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Abstract
Pediatric neuroblastoma is responsible for approximately 8–10% of pediatric tumors, and it is one of the leading causes of 
tumor-related deaths in children. Although significant progress has been made in the characterization of neuroblastoma in 
recent years, the mechanisms influencing the prognosis of neuroblastoma patients remain largely unknown. Our aim was to 
investigate if the major neuroendocrine-associated transcriptional drivers, including ASCL1, NEUROD1, DLL3, NOTCH1, 
INSM1, MYCL1, POU2F3 and YAP1 are correlated with specific clinical and pathological characteristics. We selected a 
retrospective series of 46 primary pediatric neuroblastoma, composed of 30 treatment-naïve and 16 post-chemotherapy 
cases. Gene expression levels were explored by means of quantitative real-time PCR. An increased expression of NOTCH1 
(p = 0.005), NEUROD1 (p = 0.0059), and YAP1 (p = 0.0008) was found in stage IV tumors, while the highest levels of 
MYCL1 and ASCL1 were seen in stages IVS and III, respectively (p = 0.0182 and p = 0.0134). A higher level of NOTCH1 
(p = 0.0079) and YAP1 (p = 0.0026) was found in cases with differentiating morphology, while high mitosis-karyorrhexis 
index cases demonstrated significantly lower levels of POU2F3 (p = 0.0277). High expression of NOTCH1 (p = 0.008), NEU-
ROD1 (p = 0.026), INSM1 (p = 0.010), and YAP1 (p = 0.005) together with stage IV (p = 0.043) was associated with shorter 
disease-free survival. In summary, our data indicate that the assessment of gene expression levels of neuroendocrine-lineage 
transcription factors might help to identify neuroblastoma patients with the risk of relapse.
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Introduction

Neuroblastic tumors represent the most common extra-
cranial solid malignancy in the pediatric age. Neuroblastoma 
is a tumor arising from developing sympathetic nervous 
system and is responsible for approximately 8–10% of 
pediatric tumors. Despite advances in molecular profiling 
and therapeutic options, survival of high-risk neuroblastoma 
patients remains poor. Neuroblastoma development 
mechanisms are incompletely understood, but linked 
to oncogene mutations and/or amplifications [1–4]. In 
particular, MYCN represents one of the most important driver 
genes in neuroblastoma, being gene amplification strongly 
correlated to unfavorable outcome, although in vitro and 
in vivo data suggest that there is no direct correlation between 
a high cellular MYCN protein content and aggressive tumor 
cell behavior or loss of differentiation [5]. Moreover, basic 
helix-loop-helix (bHLH) class of transcription factors plays 
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a pivotal role in tissue-specific differentiation and their 
dysregulation is associated to solid tumor development. 
Neuronal and neuroendocrine (NE) cell growth and 
differentiation, as well as their related tumors, are regulated 
by genes of the Notch, NEUROD and Achaete Scute families 
[6–8]. In particular, in high-grade NE small cell carcinomas, 
mostly of the lung, a complex genetic regulation has been 
recently reported with several pathways differentially 
activated in subgroups of such tumors. Among relevant 
regulators of NE growth and differentiation are Notch family 
genes, ASCL1, NEUROD1, HES1, INSM1, POU2F3, YAP1, 
MYCL1 [9–12]. In large cell NE carcinomas of the lung, 
two different molecular profiles were also identified, partly 
overlapping with those of small cell lung cancer or sharing 
gene alterations seen in non-small lung carcinomas [13–16]. 
Some of these genetic differences were linked to different 
outcome and response to specific therapies in both types of 
pulmonary high-grade NE carcinomas [10, 17]. In addition, 
some of these transcription factors are also express in extra-
pulmonary NE carcinomas of various locations and are used 
as markers of NE differentiation [18–20].

Some genes belonging to the abovementioned families 
have been individually investigated in neuroblastoma and 
found to be overexpressed and involved in response to 
specific therapies. In particular MYCN gene is pivotal in 
neuroblastoma development and progression [1–4]. Central 
(intracranial) and peripheral neuroectodermal tumors and 
cell lines are known to express NEUROD1 and ASCL1 genes 
[21]. Transcriptional regulators of these two genes were 
recently identified in neuroblastoma, including the neuronal 
differentiation markers of Purkinje cells PCP4/PEP19 [22], 
and ERK [23]. NEUROD1 seems to act mainly through 
ALK to favor neuroblastoma cell proliferation, directly 
binding to the promoter region of this gene [24]. ASCL1 
is downregulated during neuroblastoma cell differentiation 
along with upregulation of several genes including IGF2 
[25]; moreover, the negative correlation of ASCL1 expression 
with neuronal differentiation is independent from MYCN gene 
expression, suggesting that targeting ASCL1 might increase 
the efficacy of retinoic acid-based differentiating therapies in 
neuroblastoma [26]. More recently, other regulatory genes 
were investigated, including INSM1 that is activated by 
MYCN gene, expressed in a large fraction of neuroblastomas 
and associated to a shorter survival [27–30].

Neuroblastic tumors encompass a spectrum of lesions 
with different pathological features, response to therapies 
and outcome. We studied the role of major drivers of 
neuroendocrine-associated transcriptional clustering 
in a retrospective series of surgically resected pediatric 
neuroblastomas, with the aim of exploring the correlation 
with specific pathological and clinical characteristics 
including response to treatment and survival.

Materials and methods

Case series

We selected a retrospective series of 46 cases of pediatric 
neuroblastoma, all primitive, operated from 2007 to 2019 at 
“Città della Salute e della Scienza,” Turin, and treated at the 
Pediatric Oncology Division of the “Regina Margherita” 
Children’s Hospital, with sufficient residual histological 
material for molecular and immunohistochemical analyses. 
The case series was composed 30 treatment-naïve and 16 
post-chemotherapy cases. The chemotherapy consisted of 
combination treatment, including carboplatin and etoposide.

Clinical and pathological data such as age at diagnosis, sex, 
tumor location, stage (according to INSS system, see Table 1), 
International Neuroblastoma Pathology classification (INPC) 
category [31], mitosis-karyorrhexis index (MKI) according 
to Shimada classification [32], presence of necrosis, 
calcifications, and follow-up data were collected from clinical 
charts and inserted in a dedicated database.

RNA extraction from formalin‑fixed 
paraffin‑embedded tissues and gene expression 
analyses

Ten µm thick sections were cut were cut from formalin 
fixed paraffin embedded blocks of the tumor in RNase-free 
conditions, following microdissection using a scalpel at a 
magnification of × 100 from hematoxylin–eosin (H&E) 
stained slides. The suitability of the material was evaluated 
by hematoxylin and eosin staining, and care was taken to 
select tumor areas. Total RNA isolation was performed by 
commercially available RNA extraction kits designed for 
paraffin material according to the manufacturer’s instructions 
(miRNeasy FFPE kit; Qiagen, Hilden, Germany).

RT reactions were performed using 10 ng total RNA in 
a volume of 15 μl with the following conditions: 16 °C for 
30 min, 42 °C for 30 min, 85 °C for 5 min, and 4 °C for 
5 min. Expression levels of all genes studied and internal 
reference were examined using a fluorescence-based 
real-time detection method (ABI PRISM 7900 Sequence 
Detection System—Taqman; Applied Biosystems, Foster 
City, CA,). The following TaqMan gene expression 
assays (Applied Biosystems) were used according to the 
manufacturer’s instructions: ASCL1 (HS00269932_m1), 
DLL3 (HS01085096_m1), INSM1 (Hs00357871_s1), 
MYCL1 (Hs00420495_m1), NEUROD1 (HS01922995_s1), 
NOTCH1 (Hs01062014_m1), POU2F3 (Hs00205009_m1), 
YAP1 (Hs00902712_g1), ACTB (Hs01060665_g1) assay 
served as housekeeping reference gene for the analyses.

Each measurement was performed in duplicate. The 
ΔΔCt values were calculated subtracting ΔCt values of 
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sample and ΔCt value of Stratagene (a pool of RNA derived 
from normal different tissues; Stratagene, CA), and con-
verted to ratio by the following formula: 2 − ΔΔCt.

Statistical analysis

Statistical analyses were carried out using the Stata 15.0 soft-
ware (StataCorp, College Station, TX, U.S.A.). The differences 
in the distribution of the variables evaluated based on clinical-
pathological parameters were analyzed using parametric and 
non-parametric tests (Student’s t test, Pearson’s chi-square test 
and Bonferroni’s correction, Wilcoxon’s rank test).

Time to relapse (disease-free interval, DFI) was assessed 
from the date of diagnosis to the date of relapse or the 
date of the last checkup. All dead patients were consid-
ered as events. Survival analysis was determined by the 
Kaplan–Meier curves and Mantel log-rank test was used to 
compare statistical differences. Cox regression analyses were 
carried out on DFI to calculate HRs and 95% CIs for the 
different study groups. All statistical tests were two sided. 
p-values < 0.05 were considered significant.

Results

Clinico‑pathological characteristics of the study 
group

The clinical and pathological features of 46 neuroblastoma 
cases are summarized in Supplementary Table 1. In brief, 
the case series was composed of 20 females (43.5%) and 26 

male patients (56.5%), 27 of them aged < 18 months (58.7%) 
and 19 patients ≥ 18 months (41.3%). Stages I–II, III, IV, and 
IVS were diagnosed in 15 (32.6%), 5 (10.9%), 18 (39.1%), 
and 8 (17.4%) cases, respectively. The poorly differentiated 
subtype (according to INPC) was present in the majority of 
cases (26/46, 56.5%), while undifferentiated and differenti-
ated forms were seen in 17/46 (37%) and 3/46 (6.5%) cases, 
respectively. Low, intermediate, and high MKI were present 
in 21 (45.7%), 20 (43.5%), and 5 (10.8%) cases, respectively. 
Both calcifications and necrosis were noted in 28/46 cases 
(60.9%). Relapse occurred in 19/46 (41.3%) patients and 
8/46 died of disease (17.4%).

Gene expression profiles and correlations 
with clinical‑pathological features

A strong reciprocal positive correlation was observed 
across the series between NOTCH1 and ASCL1 (R = 0.4561; 
p = 0.0014), NEUROD1 (R = 0.4982; p = 0.0004), INSM1 
(R = 0.4763; p = 0.0008), and YAP1 (R = 0.8475; p < 0.0001). 
Moreover, ASCL1 was found significantly correlated with 
DLL3 (R = 0.3685; p = 0.0117), NEUROD1 (R = 0.3976; 
p = 0.0062) and INSM1 (R = 0.5996; p < 0.0001). Fur-
thermore, NEUROD1 was significantly correlated with 
MYCL1 (R =  − 0.2968; p = 0.0452) and YAP1 (R = 0.5290; 
p = 0.0002), while INSM1 resulted significantly correlated 
with YAP1 (p = 0.0257).

As to concern clinical and pathological correlations (Sup-
plementary Table 2), NOTCH1, NEUROD1, MYCL1, and 
YAP1 were found significantly correlated with tumor stage. 
In detail, NOTCH1 (p = 0.005), NEUROD1 (p = 0.0059), and 

Table 1   International Neuroblastoma Staging System (INSS)

(from: https://​www.​cancer.​org/​cancer/​neuro​blast​oma/​detec​tion-​diagn​osis-​stagi​ng/​stagi​ng.​html)

Stage Description

1 The cancer is still in the area where it started. It is on one side of the body (right or left). All visible tumor has been removed completely 
by surgery (although looking at the tumor’s edges under the microscope after surgery may show some cancer cells). Lymph nodes near 
the tumor are free of cancer (although nodes enclosed within the tumor may contain neuroblastoma cells)

2A The cancer is still in the area where it started and on one side of the body, but not all of the visible tumor could be removed by surgery. 
Lymph nodes near the tumor are free of cancer (although nodes enclosed within the tumor may contain neuroblastoma cells)

2B The cancer is on one side of the body, and it may or may not have been removed completely by surgery. Nearby lymph nodes outside the 
tumor contain neuroblastoma cells, but the cancer has not spread to lymph nodes on the other side of the body or elsewhere

3 The cancer has not spread to distant parts of the body, but one of the following is true:
a) The cancer can't be removed completely by surgery, and it has crossed the midline (defined as the spine) to the other side of the body. 

It may or may not have spread to nearby lymph nodes
b) The cancer is still in the area where it started and is on one side of the body. It has spread to lymph nodes that are relatively nearby but 

on the other side of the body
c) The cancer is in the middle of the body and is growing toward both sides (either directly or by spreading to nearby lymph nodes)

4 The cancer has spread to distant parts of the body such as distant lymph nodes, bones, liver, skin, bone marrow, or other organs (but the 
child does not meet the criteria for stage 4S)

4S The child is younger than 1 year old. The cancer is on one side of the body. It might have spread to lymph nodes on the same side of the 
body but not to nodes on the other side. The neuroblastoma has spread to the liver, skin, and/or the bone marrow. However, no more 
than 10% of marrow cells are cancer cells, and imaging tests such as an MIBG scan do not show cancer in the bone marrow
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YAP1 (p = 0.0008) were more expressed in stage IV tumors, 
while highest levels of MYCL1 and ASCL1 were seen in 
stages IVS and III, respectively (p = 0.0182 and p = 0.0134). 
Moreover, a higher level of both NOTCH1 (p = 0.0079) and 
YAP1 (p = 0.0026) was found in cases with differentiating 
morphology according to INPC classification. Finally, cases 
with high MKI according to Shimada demonstrated signifi-
cantly lower levels of POU2F3 (p = 0.0277).

Gene expression levels and survival

In the overall series, cases with a high gene expression level 
(as determined using the median value) of NOTCH1, INSM1, 
NEUROD1, and YAP1 demonstrated more frequently recur-
rence of the disease than those with low expression (Fig. 1). 
Considering the 30 treatment-naïve specimens only, we 
observed significantly higher gene expression levels of ASCL1 
(p = 0.0007), INSM1 (p = 0.0016), and DLL3 (p = 0.0064) in 
cases that relapsed during the follow-up (Table 2).

As to concern univariate survival analyses, higher levels 
of INSM1 were significantly correlated with shorter disease-
free interval (DFI) in the whole group (Fig. 2A, p = 0.0012), 
as well as when separately analyzed in the treatment-naïve 
(Fig. 2B, p = 0.0147) and the post-chemotherapy groups 
of patients (Fig. 2C, p = 0.0365). Moreover, the patients 
with higher levels of NOTCH1 had a shorter DFI, both in 
the whole cohort (Fig. 2D, p = 0.0001) and in the 30 treat-
ment naïve patients (Fig. 2E, p = 0.0085), (but not in the 16 
post-chemotherapy patients, Fig. 2F, p = 0.158). In addi-
tion, considering the whole case series, patients with high 
expression of YAP1 and NEUROD1 had shorter DFI, com-
pared to those with low expression (Supplementary Fig. 1: 
A, p = 0.0007 and B, p = 0.0128). However, no significance 
was observed when patients were stratified according to the 
chemotherapy status (data not shown).

Furthermore, Cox regression analyses to estimate HRs 
and 95% CIs for DFI in the different study groups shown 
in Table 3 demonstrated in the whole series that stage IV 

Fig. 1   Gene expression patterns of the entire cohort according to the recurrent disease status. *Fisher exact test: NOTCH1: p < 0.001, NEU-
ROD1: p = 0.037, INSM1: p = 0.001, YAP1: p = 0.003

Table 2   Gene expression levels 
according to the follow up status 
in 30 treatment-naïve cases

Mean ± SD value Total Disease-free (#25) Relapse (#5) P value

YAP1 2.70 ± 3.11 2.67 ± 3.34 2.88 ± 1.21 0.891
MYCL 186.2 ± 229.6 231.7 ± 240.6 48.7 ± 81.8 0.145
ASCL1 379.2 ± 662.61 208.8 ± 378.7 1231.2 ± 110.7 0.0007
POU2F3 0.27 ± 0.58 0.29 ± 0.62 0.19 ± 0.37 0.744
DLL3 20.4 ± 49.1 9.90 ± 23.3 72.0 ± 100.4 0.0064
INSM1 2862.1 ± 5349.5 1565.4 ± 2369.1 9345.1 ± 10,523.1 0.0016
NEUROD1 0.16 ± 0.46 0.10 ± 0.28 0.49 ± 0.95 0.08
NOTCH1 1.62 ± 1.44 1.53 ± 1.51 2.06 ± 1.01 0.456
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(HR 8.57; CI 1.1–68.6 p = 0.043) and high expression of 
NOTCH1 (HR 15.6; CI 2.05–118.7, p = 0.008), NEUROD1 
(HR 3.17;1.14–8.78, p = 0.026), INSM1 (HR 5.24, CI 
1.49–18.5, p = 0.010), and YAP1 (HR 8.57, CI 1.93–37.9, 

p = 0.005) were associated with adverse prognosis. More-
over, poorly differentiated forms (HR 0.24; 0.06–0.98, 
p = 0.048) of disease were significantly associated to better 
DFI survival compared to undifferentiating lesions.

Fig. 2   Kaplan–Meier estimates of DFI according to the INSM1 gene 
expression level in the whole series (A p = 0.0012) and in treatment 
naïve (B p = 0.0147) and post-chemotherapy cases (C p = 0.0365). 

Kaplan–Meier estimates of DFI according to the NOTCH1 gene 
expression level in the whole series (D p = 0.0001) and in treatment 
naïve (E p = 0.0085) and post-chemotherapy cases (F p = 0.1580)
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Gene combination analyses

Considering the different combinations of INSM1, NOTCH1, 
NEUROD1, and YAP1 gene expression levels according 
to the recurrent disease status (Supplementary Table 3), 
patients with low expression of all four genes did not expe-
rience recurrent disease while patients with high levels of at 
least one of the aforementioned genes demonstrated signifi-
cantly more frequent recurrences (p = 0.003).

Moreover, we observed a statistically significant increase 
in the odds of the patients with the high levels of ≥ 3 above 
indicated genes when considering the whole case series 
(OR = 8.75, 95% CI = 2.19–34.81, p = 0.002). However, 
when stratified according to the treatment status, no signifi-
cance was observed the treatment naïve group (OR = 4.75, 
95% CI = 0.63–35.48, p = 0.129) and post-chemother-
apy group of patients (OR = 2.75, 95% CI = 0.16–46.79, 
p = 0.484) analyzed separately (Supplementary Table 4).

Discussion

We demonstrated in a series of 46 pediatric neuroblasto-
mas that neuroendocrine-lineage transcriptional genes are 
expressed in neuroblastoma and that their profiles of expres-
sion may identify subgroups of patients with increased risk 
of recurrence and/or shorter survival. The study design 

focused on gene expression analysis and not immunohis-
tochemical determination of the corresponding protein 
expression due to the following considerations. First, reli-
able and robust antibodies are not available for all molecules. 
Second, tissue material available was limited in some cases 
preventing the possibility to perform both RNA extraction 
and subsequent sectioning for a multi-target immunohisto-
chemical procedure. Moreover, even in the more extensively 
investigated small cell lung cancer, model gene expression 
data have been used for molecular classification purposes 
[11, 12], whereas no study clearly demonstrated a linear cor-
relation between protein and mRNA expression for these 
targets. The strength of the transcriptional data observed 
in this study is proven by the very high positive reciprocal 
correlation among most of the markers investigated, being 
NOTCH1 the one showing the correlation with the high-
est number of genes. Interestingly, at variance with other 
models in which these transcription factors are active, such 
as small cell lung carcinoma, the expression of the genes 
here investigated did not segregate neuroblastoma cases into 
different families characterized by alterative transcriptional 
profiles, since no inverse correlation among any of the genes 
tested was identified.

Our data on the association of gene expression profiles 
with aggressive clinical outcome and survival represent the 
first global evidence that the expression of neuroendocrine 
differentiation transcriptional drivers may be used to further 
characterize neuroblastoma patients, and several preclinical 
evidence exist supporting their role as potentially relevant 
clinical prognostic biomarkers.

Among all genes, four of them—NOTCH1, INSM1, 
YAP1, and NEUROD1—emerge as the most significant, 
being associated with both shorter disease-free interval and 
high tumor stage and/or risk of recurrence.

The association of NOTCH1 overexpression with adverse 
clinical outcome in our series is expanding previous data 
obtained by means of the immunohistochemical analysis of 
Notch1 protein in a large series of neuroblastomas [33]. At 
variance with such previous series, we did not compare the 
expression of NOTCH1 (and of all other genes) with MYCN 
amplification status, and this limitation should be considered 
in future studies. Interestingly, in a translational view, the 
demonstration of NOTCH1 expression in neuroblastoma and 
its positive correlation with aggressiveness is paralleled by 
in vitro data on the efficacy of Notch1 inhibition in neuro-
blastoma cells. In a study on a variety of neuroblastoma cell 
lines, gamma-secretase inhibition (in particular GSI-I) was 
shown to impair cell proliferation and to promote apoptosis 
in vitro and in vivo through targeting Notch signaling [34]. 
Moreover, the Notch1 inhibitor NSI-1 has recently shown 
to suppress the viability of SH-SY5Y neuroblastoma cells 
characterized by a constitutive Notch1 activation [35]. The 
impact of NOTCH1 overexpression in the adverse clinical 

Table 3   DFI Univariate survival analysis whole series (#46)

Abbreviations: *MKI, mitosis-karyorrhexis index; HR, hazard ration; 
CI, confidence intervals

Parameter HR [CI] p

Age (< 18 vs ≥ 18 months) 3.97 [0.0–inf] 1.000
Stage I/II 1

III 5.16 [0.0–inf] 1.000
IV 8.57 [1.1–68.6] 0.043
IVS 4.91 [0.0–inf] 1.000

INPC Undifferentiated 1
Poorly differentiated 0.24 [0.06–0.98] 0.048
Differentiated 0.52 [0.06–4.47] 0.549

Shimada Low MKI* 1
Intermediate MKI 1.90 [0.54–6.65] 0.315
High MKI 8.24 [- -] -

NOTCH1 Low vs high 15.6 [2.05–118.7] 0.008
ASCL1 Low vs high 2.09 [0.76–5.78] 0.153
DLL3 Low vs high 1.26 [0.46–3.49] 0.649
NEUROD1 Low vs high 3.17 [1.14–8.78] 0.026
INSM1 Low vs high 5.24 [1.49–18.5] 0.010
YAP1 Low vs high 8.57 [1.93–37.9] 0.005
POU2F3 Low vs high 0.61 [0.16–2.32] 0.473
MYCL1 Low vs high 0.34 [0.11–1.08] 0.069
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behavior of neuroblastoma patients in our series is to be fur-
ther validated in a biological perspective. However, among 
the possible mechanisms, Notch1 has been shown to actively 
maintain a stem cell phenotype in neuroblastoma cells that 
confer highly tumorigenic properties [36].

INSM1 transcription factor has emerged in vitro as a neu-
roblastoma biomarker that plays critical role in facilitating 
tumor cell growth and transformation [30]. Its protein nuclear 
expression has been documented in 84% of neuroblastomas, 
with a suggested association with clinical outcome, being the 
three INSM1-negative neuroblastoma patients in the pub-
lished study all alive with a median survival of 15 years as 
opposed to a median of 5 years in 9 out of 13 INSM1-positive 
neuroblastoma patients [28]. No definitive data are present 
in the literature on its possible role as prognostic biomarker 
in neuroblastoma. However, in other tumor models—such 
as pulmonary high-grade neuroendocrine carcinoma-positive 
INSM1 protein expression has been associated with a dismal 
prognosis [37], in line with the data on INSM1 gene expres-
sion levels from the present study.

Among other markers associated with neuroblastoma 
aggressiveness in our series, NEUROD1 was already shown 
to promote cell growth in vitro [24] and tumor formation 
in vivo [38] in neuroblastoma cells. YAP1 expression has 
been reported to significantly increase cell proliferation and 
growth through inhibition of 27Kip1 activity in neuroblas-
toma cell lines SH-SY5Y and SK-N-SH [39]. Moreover, 
YAP1 overexpression has been associated to the increased 
resistance to platinum-based [40] and MEK-inhibiting [41] 
therapeutic strategies.

In terms of correlation with differentiation, NOTCH1 and 
YAP1 expression was significantly higher in differentiating 
compared to poorly differentiated tumors according to the 
INPC classification. This observation cannot find a clear 
explanation in the current literature. A previous in vitro study 
is partly in contrast with our findings and shows that Notch1 
inhibition prevents neurite formation in neuroblastoma cells 
[42]. Moreover, these data are apparently in contrast with the 
adverse impact on clinical outcome for both markers in our 
same series and might more probably represent a bias related 
to the limited number of cases in the differentiation group.

The potential clinical impact of our findings is twofold. 
First, the integration of gene expression profiles of the bio-
markers investigated in the present study might assist to bet-
ter predict the clinical behavior of neuroblastoma patients, 
and to improve a personalized approach in tailoring adjuvant 
chemotherapeutic regimens and/or predict response to treat-
ment. Second, the pathways regulated by the genes herein 
investigated are potential targets for selective therapies. In 
particular, DLL3 has been tested as a target for rovalpitu-
zumab tesirine therapy in neuroblastoma models with prom-
ising results [43].

In conclusion, we identify a strong prognostic impact of 
neuroendocrine-lineage transcriptional profiles in neuroblas-
toma, and suggest that the evaluation of NOTCH1, INSM1, 
YAP1, and NEUROD1 might help to further characterize the 
risk of relapse in neuroblastoma patients.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00428-​022-​03406-4.
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