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Abstract

Thymomas exhibit a unique genomic landscape, comprising the lowest on average total mutational burden among adult human
cancers; a unique point mutation in the GTF2/ gene in WHO type A and AB thymomas (and rarely others); almost unique
KMT2A-MAML? translocations in rare WHO type B2 and B3 thymomas; a unique YAP/-MAML?2 translocation in almost all
metaplastic thymomas; and unique miRNA profiles in relation to GTF2I mutational status and WHO histotypes. While most
thymomas can be diagnosed solely on the basis of morphological features, mutational analyses can solve challenging differential
diagnostic problems. No molecular biomarkers have been identified that predict the response of unresectable thymomas to
chemotherapy or agents with known molecular targets. Despite the common and strong expression of PDLI1 in thymomas,
immune checkpoint inhibitors are rarely applicable due to the poor predictability of common, life-threatening autoimmune side
effects that are related to the unrivaled propensity of thymomas towards autoimmunity.
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Introduction

Thymomas constitute the largest subgroup (75-80%)
among thymic epithelial tumors (TETSs) and are the focus
of this review. Thymic carcinomas (TCs) and thymic
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neuroendocrine tumors that constitute 10-20% and 1-2%
of TETs, respectively, are reviewed elsewhere (Strobel
et al., this volume and in [1, 2]). Taking the content of
immature thymocytes and the morphology of tumor cells
into account, TCs are distinguished from thymomas which,
in turn, are separated into WHO type A, AB, B1, B2, B3,and
metaplastic thymomas as well as “micronodular thymoma
with lymphoid stroma” (MNT) [3]. Apart from MNTs,
TETs are malignant cancers with variable metastatic poten-
tial that increases from type A and AB, through B1, B2, and
B3 thymomas to the most aggressive TCs [3]. Staging of
TETs should follow the recently developed TNM system
that is gradually replacing the Masaoka-Koga system [4].
Since key therapeutic guidelines still refer to the Masoaka-
Koga system [5], both staging systems are still commonly
used in parallel [4]. In terms of therapy, the prime aim is
complete tumor resection that is usually the definite and
only required intervention, while non-resectability often
implies incurability [5]. However, adjuvant radiotherapy
in case of uncertain resection, high tumor stage, or high-
grade histology can rescue a significant number of patients
[6]. In case of unresectable and recurrent thymomas,
platinum-based chemotherapy is the empirical standard
first-line treatment [5]. This review focuses on recent
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findings in the pathogenesis of thymomas and highlights
gaps of knowledge that prevent efficient targeted treatment
to date.

Biological features of thymomas
with diagnostic and therapeutic relevance

Autoimmunity and expression of immune checkpoint
molecules

Thymomas are unique tumors due to their almost consistent
non-tolerogenic, intratumorous thymopoiesis that is almost
never encountered in TCs and not in other carcinomas. This
feature is likely the major pathomechanism that leads to the
unprecedented frequency of autoimmune phenomena (about
80%) and autoimmune diseases (about 40%) in patients with
thymoma but not in patients with other malignancies [7].
Among the autoimmune targets, striated muscle proteins pre-
vail as reflected by the fact that myasthenia gravis (MG) due to
autoantibodies to the Acetylcholine Receptor (AChR) and
striational autoantigens (e.g., Titin, skeletal and cardiac
Ryanodine Receptors (RYRs)) is the leading thymoma-
associated autoimmune disease [8]. However, almost any oth-
er organ-specific (e.g., thyroid, hepatic, renal) and systemic
autoimmune disease (e.g., SLE, RA) can occur either in iso-
lation or combined with MG or other autoimmune diseases [7,
9]. The pathogenesis of most thymoma-associated autoim-
mune diseases is unknown. By contrast, multiomics molecular
analysis revealed that thymoma-associated MG is linked to
aneuploidy and over-expression of genes that encode either
bona fide (e.g., AChR) or closely related (e.g., neuronal
RYRs) autoimmune targets [10], while other defective
tolerogenic features (e.g., the lack of AIRE expression
[11-14] and defective intratumorous generation ofregulatory
T cells [12, 15, 16]) might be permissive but not causative
[10], although this is controversial [17]. Different molecular
pathways may elicit MG in different thymoma histotypes [18].

The inclination of thymomas to autoimmune diseases has a
bright diagnostic and dark therapeutic side: While preopera-
tive detection of autoimmune features is a strong hint that a
mediastinal mass is a thymoma, autoimmunity is a drawback
in the era of immune interventions. Since thymomas are the
cancers with the highest prevalence of abundant and strongly
PDL1-expressing tumor cells [19], thymoma patients appear
as ideal candidates for immunotherapies. Unfortunately, im-
mune checkpoint inhibitors (ICIs) elicit severe autoimmune
phenomena in most thymoma patients even if such phenome-
na are missing before therapy [2, 20]. Echoing the focus of
thymoma-associated autoimmunity on striated muscle, the
most life-threatening side effects of ICIs in thymoma patients
are myositis, myocarditis, and MG [21-23]. In patients with
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TCs that are not “naturally” prone to autoimmunity, such side
effects are less common [2, 24, 25].

Immunodeficiency in thymoma patients

Thymoma-associate acquired T cell and B cell immunodefi-
ciencies are common and often a facet of autoimmunity. Good
syndrome (in 5% of patients) is characterized by a near lack of
B cells and hypogammaglobulinemia, variable CD4 T cell
cytopenia, and impaired T cell activation [26].
Hypogammaglobulinemia results from autoreactive CD8+ T
cells attacking B cell precursors in the bone marrow [27]. The
mechanisms that elicit severe combined deficiency of CD4
and CD8 T cells [28] or the acquired hypoexpression of
CD247 (encoding the CD3 zeta-chain) are unclear. CD247
hypoexpression entails susceptibility to infections [26] and,
hypothetically, the increased prevalence of non-thymic can-
cers in thymoma patients [29]. Chronic mucocutaneous can-
didiasis in thymoma patients results from defective
Autoimmune Regulator Gene (A/RE) expression in thymomas
[11-13]. This elicits neutralizing autoantibodies to I1L17-
associated cytokines and impairs cytokine-dependent macro-
phage activation that, in turn, is needed to keep Candia in
check [30]. Thymoma-associated immunodeficiency is a di-
agnostic challenge and can contribute to severe morbidity and
even mortality [31-34].

The genomic landscape of thymomas

Genetic alterations in treatment naive common
thymoma types

The Cancer Genome Atlas (TCGA) consortium reported on
the genetic, transcriptomic, epigenetic, miRNA and proteomic
landscape of 107 thymomas (types A, AB, B1-3, MNTs) and
10 TCs from patients without prior therapy, including a high
proportion of low-stage cancers [10].

In terms of somatic copy number variations, the TCGA
findings were in good agreement with historic CGH studies
that revealed an overall low prevalence of genomic alterations
in thymomas, with particularly rare abnormalities in type A
and AB compared to B2 and B3 thymomas and TCs [35-37].
Also, gains and losses were commonly large-scale alterations
such as whole chromosome or chromosome arm losses and
gains, with losses of chromosome 6 material (harboring the
FOXCI tumor suppressor gene at 6p25.3 [38]) and gains in 1q
as the most common structural abnormalities across all
histotypes [10, 37].

One of the most prevalent somatic mutations of thymomas
is a single nucleotide hot-spot mutation (c.74146970T>A;
p.L424H) in the general transcription factor Ili gene (GTF2I)
[10, 39, 40]. It occurs in about 80% of type A and AB
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thymomas, while it is exceptionally found in type B
thymomas and rare TC [10, 40]. Less common recurrent al-
terations concern gain-of-function mutations of HRAS (mainly
in type A and AB thymomas) and NRAS (in type A and B
thymomas), and loss-of-function mutations of 7P53 (in type B
thymomas and TCs). The enrichment of C>T mutations with-
in CpG di-nucleotides is an age-related signature [41] that fits
well with the age of thymoma patients [42]. KIT mutations
and oncogenic driver mutations or translocations that are char-
acteristic of lung and other cancers have not been observed.

Lowest total mutational burden of thymomas among
adult cancers and rare MSI

On average, thymomas exhibit the lowest total mutational
burden (TMB) among all adult human cancers tested in the
TCGA network [41]. While a single TC among the 10 tested
carcinomas showed microsatellite instability (MSI) due to a
pathogenic nonsense mutation (E37*) in the MHL1 gene [41],
none of the 107 tested thymomas exhibited this oncogenic
feature. The latter observation may not be representative in
light of our reference pathology experience (Fig. 1) and his-
toric studies that revealed MSI in about 10% of thymomas
using a PCR-based assay [19, 43].

Recurrent translocations in metaplastic thymomas

While the TCGA and other previous sequencing efforts [40,
41, 44] failed to identify recurrent translocations in type A,
AB, B1-B3 thymomas and MNTs, a YAP1-MAML?2 trans-
location (with two distinct fusion products) was recently de-
tected by DNA RNA sequencing in all six metaplastic

Fig. 1 Microsatellite instability in
thymoma. a Type B3 thymoma
with anaplasia; b Presence of TdT
expressing immature T cells; ¢
Absence of CD117 expression; d
Defective expression of MLH1 in
tumor cells but not in
accompanying lymphocytes. HE
stain in (a); immunoperoxidase in
b-d. (x200)

thymomas successfully tested so far [45]. These cases were
chemotherapy naive in accordance with their generally indo-
lent clinical behavior [45]. Although the spindle cell compo-
nent of this biphasic thymoma type (Fig. 2) vaguely resembles
spindle cell areas in type A and AB thymomas [3], GTF2I
mutations were consistently absent [45]. The functional ef-
fects of the YAP1-MAML2 fusion gene have not been studied
but are likely oncogenic.

Recurrent translocations in rare type B2 and B3
thymomas

Recurrent KMT2A-MAML? translocations were recently iden-
tified in 6% of clinically aggressive type B2 and B3 thymomas
and a single case of combined TC (B3 thymoma with small
TC component) [46]. The translocations variably involved
exons 8,9, 10, or 11 of KMT2A and exon 2 of MAML2, and
are highly characteristic of type B2 and B3 thymomas, be-
cause they were previously found only in very rare leukemias,
myelodysplastic syndromes, and one plasmacytoma but not in
any other tumor among over 250.000 cases sequenced by
Foundation Medicine, including 266 thymic carcinomas
[46]. The function of the respective fusion proteins in
thymomas is currently unclear, but might be oncogenic
drivers, since 7 of the 11 cases did not harbor any concurrent
mutations, while the four others showed only single additional
mutations/variants in 7P53, ARIDIA, SFB1, and the TERT
promoter [46]. Furthermore, KMT2A (also known as MLL)
is a known oncogenic driver in translocations with other part-
ner genes in sarcomas [47] and leukemias [46]. Since the
index case of the series of Massoth et al. was a recurrent B3
thymoma biopsied after chemotherapy, and the treatment
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Fig. 2 Metaplastic thymoma with recently described YAPI-MAML2

translocation. a Biphasic, epithelioid and spindle cell tumor; b
Characteristic expression of p40 in the epithelioid but not the

status of the other cases was not reported, it is currently un-
clear, whether the KMT2A-MAML? translocation is an early or
late molecular event. The latter possibility would explain why
the fusion was missed in the TCGA series.

SMARCA4-deficient mediastinal/pulmonary tumors

SMARCA4-deficient cancers are a new cancer type in the up-
coming WHO classification of thoracic tumors. They commonly
show pleomorphic, large, and anaplastic cells, eventual

Fig. 3 SMARCA4-deficient
thoracic tumor; core needle
biopsy of a mediastinal mass
involving the lung (or vice versa).
a Partially necrotic,
undifferentiated tumor composed
of large, poorly cohesive round
and polygonal cells with large
nuclei and prominent nucleoli; b
Absence of SMARCA4
expression in the tumor cells,
strong expression of SMARCA4
in endothelial cells. An identical
staining pattern was seen with an
antibody to SMARCA2 (not
shown) (a HE stain, x350; b
immunoperoxidase)
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metaplastic/spindle cell component; ¢ FISH analysis showing the split
of the MAML?2 break-apart probe (a HE stain, x 200; b
immunoperoxidase, x200; ¢ immunofluorescence, X400)

deficiency of keratins, common necrosis, and defective expres-
sion of SMARCA4 (Fig. 3) or combined SMARCA4/
SMARCA?2 deficiency [48, 49]. So far, no bona fide thymus-
restricted case has been reported, while co-invasion of thymus
and lung is not uncommon. SMARCA4-deficient cancers may
be confused with “thymomas with anaplasia” (see Fig. 1) that
can also show defective keratin expression [50] but retain
SMARCA4 expression (own observation). Since SMARCA4-
deficient tumors commonly express SOX2 and SALLA [51],
mediastinal germ cell tumors also enter the differential diagnosis.
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Micro-RNAs in thymomas

Micro-RNAs (miRNAs) are non-protein-coding RNAs regu-
lating post-transcriptional gene expression in many cancers
[52], thymus development [53] and thymoma-associated au-
toimmunity [53-55]. Transcriptional overexpression of a
large miRNA cluster on chromosome 19q13.42 (termed
C19MC) is a common feature of type A and AB thymomas
[10, 41] and associated with activation of the PI3K/AKT/
mTOR pathway. Therefore, respective inhibitors might be
therapeutic options in rare cases of unresectable type A and
AB thymomas [41]. Another large cluster on chromosome 14
(C14MC), supposedly with tumor suppressor function, is tran-
scriptionally silenced in many TCs [56]. In addition, various
non-clustered single miRNAs are differentially expressed be-
tween thymomas and TCs [56, 57] and thought to contribute
to the tumorigenesis of TCs (reviewed in [2]). So far, miRNAs
do not play a role as diagnostic or therapeutic targets, and,
unlike in renal cancers [58], have not been evaluated as pre-
dictive biomarkers (e.g., for sunitinib resistance).

The integrated landscape of treatment-naive thymic
epithelial tumors

Integrating TCGA data from the analysis of somatic copy
number alterations, mRNA, miRNA, DNA methylation, and
reverse phase protein arrays of all TETs using a “cluster-of-
cluster” algorithm separated the thymomas into 3 molecular
subtypes that were distinctly different from the tightly

clustering TCs. As shown in Fig. 4, there was a significant
overlap between the A-like and the AB-like cluster, while the
members of the B-like cluster formed a continuum with min-
imal overlap with the AB-like cluster [10]. In agreement with
previous findings [40], the GTF2I mutation was largely re-
stricted to the A-like and AB-like clusters. In addition, the
clusters segregate with the expression of key oncogenes
(e.g., MYC/MAX and MYB) and suppressor genes (TP53),
lymphocyte content, WHO histotype, prognosis, and MG sta-
tus [10], providing strong evidence for the relevance of the
WHO histological classification.

Genetic alterations in thymomas following
chemotherapy

The TETs investigated by the TCGA consortium were che-
motherapy-naive to avoid poorly interpretably secondary ge-
nomic alteration in view of poorly standardized adjuvant ther-
apies used to date [41]. On the other hand, targeted therapies
in TETs are typically considered after the failure of various
first-line treatments, making the study of post-
chemotherapeutic TETs by Wang et al. even more compelling
[44]. However, no recurrent genetic alterations were identified
even in heavily pretreated thymomas, while TC frequently
showed mutations in potential oncogenic driver genes with a
role in chromatin remodeling (e.g., SMARCA4), histone mod-
ification (BAP1, SETD2, ASXLI), and DNA methylation
(TET2, DNMT3a34, WTI). Mutations in these genes appear
worth testing as biomarkers in TCs, as they constitute

C19MC expression
P53 pathway* T
MYC ,pathway‘§
MYBY

B-like cluster
P53 pathway* §

MYC ,pathway* T
MYBE

AB-like cluster
GTF2l mutation

. C19MC expression
A-like cluster
Avlike cluster 53 patny 1
GTF2I mutation MyBt TC-like cluster

Chrom. 16q loss
P53 ,pathway‘ ¥

MYC ,pathway‘ T
MYBT

Fig. 4 Integrated genomic landscape of thymomas and thymic
carcinomas according to The Cancer Genome Atlas analysis (modified
from Radovich et al. [10]). Cohorts comprise samples that are placed in
the map according to similarities in their genomic profiles using all
molecular platforms. The substantial overlap between the A-like and
AB-like cohort indicates that quite some WHO type A and AB thymomas

occur in either cohort, suggesting a molecular continuum. Little overlap
between the B-like and the AB-like cohorts; of ten thymic carcinomas,
one case with unique molecular features (including lack of the typical loss
of 16q) was “misplaced” in the AB-like cluster. A selection of key dif-
ferentially expressed molecular features is listed with each cluster.
CI9MC denotes a large micro-RNA cluster on chromosome 19q13.42
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Table 1

Petrini et al. 2015 [12]; Viviero et al. 2020 [45]; Massoth et al. 2020 [46]

Recurrent molecular alterations with potential differential diagnostic relevance in TETs. Radovich et al. 2018 [10]; Feng et al. 2017 [39];

Genetic alteration Type A Type AB Type B1 Type B2 Type B3 MNT* Metaplastic Thymic
thymoma thymoma thymoma thymoma thymoma thymoma carcinoma
GTF2A, p.L424H 82-100%%  71*~79% 0%-32% 0%-22% 10%-21% 50% (1 of n.t. 0*-8%
2%)

YAP1-MAML2 (--) (--) (--) (--) (--) () 100% nk.
translocation

KMT2A-MAML2 (--) (--) (--) <10% <10% nk. nk. (--)
translocation

16q loss ) ) ) ) ) ) nt 80%*

*Results obtained by the TCGA THYM consortium [10]

TETs, thymic epithelial tumors; (—), 0%; n.k., not known; n.t., not tested

promising biomarkers in advanced renal cell carcinomas treat-
ed with sunitinib, sorafenib, and everolimus [59, 60], i.e.,
drugs that are used in advanced TCs (reviewed in [1]). No
such perspective is currently obvious in advanced thymomas
that are poor responders to sunitinib [61].

Diagnostic implications of molecular
alterations in thymomas

Since most differential diagnostic problems in thymomas can
be solved by morphology, the role of diagnostic molecular
pathology in TETs is limited (Table 1). Exceptions may arise
in small biopsies.

A GTF2I (p.L424H) mutation strongly argues for the diag-
nosis of type A over a focally spindly type B3 thymoma or a
metaplastic thymoma [41, 45]. The distinction of atypical type
A thymomas and polygonal cell-rich type A thymomas “with
neuroendocrine morphology” [62] from type B3 thymomas
may be other rare indications for molecular testing.

YAPI-MAML? translocation testing is usually not neces-
sary to diagnose metaplastic thymoma, if the biphasic nature,
p40(—) spindle cell component and lack of immature T cells

are taken into account [45]. Whether the derivation of some
sarcomatoid carcinomas from metaplastic thymomas can be
confirmed by YAPI-MAML? testing is unknown. In small
biopsies, absence of the mutation may help to confirm rare
type A and AB thymomas with extensive “fibrous bands”
showing an EMA(+), actin(+), and p40(—) phenotype (own
observation and [63]).

The diagnostic relevance of the recently described KMT2A-
MAML? translocations in aggressive type B2 and B3
thymomas [46] needs confirmation.

Therapeutic implications of molecular
alterations in thymomas and perspectives

The results of the TCGA study of thymic epithelial tumors
(Table 1) confirmed previous studies that revealed absence of
targetable mutations as tissue-based biomarkers in thymomas
(reviewed in [1, 2]) and presence of only rare clinically mean-
ingful mutations (e.g., of the KIT gene) in TCs [64]. In line
with this, “targeted” approaches that took transcriptomic or
immunohistochemical findings (e.g., overexpression of sup-
posedly unmutated genes coding for tyrosine kinases or

Table 2 Targeted therapies in

TET patients, including Drug Target Response rate TTP/PFS Reference

thymomas and thymic

carcinomas (TCs) [61, 65-71] Gefitinib EGFR 4% 4 months Kurup et al. 2005
Imatinib KIT 0% 3 months Palmieri et al. 2012
Belinostat HDAC 0% and 8%* 5.8 months Giaccone et al 2011
Saracatinib SRC 0% 5.3 months Gubens et al. 2015
Buparlisip PI3K 7% 11.1 months Zaid et al. 2018
Everolimus ~ mTOR 12% 10.1 months Zucali et al. 2018
Sunitinib KIT, VEGFR, PDGFR 6% and 26%** 7.2 months Thomas et al. 2015
Milciclib CDK4/6 3.3% and 4.2%*** 5.6 and 5.7 months ~ Besse et al. 2018%**

*8% in thymomas, 0% in TCs; **6% in thymomas, 26% in TC patients; ***two trials with 102 cases overall,
including 37 thymomas (see also [1])
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angiogenic factors) into account achieved rather limited suc-
cess (Table 2). Accordingly, interference with other oncogenic
principles (like nuclear export inhibition) is currently being
investigated (reviewed in [1]). Overcoming the unacceptable
frequency and severity of immune checkpoint inhibitor (ICI)-
induced autoimmune side effects and simultaneously main-
taining ICI therapeutic efficiency is another perspective [20].
The recently described translocations, YAP1-MAML?2 and
KMT2A-MAML?2 in rare metaplastic and type B2 and B3
thymomas, respectively, are currently not specifically target-
able either [45, 46]. However, it will be important to investi-
gate, whether the respective fusion proteins depend in a sim-
ilar way on unmutated EGFR signaling for their tumorigenic
function as does the CRTC1-MAML2 fusion protein in EGFR
inhibitor-sensitive mucoepidermoid carcinomas [72].

Conclusion

Uncovering many facets of the molecular landscape of
thymomas has improved our understanding of pathways with
relevance for oncogenesis and autoimmunity but did not re-
veal targets that are vulnerable to currently available therapeu-
tic agents. It is hoped that whole genome and ex vivo single
cell sequencing, the analysis of non-protein-coding RNAs,
and the development of relevant model system for high
throughput drug screening will overcome the current, unsatis-
factory situation and advance thymoma management into the
realm of truly targeted therapies.
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