
teins on the single-cell level. When correlated to outcome, 
patients with compartmentalized tumors had a significantly 
reduced survival compared to patients with mixed tumor 
architecture. Similarly, single-cell analysis of the breast 
cancer TME has been used to identify tumor and microen-
vironment communities based on cellular composition, and 
the presence of communities differentiate tumor pathology 
subgroups with distinct clinical outcomes [60]. As an exam-
ple, this large patient cohort with 300 breast cancer samples 
revealed that high levels of hypoxic, p53+EGFR+, or prolif-
erative markers on tumor cells are linked to poor survival. 
Lastly, HMTI can also inform about the state of anticancer 
immune mechanisms: the presence of checkpoint molecules 
and indicators of T cell exhaustion can be determined across 
large patient cohorts, and the derived patient classification 
might aid matching of precision medicine approaches to 
individual tumor subclasses [61].

Malignant melanoma

The treatment of malignant melanoma has changed dramati-
cally over the last decade after the introduction of the first-ever 
FDA-approved checkpoint inhibitor ipilimumab in 2011. The 
following rise of immunotherapies has significantly improved 
the prognosis of malignant melanoma, even in advanced and 
metastatic cases [62]; however, treatment success remains 

variable between individual patients and accurate prediction 
of the response to immunotherapy is lacking [63]. Analysis of 
PD-1/PD-L1 and infiltration of CD8+ T cells represent potential 
biomarkers but need to be contextualized for reliable interpret-
ability [64]. Here, HMTI can help to capture complex patterns 
of T cell distribution, functionality, and exhaustion. A recent 
study focused on the association between immune infiltrates 
and immunotherapy response [65]. Both a higher abundance 
of proliferating, antigen-experienced cytotoxic T cells in the 
immune TME of malignant melanoma and closer spatial 
contact between melanoma and antigen-experienced T cells 
were good indicators of favorable immunotherapy response. 
Additionally, HMTI can elucidate complex mechanisms to 
explain clinical outcomes. Combining RNA and protein detec-
tion through IMC, Hoch et al. analyzed specialized chemokine 
milieus in metastatic melanoma [66]. Interestingly, the analy-
sis showed that chemokine expression patterns in T cells were 
indicative of T cell exhaustion, while CXCL13-producing T 
cells were crucially involved in the formation of tertiary lym-
phoid structures. Ultimately, the data pointed to a chemokine-
regulated, underlying mechanism for both T cell function and 
tertiary lymphoid structure formation, which correlates with 
immunotherapy responses in multiple tumor types [67–69].

Colorectal cancer

Colorectal cancer represents the third leading cause of can-
cer death and the fourth most diagnosed cancer worldwide 
[70]. Recent studies have emphasized the prognostic value 
of assessing immune cell infiltrates, specifically regulatory 
T cells and CD8+ T cells, within colorectal cancer samples 
[71–73]. Overall, higher T cell presence in colorectal cancer 
samples was associated with better outcomes, while immune-
cold tumors had a worse prognosis. Hereby, automated scores 
based on immune cell classification with multi-marker pan-
els also provide high accuracy for patient stratification and 
treatment response assessment [74]. HMTI can now combine 
immune feature analysis with known histological parameters 
to improve our understanding of critical aspects of tumor 
immune interplay that functionally determines outcome and 
survival. In colorectal cancer, Crohn’s-like reaction describes 
a type of immune TME with the presence of tertiary lymphoid 
structures without evidence of prior Crohn’s disease and is 
associated with improved survival [75]. We used CODEX 
HMTI to dissect the tissue architecture of tumors display-
ing a Crohn’s-like reaction immune TME in comparison to 
samples with diffuse inflammatory infiltration without tertiary 
lymphoid structures in the TME. By introducing the concept 
of cellular neighborhoods and defining functional regions 
within the immune TME based on cell type stoichiometry, this 
approach demonstrated how cell type abundance can inform 
about patient prognosis when analyzed within the spatial con-
text of its surroundings [76]: the frequency of PD-1+CD4+ 
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T cells in granulocyte-enriched cellular neighborhoods was 
associated with improved survival in patients with diffuse 
inflammatory infiltration-type immune TME, and could be 
used to stratify patients into more specific subgroups. These 
findings confirm the potential of HMTI, in combination with 
sophisticated analysis tools, to increase the access to valu-
able information for individualized diagnosis, prognosis, and 
treatment decisions.

Autoimmunity/infectious disease

This principle also applies to autoimmune and infectious 
diseases. In ulcerative colitis, assessing cellular interactions 
within their spatial context revealed evidence of sex-depend-
ent differences in therapeutic response to TNF inhibitors 
[52]. With no existing clinical biomarkers for TNF inhibitor 
response so far, this study demonstrated that HMTI, paired 
with neural network modeling, has potential as a precision 
medicine tool that could complement other predictive diag-
nostic modules such as radiologic imaging or laboratory tests.

In other applications, HMTI offers unprecedented insight 
into pathogenetic mechanisms and new therapeutic perspec-
tives. Damond et al. derived a timeline of disease progres-
sion for type 1 diabetes mellitus from imaging of pancreatic 
islets with IMC and a pseudotime data analysis approach 
[77]. This data analysis method represents a framework for 
further research exploring the pathogenesis and progression 
of chronic disease not necessarily limited to type 1 diabetes 
mellitus. Lastly, HMTI can uncover unexpected biological 
features, as described by McCaffrey et al. in a study using 
MIBI to analyze granulomas in patients with tuberculosis 
[78]. In tuberculosis granulomas, immunoregulatory cell 
subset distribution and marker expression patterns resem-
bled immune evasion mechanisms observed in the immune 
TME and could contribute to chronic bacterial persistence. 
Additionally, these findings were also reflected in transcrip-
tomic expression dynamics in matching peripheral blood 
samples, pointing to a systemic immune signature of immu-
nosuppression in tuberculosis. This example illustrates the 
relevance of integrative studies that combine HMTI data 
with systemic omic modalities in order to capture local and 
systemic aspects of complex diseases globally.

Future integration of high‑multiplex tissue 
imaging approaches into the routine 
clinical workflow—bridging the gap 
between discovery platform and clinical 
routine

HMTI technologies are becoming increasingly available in 
laboratories, companies, and pathology departments. Due 
to their novelty and complex challenges in data analysis, 

their integration into clinical workflows for patient care, 
unlike well-established single-parameter immunohisto-
logical assays, is still in its infancy and not yet imple-
mented. However, HMTI technologies with single-cell 
resolution hold the promise of enabling highly accurate 
patient stratification and personalized medicine, by making 
complex tissue architectures and cellular neighborhoods 
accessible as predictive biomarkers for clinical transla-
tion. In a first step, exploratory studies along existing 
patient management paths are necessary to characterize 
single-cell architecture patterns indicative of diagnoses, 
treatment responses, and outcomes (Fig. 3). The adoption 
of tissue microarrays as an established tissue resource 
in HMTI studies has shown that small tissue areas con-
tain an unmatched plethora of information that suffices 
for accurate predictive models. Hence, HMTI technolo-
gies represent ideal analysis tools for small clinical biop-
sies that could be gathered with minimal invasiveness, to 
maximize information content from the available tissue. 
Of note, large pathology institutes usually have 300 or 
more standardized IHC antibodies available, which could 
theoretically be combined into three to five HTMI pan-
els to streamline immunohistochemistry. Gradually, pro-
spective implementation of HMTI into clinical workflows 
could provide a powerful diagnostic tool that adequately 
addresses tissue heterogeneity found in many patholo-
gies. Central applications of these assays could be the 
optimization and personalization of treatment strategies, 
treatment response monitoring, and accurate predictions 
of the outcome. Irmisch et al. provide an example of the 
integration of multi-omic investigations into the clinical 
decision-making, specifically by a multidisciplinary tumor 
board [79].

At present, our molecular tumor board at the University 
Hospital Tübingen, Germany, uses extensive genetic tumor 
analysis [80], in most cases supported by IHC, as the basis 
of clinical decision-making [81, 82]. Most patients dis-
cussed at the molecular tumor board have already received 
multiple lines of therapy and are left with limited thera-
peutic options. Therefore, sampling of the tumor needs to 
be reiterated as previous exposure to (multiple) different 
substances might have changed and shaped the tumor’s 
genetic and functional profile, and the TME. Screening 
for a plethora of targetable genetic alterations, including 
mutations, deletions, inversions, or translocation informs 
about the suitability of targeted treatment approaches, such 
as tyrosine kinase inhibitors or monoclonal antibodies. 
However, accurate prediction of functional consequences 
of genetic alterations remains challenging and genetic 
evaluation should be combined with pathway analyses of 
actual upstream and downstream signaling activity, e.g., 
through IHC for protein phosphorylation events (Fig. 4) 
[81]. In practice, the tissue remaining for IHC testing is 
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often extremely sparse, due to several factors. First, tumors 
are mostly sampled with minimally invasive, fine-needle 
biopsies to help reduce the interventional risk and shorten 
hospital stays, thereby limiting the amount of available tis-
sue in the first place. Second, necrosis, fibrosis, and non-
neoplastic tissue can make up large portions of a biopsy. 
Lastly, routine diagnostic steps are required to confirm 
the diagnosis and to rule out the possibility of a second-
ary neoplasm.

Here, HMTI technologies offer a solution to these prac-
tical challenges that limit the information available for 
clinical decision-making by the interdisciplinary tumor 
board team, including clinicians, pathologists, geneticists, 
and molecular biologists. By generating a large amount of 
information from a small tissue sample, HMTI can pro-
vide a comprehensive overview over the functional states 
of tumor cells and abate the need for additional biopsies. 
Additionally, multiplex antibody panels are ideally suited 
when encountering tumor with great heterogeneity, in 
which signaling activity might be variable based on loca-
tion and comparisons between regions, e.g., the invasive 
border and the tumor core, might be informative [83]. In 

large studies as well as clinical use, on-slide control sam-
ples are crucial to ensure intersample comparability and 
control for staining and sample quality across patients. 
Finally, HMTI can add a detailed evaluation of patient-
specific characteristics of the TME, thereby increasing 
the efficacy of the cancer (immuno)therapy selected for 
each individual patient, improving outcomes, and reducing 
unnecessary side effects, overtreatment, and health care 
costs.

Outlook

In summary, recently developed HMTI technologies 
provide well-suited tools for in-depth spatial analysis of 
single-cell tissue architecture. By enabling large antibody 
panels, HMTI allows for simultaneous assessment of phe-
notype (e.g., cell types) and function (e.g., checkpoint 
molecule expression in immune cells, phosphorylation 
states of different tumor-promoting pathways in cancer 
cells) in the context of spatial localization and cell–cell 
interactions, thereby combining information beyond the 

Fig. 3   Integration of high-multiplex tissue imaging into an idealized 
future clinical workflow and decision-making. HMTI can offer high-
yield information at multiple steps along existing clinical workflows. 
For instance, in tumor patients, HMTI provides an accurate diagnos-

tic tool, informs clinical decision-making by molecular tumor boards, 
aids monitoring therapy response as well as outcome prediction, and 
strengthens existing screening approaches
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content single-parametric immunohistochemistry. In this 
review, we provided an overview over existing approaches, 
highlighted key scientific findings from investigations 
using HMTI, and pointed out challenges currently present 
in clinical routine pathology that could be overcome with 
these novel technologies. Future efforts should optimize 
the integration of these technologies into clinical work-
flows to take advantage of the plethora of information that 
can be extracted from any clinical tissue sample. We aim 
to encourage investigators to seek for direct applications of 
HMTI in routine workflows to enable a transition towards 
personalized medicine.
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