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Awakening of SCHLAFEN 11 by immunohistochemistry: a new
biomarker predicting response to chemotherapy
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Developing predictive biomarkers indicating response or re-
sistance to therapy paved the way for broad clinical imple-
mentation of personalized therapies by tyrosine kinase inhib-
itors [1] in many tumor types. In contrast, predicting response
to chemotherapy by the widely used DNA-damaging agents
including platinum derivates has been an unmet need since the
early 1960s. Over the years, two pivotal DNA damage repair
enzyme complexes have been identified: ERCC1 and
SCHLAFEN 11 (SLFN11).

DNA excision repair protein ERCC1 together with ERCC4
forms the ERCC1-XPF enzyme complex that participates in
DNA nucleotide excision repair (NER) and DNA recombina-
tion [2]. Measuring ERCC1 activity has potential clinical util-
ity in predicting resistance to platinum as NER is the primary
mechanism to remove platinum-DNA adducts from tumor
DNA [3]. However, as the activity of the ERCC1-XPF en-
zyme complex in cancer cells is regulated on manifold levels
including expression of different proteins and polymorphisms
in codon 118, and may be affected by mutations and gene
silencing, straight-forward and reliable assays have yet to be
introduced into the clinical practice of pathologists. Thus, it
seems that a more general marker of cell death induction after
cytotoxic therapies with platinum agents, topoisomerase in-
hibitors (etoposide, doxorubicin), and replication inhibitors
(cytarabine, gemcitabine) may bemore suitable than assessing
individual DNA repair pathways. Therefore, SLFN11 as a
master regulator of cell death responses to DNA damage has
gained significant interest.

In this context, the manuscript of Takashima and col-
leagues in this issue [4] provides a significant step forward
with regard to assaying the DNA damage repair complex
SLFN11. As an inhibitor of DNA replication, SLFN11 has

been shown to trigger cell death in response to DNA damage
from many different agents. This function involves ATR-
independent blockade of DNA damage and stressed replica-
tion fork progression, possibly acting as a helicase and ulti-
mately leading to cell death [5, 6]. The pivotal role of SLFN11
protein as the guardian of DNA-damaged cells is depicted in
Fig. 1. Importantly, the non-redundant function of SFN11 has
been shown in small cell lung cancer (SCLC), a clinically
most relevant model of emerging chemoresistance. As practi-
cally all SCLCs initially respond well to combined cytotoxic
chemotherapy with cisplatinum and etoposide, they irrevers-
ibly relapse with a chemo-resistant phenotype causing fatal
outcome of the disease. Studies on the mechanism of acquired
chemoresistance in SCLC indicated that Enhancer of Zeste 2
Polycomb Repressive Complex 2 (EZH2) mediates resistance
via silencing and downregulation of the SLFN11 gene [7].
Thus, combining EZH2 inhibition with chemotherapy may
be a novel concept avoiding resistance to chemotherapy.

In their landmark study, Takashima and colleagues used a
reliable antibody and established a semi-quantitative scoring sys-
tem of SLFN11 to assess SLFN11 expression in approximately
700 malignant tumors as well as in adjacent non-tumorous tis-
sues across 16 different human adult organs. Thereby, the authors
provide a reference repository of SLFN11 expression in human
cancers and tissues. In addition, they assess the expression of
SLFN11 in The Cancer Genome Atlas (TCGA) repository and
unravel important discrepancies. Assessing SLFN11 by whole
tissue-gene expression transcriptomes largely overrates SLFN11-
negative tumors as TCGA samples are a mixture of tumor cells
and infiltrating immune cells, including T cells, B cells, and
macrophages, that have strong SLFN11 expression. In summary,
the study of Takashima and colleagues in this issue will certainly
trigger further studies of clinically annotated tumor samples and
their extent of regression after chemotherapy. Ultimately, estab-
lishing such a clinically useful and easy assay of prediction of
chemoresponse should also push forward concepts of neoadju-
vant therapies. It is rewarding to see that immunohistochemistry,
the good old working horse of diagnostic pathologist, leads the
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way to improve precision of chemotherapies and has a role even
in times of large cancer genome and transcriptome studies.
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Fig. 1 Different types of DNA
damage leading to DNA-damage
stressed replication fork progres-
sion stalled by SLFN11
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