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Abstract
Clonality assessment by the detection of immunoglobulin (IG) gene rearrangements is an important method to determine 
whether two concurrent or subsequent lymphoid malignancies in one patient are clonally related. Here, we report the detailed 
clonality analysis in a patient with a diagnosis of B-cell acute lymphoblastic leukemia (B-ALL) followed by a histiocytic 
sarcoma (HS), in which we were able to study clonal evolution by applying next generation sequencing (NGS) to identify 
IG rearrangements and gene mutations. Using the sequence information of the NGS-based IG clonality analysis, multiple 
related subclones could be distinguished in the PAX5 P80R-mutated B-ALL. Notably, only one of these subclones evolved 
into HS after acquiring a RAF1 mutation. This case demonstrates that NGS-based IG clonality assessment and mutation 
analysis provide clear added value for clonal comparison and thereby improves clinicobiological understanding.
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Case introduction

A 60-year-old male patient presented with fatigue. Analysis 
of the peripheral blood showed pancytopenia and 40% of 
blasts. Subsequent analysis of a bone marrow biopsy and 
aspirate resulted in a diagnosis of BCR-ABL-negative B-cell 
acute lymphoblastic leukemia (B-ALL, for immunopheno-
type and karyotype, see supplementary Tables 1 and 2), 
with absence of extramedullary and central nervous system 

localization. The patient started intensive chemotherapy and 
rapidly reached complete remission with no detectable mini-
mal residual disease (MRD) by cytomorphology and immu-
nophenotyping. However, 10 months after the initial diagno-
sis of B-ALL and during consolidation courses, the patient 
presented with recurrent thrombocytopenia, progressive 
fatigue and a skin lesion on the forehead. A positron emis-
sion tomography (PET) scan showed generalized disease 
with foci of increased FDG uptake in bone, lymph nodes, the 
liver, the skin, and the lungs. Morphology and immunohisto-
chemistry of biopsies obtained from the bone marrow, skin, 
and a supraclavicular lymph node showed an infiltration of 
rather large, pleomorphic malignant cells (Fig. 1A) with a 
high proliferation (Ki-67: 80%) and histiocytic differentia-
tion (CD14+, CD68+, and CD163+, supplementary Table 3), 
consistent with a diagnosis of histiocytic sarcoma (HS). The 
biopsies, peripheral blood, and bone marrow aspirate did not 
demonstrate any evidence of B-ALL relapse. To determine 
whether the two malignancies in this patient were clonally 
related, we performed clonality assessment by using GeneS-
can and NGS-based immunoglobulin (IG) clonality analysis 
and mutation analysis.
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Methods

IG clonality analysis using GeneScan (EuroClonality/
BIOMED‑2 assay)

BIOMED-2 multiplex PCRs and GeneScan analysis were per-
formed according to standard procedures [1]. For each target, a 
duplicate analysis was performed with 20 and 40 ng DNA input.

IG clonality analysis using NGS

PCR library preparation and sequencing were performed as 
described previously [2]. 40 ng DNA was used as input for 
the library preparation. Sequencing data were visualized and 
analysed using the ARResT/Interrogate software platform.

Trusight oncology 500

Library preparation was performed using the hybrid capture-
based TruSight Oncology 500 Library Preparation Kit (TSO500; 
Illumina) following the manufacturer’s protocol. 60 ng DNA 
was used as input for the library preparation. Sequencing and 
data analysis were performed as described previously [3].

Results

To determine whether the B-ALL and HS had a com-
mon clonal origin, we performed immunoglobulin (IG) 
clonality analysis on a bone marrow sample at the time 

of B-ALL diagnosis and a skin biopsy with HS infiltra-
tion. With conventional clonality analysis using GeneScan 
fragment length analysis according to the EuroClonality/
BIOMED-2 assay[1], IGHV-IGHD-IGHJ rearrangement 
analysis showed similarly sized products for framework 
(FR)1, FR2, and FR3 targets in both the B-ALL and HS 
sample, but also products that were unique for the B-ALL 
or HS sample were observed (Table 1, Supplementary 
Fig. 1). For IGHD-IGHJ, IGKV-IGKJ, and IGKV/Intron-
KDE targets, only clonal products unique for one of the 
two samples could be detected. This analysis was therefore 
not firmly conclusive to establish whether the B-ALL and 
HS were clonally related, since only one IGHV-IGHD-
IGHJ gene rearrangement (as convincingly detected 
in the FR1 and FR2 PCRs) showed an identically sized 
fragment, which could be a coincidence. In addition, the 
results of the B-ALL sample suggested the presence of 
more than one clone based on the number of IGH gene 
rearrangements.

To more reliably determine the clonal relationship 
between the B-ALL and HS in this patient, we performed 
NGS-based clonality analysis, according to the protocol 
that was recently published by the EuroClonality-NGS 
Working Group [2, 4]. With NGS-based IG clonality 
analysis, two clonal IGHV-IGHD-IGHJ rearrangements 
(clonotypes V6-1 -0/39/-5 J6 and V3-19 -0/44/-2 J6) and 
one clonal IGKV-IGKJ rearrangement (V1(D)-33 -11/2/-7 
J3) were detected in both the B-ALL and HS with 100% 
identical sequences, providing evidence for a direct clonal 
relationship (Table 1, Supplementary Fig. 2). Nonetheless, 
additional IG rearrangements unique for each sample were 
also detected. Detailed analysis of the sequences of the five 
IGH rearrangements in the B-ALL sample revealed that 
four of the rearrangements, i.e., one incomplete IGHD-
IGHJ and three complete IGHV-IGHD-IGHJ rearrange-
ments, contained the exact same D and J genes, including 
an identical N2 junction (D-J stem: D2-2 -2/7/-5 J6). Two 
different V genes were combined with this IGHD-IGHJ 
stem, resulting in three different clonotypes (V6-1 -1/37/-5 
J6, V6-1 -0/39/-5 J6 and V3-7 -1/34/-5 J6) (Fig. 1B). This 
suggests that (at least) three subclones in the B-ALL arose 
from the same IGHD-IGHJ stem. Based on the rearrange-
ments detected in the HS sample, only one of the sub-
clones evolved into the HS (Fig. 1C).

To further study the pattern of clonal evolution from 
the B-ALL (sub)clone to HS, molecular analysis was 
performed with the TruSight Oncology 500 assay (Illu-
mina), which identified multiple mutations and several 
copy number variations in both the B-ALL and HS sam-
ple (Supplementary Tables 4 and 5). A pathogenic muta-
tion in the PAX5 gene (resulting in the p.P80R change) 
was detected indicating that the B-ALL belongs to the 
newly recognized subtype of B lymphoblastic leukemia 

Fig. 1   Clonality assessment of B-cell acute lymphoblastic leukemia 
(B-ALL) and histiocytic sarcoma (HS). A Immunophenotyping. The 
H&E staining (40 × magnification) of the B-ALL in the bone marrow 
biopsy shows a monomorphic proliferation of small blasts. The H&E 
staining of the HS in the skin shows a proliferation of pleiomorphic 
cells with abundant eosinophilic cytoplasm. Additional immunoflow-
cytometry and immunohistochemistry data are listed in the supple-
mentary Tables 1 and 3. B Comparison of IGH rearrangements in the 
B-ALL sample. The red square highlights the identical IGHD-IGHJ 
sequences (D-J stem). N indicates added nucleotides at the junction. 
C Clonal evolution based on IGH rearrangements and mutations. 
Based on the identified IGH rearrangements, it seems that first an 
IGHV-IGHD-IGHJ rearrangement occurred on one IGH allele (allele 
A). Subsequently, the other IGH allele (allele B) started to rearrange 
by combining an IGHD and IGHJ gene after which a catastrophic 
event occurred, leading to several subclones in which a different V 
gene (indicated in red; for the two subclones containing IGHV6-1 the 
difference in the junction is indicated as well) was joined to the exist-
ing IGHD-IGHJ. One of these subclones evolved into HS, supported 
by the detection of two 100% identical IGH rearrangements (and one 
identical IGK rearrangement) in both samples. Also, the identified 
mutations supported a clonal relationship (relevant mutated genes 
are shown in green). The PAX5 mutation is likely an early event after 
which additional mutations occurred in the different subclones. The 
KRAS mutated clone evolved into histiocytic sarcoma. A novel RAF1 
mutation might have played a role in the switch from B-ALL to HS

◂
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with PAX5 P80R [5, 6]. In addition, mono-allelic loss 
of PAX5 was observed, leading to bi-allelic inactiva-
tion of the PAX5 gene. These PAX5 alterations, together 
with a mutation in KRAS (p.G12D) and loss of CDKN2A, 
were identified in both the B-ALL and HS tissue, which 
supported the clonal relationship. An additional, likely 
oncogenic RAF1 (p.R391W) mutation, was detected in 
the HS sample only [7].

Discussion

Lineage switch of a lymphoid malignancy to HS is rare, but 
has been well documented in previous case reports and in 
small case series [8–11]. A clonal relationship between the 
lymphoid malignancy and the HS was established in a sub-
set of cases by the detection of identical cytogenetic abnor-
malities or rearrangements of the immunoglobulin or T-cell 
receptor genes. In our case, conventional clonality analysis 
yielded ambiguous results, but NGS-based IG clonality anal-
ysis was able to confirm the clonal relationship between the 
B-ALL and the HS. In addition, using the sequence infor-
mation of the NGS-based IG clonality analysis, multiple 
related subclones could be distinguished in the B-ALL, and 

the clonal evolution to HS could be unraveled (Fig. 1C). The 
clonal relationship was further supported by the presence of 
identical somatic mutations in PAX5 and KRAS.

The reason why some B-ALL patients develop a his-
tiocytic malignancy is not clear, yet. Several studies 
show that loss of PAX5 expression in B-cells leads to 
dedifferentiation to uncommitted precursor cells [12, 
13]. Interestingly, the present B-ALL case displayed 
inactivated PAX5 due to a mutation combined with loss 
of the other PAX5 allele, which will result in a lack of 
PAX5 expression. This likely makes these cells prone 
to loss of their B-cell phenotype and differentiate into 
another lineage after acquiring one or more additional 
genetic aberrations. Furthermore, specific aberrations in 
B-ALL, including PAX5-P80R, were recently found to 
predispose to an early monocytic phenotype switch in 
pediatric patients during initial chemotherapy [14]. The 
monocytic switch was accompanied by a gradual loss of 
CD19 expression and increase in expression of at least 
one monocytic marker. This observation also shows that 
PAX5-mutated cells are able to rather easily switch their 
phenotype. In this pediatric PAX5-P80R-mutated cohort, 
no subsequent malignancies, like histiocytic sarcoma, 
were described during follow-up.

Table 1   IG clonality: GeneScan and NGS results

Remark: Since different primers are used for GS and NGS, some rearrangements might have been missed/underrepresented with one of the tech-
niques because of suboptimal primer annealing. An example is the IGHV-IGHD-IGHJ V3-19 -0/44/-2 J6 clonotype, which cannot be detected 
by GS because of alterations at the 3′end of the BIOMED2 primer binding site. A clonotype is defined as a rearrangement that is denoted as a 
combination of the 5′ gene, the number of deleted and added nucleotides at the junction and the 3′ gene
n.a. indicates not applicable (FR1 and FR2 targets were not analyzed by NGS); scoring: nsp, no specific products; C, clonal; Cw, clonal weak; 
GS, GeneScan; NGS, next-generation sequencing; and FR, framework. Underlined indicates rearrangements identified in both samples

IG locus B-cell acute lymphoblastic leukemia Histiocytic sarcoma

GS results NGS results GS results NGS results

Peak size Clonotype Frequency Peak size Clonotype Frequency

IGHV-IGHJ FR1 C364bp n.a n.a C364bp n.a n.a
Cw362bp n.a n.a - n.a n.a
Cw349bp n.a n.a - n.a n.a

IGHV-IGHJ FR2 C299bp n.a n.a C299bp n.a n.a
C284bp n.a n.a - n.a n.a
C292bp n.a n.a - n.a n.a
- n.a n.a C295bp n.a n.a

IGHV-IGHJ FR3 Cw164bp V6-1 -0/39/-5 J6 5% C164bp V6-1 -0/39/-5 J6 65%
C149bp V3-7 -1/34/-5 J6 17% - - -
Cw161bp V6-1 -1/37/-5 J6 15% - - -
- V3-19 -0/44/-2 J6 46% - V3-19 -0/44/-2 J6 31%

IGHD-IGHJ C257bp D2-2 -2/7/-5 J6 97% nsp nsp -
IGKV-IGKJ Cw135bp V1(D)-33 -11/2/-7 J3 64% - V1(D)-33 -11/2/-7 J3 25%

- - - C293bp V2D-26 -1/2/-0 J4 74%
IGKV/intron-IGKde C292bp intron -0/8/-0 Kde 11% nsp nsp -
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In our adult case, the B-ALL cells harbored a PAX5 muta-
tion and subclonal KRAS, NRAS, PTPN11, and CDKN2A muta-
tions. In addition, mono-allelic loss of PAX5 and CDKN2A 
was detected. All these aberrations are frequently observed in 
PAX5-mutated B-ALL patients. Passet et al. [5] described a 
cohort of 30 PAX5-P80R-mutated adult B-ALL patients which 
all showed inactivation of the second PAX5 allele (mutation 
or loss) and the majority harbored CDKN2A loss (74%) and 
an NRAS and/or KRAS mutation (73%). All patients achieved 
complete remission after treatment. Monocytic shift or subse-
quent histiocytic malignancies were not reported in this paper.

Interestingly, the HS cells of our patient harbored the same 
PAX5 and KRAS mutation as the B-ALL cells, with an addi-
tional RAF1 mutation. The combinaton of multiple mutations 
effecting the RAS pathway has been reported before in HS, 
including the combination of a KRAS with a RAF1 muta-
tion [9, 15]. Also in one of these previously described cases, 
the RAF1 mutation was present only in the HS sample and 
not in the concomitant chronic myelomonocytic leukemia 
(CMML), whereas both harbored the same KRAS mutation 
[9]. These observations suggest that RAF1 activation might 
play a role in the final transformation to HS in B-cells that are 
already prone to loss of their B-cell phenotype.

In conclusion, we report a case of PAX5 P80R-mutated 
B-ALL followed by histiocytic sarcoma in which combined 
NGS-based IG clonality and mutational analysis elucidated 
the clonal relationship and evolution. A combination of 
genetic events, including PAX5 inactivation in combina-
tion with an acquired RAF1 mutation, may have played a 
role in the lineage switch of the malignant cells and sub-
sequent development of HS. Our study demonstrates that 
NGS-based mutation and IG clonality analysis provide clear 
added value for clonal comparison, which helps to unravel 
the underlying clinicopathological mechanisms of disease 
evolution.
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