Skip to main content

Advertisement

Log in

Whole exome sequencing and establishment of an organoid culture of the carcinoma showing thymus-like differentiation (CASTLE) of the parotid gland

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Carcinoma showing thymus-like differentiation (CASTLE) is a rare tumor, especially in the parotid gland. We encountered a CASTLE of the parotid gland and analyzed its clinicopathological features, as well as the genotype using whole exome sequencing (WES). Moreover, we successfully established an organoid culture cell line from the primary tumor tissue. The patient was a 23-year-old woman who underwent superficial parotidectomy with peripheral neck dissection, followed by radiotherapy. Pathologically, the resected specimen showed atypical epithelioid nests and trabeculae with squamous differentiation, separated by thick fibrous septa, accompanied by dense lymphocytes and plasma cell infiltration. Immunohistochemistry revealed that the tumor cells were positive for AE1/AE3, p40, p63, p16, CK5/6, and CD5, and the background lymphocytes were positive for CD5 and CD99. Based on these findings, the tumor was diagnosed as CASTLE. WES uncovered five nonsynonymous and splicing somatic mutations, namely, FREM2 p.Val861Phe, CLK3 p.Phe376Leu, DLGAP1 p.Lys294Asn, NOX1 p.Val165Met, and PSG9 c.430 + 4A > T. Organoid culture cells preserved the histopathological characteristics of the epithelioid component of CASTLE and harbored all five somatic mutations detected in the primary tumor. In conclusion, for the first time to the best of our knowledge, we successfully analyzed a comprehensive genotype and established an organoid culture cell line of a parotid gland CASTLE, which should serve for analyzing the nature of this rare tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kakudo K CJ, Cheuk W, Dorfman DM, Giordano TJ, et al (2017). In: Lloyd RV OR, Kloppel G, Rosai J (eds) WHO Classification of tumours of endocrine organs. IARC Press, Lyon, France, pp 125–126

  2. Ahuja AT, Chan ES, Allen PW, Lau KY, King W, Metreweli C (1998) Carcinoma showing thymiclike differentiation (CASTLE tumor). AJNR Am J Neuroradiol 19(7):1225–1228

    CAS  PubMed  Google Scholar 

  3. Luo CM, Hsueh C, Chen TM (2005) Extrathyroid carcinoma showing thymus-like differentiation (CASTLE) tumor--a new case report and review of literature. Head Neck 27(10):927–933. https://doi.org/10.1002/hed.20237

    Article  PubMed  Google Scholar 

  4. Wong EHC, Tetter N, Tzankov A, Muller L (2018) CASTLE tumor of the parotid: first documented case, literature review, and genetic analysis of the cancer. Head Neck 40(1):E1–e4. https://doi.org/10.1002/hed.24985

    Article  PubMed  Google Scholar 

  5. Lorenz L, von Rappard J, Arnold W, Mutter N, Schirp U, Scherr A, Jehle AW (2019) Pembrolizumab in a patient with a metastatic CASTLE tumor of the parotid. Front Oncol 9:734. https://doi.org/10.3389/fonc.2019.00734

    Article  PubMed  PubMed Central  Google Scholar 

  6. Evans MF, Adamson CS, Simmons-Arnold L, Cooper K (2005) Touchdown general primer (GP5+/GP6+) PCR and optimized sample DNA concentration support the sensitive detection of human papillomavirus. BMC Clin Pathol 5:10. https://doi.org/10.1186/1472-6890-5-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. https://arxiv.org/abs/1303.3997

  8. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303. https://doi.org/10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cingolani P, Platts A, Wangle L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92. https://doi.org/10.4161/fly.19695

    Article  CAS  Google Scholar 

  10. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J, Armstrong J, Barnes I, Berry A, Bignell A, Carbonell Sala S, Chrast J, Cunningham F, Di Domenico T, Donaldson S, Fiddes IT, García Girón C, Gonzalez JM, Grego T, Hardy M, Hourlier T, Hunt T, Izuogu OG, Lagarde J, Martin FJ, Martínez L, Mohanan S, Muir P, Navarro FCP, Parker A, Pei B, Pozo F, Ruffier M, Schmitt BM, Stapleton E, Suner MM, Sycheva I, Uszczynska-Ratajczak B, Xu J, Yates A, Zerbino D, Zhang Y, Aken B, Choudhary JS, Gerstein M, Guigó R, Hubbard TJP, Kellis M, Paten B, Reymond A, Tress ML, Flicek P (2019) GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47(D1):D766–d773. https://doi.org/10.1093/nar/gky955

    Article  CAS  PubMed  Google Scholar 

  11. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311. https://doi.org/10.1093/nar/29.1.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W, Karapetyan K, Katz K, Liu C, Maddipatla Z, Malheiro A, McDaniel K, Ovetsky M, Riley G, Zhou G, Holmes JB, Kattman BL, Maglott DR (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46(D1):D1062–d1067. https://doi.org/10.1093/nar/gkx1153

    Article  CAS  PubMed  Google Scholar 

  13. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E, Fish P, Harsha B, Hathaway C, Jupe SC, Kok CY, Noble K, Ponting L, Ramshaw CC, Rye CE, Speedy HE, Stefancsik R, Thompson SL, Wang S, Ward S, Campbell PJ, Forbes SA (2019) COSMIC: the Catalogue of somatic mutations in cancer. Nucleic Acids Res 47(D1):D941–d947. https://doi.org/10.1093/nar/gky1015

    Article  CAS  PubMed  Google Scholar 

  14. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, Nissan MH, Chang MT, Chandarlapaty S, Traina TA, Paik PK, Ho AL, Hantash FM, Grupe A, Baxi SS, Callahan MK, Snyder A, Chi P, Danila D, Gounder M, Harding JJ, Hellmann MD, Iyer G, Janjigian Y, Kaley T, Levine DA, Lowery M, Omuro A, Postow MA, Rathkopf D, Shoushtari AN, Shukla N, Voss M, Paraiso E, Zehir A, Berger MF, Taylor BS, Saltz LB, Riely GJ, Ladanyi M, Hyman DM, Baselga J, Sabbatini P, Solit DB, Schultz N (2017) OncoKB: a precision oncology knowledge base. JCO Precis Oncol 2017:1–16. https://doi.org/10.1200/po.17.00011

    Article  Google Scholar 

  15. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006. https://doi.org/10.1101/gr.229102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Broutier L, Andersson-Rolf A, Hindley CJ, Boj SF, Clevers H, Koo BK, Huch M (2016) Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat Protoc 11(9):1724–1743. https://doi.org/10.1038/nprot.2016.097

    Article  CAS  PubMed  Google Scholar 

  17. Ogawa T, Kojima I, Ishii R, Sakamoto M, Murata T, Suzuki T, Kato K, Nakanome A, Ohkoshi A, Ishida E, Kakehata S, Shiga K, Katori Y (2018) Clinical utility of dynamic-enhanced MRI in salivary gland tumors: retrospective study and literature review. Eur Arch Otorhinolaryngol 275(6):1613–1621. https://doi.org/10.1007/s00405-018-4965-9

    Article  PubMed  Google Scholar 

  18. Crompton BD, Stewart C, Taylor-Weiner A, Alexe G, Kurek KC, Calicchio ML, Kiezun A, Carter SL, Shukla SA, Mehta SS, Thorner AR, de Torres C, Lavarino C, Suñol M, McKenna A, Sivachenko A, Cibulskis K, Lawrence MS, Stojanov P, Rosenberg M, Ambrogio L, Auclair D, Seepo S, Blumenstiel B, DeFelice M, Imaz-Rosshandler I, Schwarz-Cruz YCA, Rivera MN, Rodriguez-Galindo C, Fleming MD, Golub TR, Getz G, Mora J, Stegmaier K (2014) The genomic landscape of pediatric Ewing sarcoma. Cancer Discov 4(11):1326–1341. https://doi.org/10.1158/2159-8290.Cd-13-1037

    Article  CAS  PubMed  Google Scholar 

  19. Miyauchi A, Kuma K, Matsuzuka F, Matsubayashi S, Kobayashi A, Tamai H, Katayama S (1985) Intrathyroidal epithelial thymoma: an entity distinct from squamous cell carcinoma of the thyroid. World J Surg 9(1):128–135. https://doi.org/10.1007/bf01656263

    Article  CAS  PubMed  Google Scholar 

  20. Chan JK, Rosai J (1991) Tumors of the neck showing thymic or related branchial pouch differentiation: a unifying concept. Hum Pathol 22(4):349–367. https://doi.org/10.1016/0046-8177(91)90083-2

    Article  CAS  PubMed  Google Scholar 

  21. Reimann JD, Dorfman DM, Nosé V (2006) Carcinoma showing thymus-like differentiation of the thyroid (CASTLE): a comparative study: evidence of thymic differentiation and solid cell nest origin. Am J Surg Pathol 30(8):994–1001. https://doi.org/10.1097/00000478-200608000-00010

    Article  PubMed  Google Scholar 

  22. Gao R, Jia X, Ji T, Feng J, Yang A, Zhang G (2018) Management and prognostic factors for thyroid carcinoma showing thymus-like elements (CASTLE): a case series study. Front Oncol 8:477. https://doi.org/10.3389/fonc.2018.00477

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ito Y, Miyauchi A, Nakamura Y, Miya A, Kobayashi K, Kakudo K (2007) Clinicopathologic significance of intrathyroidal epithelial thymoma/carcinoma showing thymus-like differentiation: a collaborative study with Member Institutes of The Japanese Society of Thyroid Surgery. Am J Clin Pathol 127(2):230–236. https://doi.org/10.1309/vm7e52b6u9q729dq

    Article  PubMed  Google Scholar 

  24. Sun T, Wang Z, Wang J, Wu Y, Li D, Ying H (2011) Outcome of radical resection and postoperative radiotherapy for thyroid carcinoma showing thymus-like differentiation. World J Surg 35(8):1840–1846. https://doi.org/10.1007/s00268-011-1151-2

    Article  PubMed  Google Scholar 

  25. Roka S, Kornek G, Schüller J, Ortmann E, Feichtinger J, Armbruster C (2004) Carcinoma showing thymic-like elements--a rare malignancy of the thyroid gland. Br J Surg 91(2):142–145. https://doi.org/10.1002/bjs.4510

    Article  CAS  PubMed  Google Scholar 

  26. Abeni C, Ogliosi C, Rota L, Bertocchi P, Huscher A, Savelli G, Lombardi M, Zaniboni A (2014) Thyroid carcinoma showing thymus-like differentiation: case presentation of a young man. World J Clin Oncol 5(5):1117–1120. https://doi.org/10.5306/wjco.v5.i5.1117

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hanamura T, Ito K, Uehara T, Fukushima T, Sasaki S, Koizumi T (2015) Chemosensitivity in carcinoma showing thymus-like differentiation: a case report and review of the literature. Thyroid 25(8):969–972. https://doi.org/10.1089/thy.2015.0155

    Article  PubMed  Google Scholar 

  28. Chow SM, Chan JK, Tse LL, Tang DL, Ho CM, Law SC (2007) Carcinoma showing thymus-like element (CASTLE) of thyroid: combined modality treatment in 3 patients with locally advanced disease. Eur J Surg Oncol 33(1):83–85. https://doi.org/10.1016/j.ejso.2006.09.016

    Article  CAS  PubMed  Google Scholar 

  29. Dorfman DM, Shahsafaei A (1997) Usefulness of a new CD5 antibody for the diagnosis of T-cell and B-cell lymphoproliferative disorders in paraffin sections. Mod Pathol 10(9):859–863

    CAS  PubMed  Google Scholar 

  30. El-Naggar AKCJ, Grandis JR, Takata T, Slootweg PJ (2017) WHO classification of head and neck tumours. IARC Press, Lyon

    Google Scholar 

  31. Jen KY, Cheng J, Li J, Wu L, Li Y, Yu S, Lin H, Chen Z, Gurtsevitch V, Saku T (2003) Mutational events in LMP1 gene of Epstein-Barr virus in salivary gland lymphoepithelial carcinomas. Int J Cancer 105(5):654–660. https://doi.org/10.1002/ijc.11100

    Article  CAS  PubMed  Google Scholar 

  32. Nagao T, Ishida Y, Sugano I, Tajima Y, Matsuzaki O, Hino T, Konno A, Kondo Y, Nagao K (1996) Epstein-Barr virus-associated undifferentiated carcinoma with lymphoid stroma of the salivary gland in Japanese patients. Comparison with benign lymphoepithelial lesion. Cancer 78(4):695–703. https://doi.org/10.1002/(sici)1097-0142(19960815)78:4<695::Aid-cncr1>3.0.Co;2-e

    Article  CAS  PubMed  Google Scholar 

  33. Smeets SJ, Hesselink AT, Speel EJ, Haesevoets A, Snijders PJ, Pawlita M, Meijer CJ, Braakhuis BJ, Leemans CR, Brakenhoff RH (2007) A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen. Int J Cancer 121(11):2465–2472. https://doi.org/10.1002/ijc.22980

    Article  CAS  PubMed  Google Scholar 

  34. Rajeshwari M, Singh V, Nambirajan A, Mridha AR, Jain D (2018) Carcinoma showing thymus like elements: Report of a case with EGFR T790M mutation. Diagn Cytopathol 46(5):413–418. https://doi.org/10.1002/dc.23859

    Article  PubMed  Google Scholar 

  35. Veits L, Schupfner R, Hufnagel P, Penzel R, Freitag J, Ströbel P, Kern MA, Schröder S, Neuhold N, Schmid KW, Schirmacher P, Hartmann A, Rieker RJ (2014) KRAS, EGFR, PDGFR-α, KIT and COX-2 status in carcinoma showing thymus-like elements (CASTLE). Diagn Pathol 9:116. https://doi.org/10.1186/1746-1596-9-116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shafeghati Y, Kniepert A, Vakili G, Zenker M (2008) Fraser syndrome due to homozygosity for a splice site mutation of FREM2. Am J Med Genet A 146a(4):529–531. https://doi.org/10.1002/ajmg.a.32091

    Article  CAS  PubMed  Google Scholar 

  37. van Haelst MM, Maiburg M, Baujat G, Jadeja S, Monti E, Bland E, Pearce K, Hennekam RC, Scambler PJ (2008) Molecular study of 33 families with Fraser syndrome new data and mutation review. Am J Med Genet A 146a(17):2252–2257. https://doi.org/10.1002/ajmg.a.32440

    Article  CAS  PubMed  Google Scholar 

  38. Vidak M, Jovcevska I, Samec N, Zottel A, Liovic M, Rozman D, Dzeroski S, Juvan P, Komel R (2018) Meta-analysis and experimental validation identified FREM2 and SPRY1 as new glioblastoma marker candidates. Int J Mol Sci 19(5). https://doi.org/10.3390/ijms19051369

  39. Cesana M, Guo MH, Cacchiarelli D, Wahlster L, Barragan J, Doulatov S, Vo LT, Salvatori B, Trapnell C, Clement K, Cahan P, Tsanov KM, Sousa PM, Tazon-Vega B, Bolondi A, Giorgi FM, Califano A, Rinn JL, Meissner A, Hirschhorn JN, Daley GQ (2018) A CLK3-HMGA2 alternative splicing axis impacts human hematopoietic stem cell molecular identity throughout development. Cell Stem Cell 22(4):575–588.e577. https://doi.org/10.1016/j.stem.2018.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kawashima N, Takamiya K, Sun J, Kitabatake A, Sobue K (1997) Differential expression of isoforms of PSD-95 binding protein (GKAP/SAPAP1) during rat brain development. FEBS Lett 418(3):301–304. https://doi.org/10.1016/s0014-5793(97)01399-9

    Article  CAS  PubMed  Google Scholar 

  41. Naisbitt S, Valtschanoff J, Allison DW, Sala C, Kim E, Craig AM, Weinberg RJ, Sheng M (2000) Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. J Neurosci 20(12):4524–4534. https://doi.org/10.1523/jneurosci.20-12-04524.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li Y, Li W, Zeng X, Tang X, Zhang S, Zhong F, Peng X, Zhong Y, Rosol TJ, Deng X, Liu Z, Peng S, Peng X (2019) The role of microRNA-148a and downstream DLGAP1 on the molecular regulation and tumor progression on human glioblastoma. Oncogene 38(47):7234–7248. https://doi.org/10.1038/s41388-019-0922-3

    Article  CAS  PubMed  Google Scholar 

  43. Fukuyama M, Rokutan K, Sano T, Miyake H, Shimada M, Tashiro S (2005) Overexpression of a novel superoxide-producing enzyme, NADPH oxidase 1, in adenoma and well differentiated adenocarcinoma of the human colon. Cancer Lett 221(1):97–104. https://doi.org/10.1016/j.canlet.2004.08.031

    Article  CAS  PubMed  Google Scholar 

  44. Desouki MM, Kulawiec M, Bansal S, Das GM, Singh KK (2005) Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol Ther 4(12):1367–1373. https://doi.org/10.4161/cbt.4.12.2233

    Article  CAS  PubMed  Google Scholar 

  45. Wang FT, Hassan M, Ansari KH, Xu GL, Li XP, Fan YZ (2019) Upregulated NOX1 expression in gallbladder cancer-associated fibroblasts predicts a poor prognosis. Oncol Rep 42(4):1475–1486. https://doi.org/10.3892/or.2019.7249

    Article  CAS  PubMed  Google Scholar 

  46. Sattayakhom A, Chunglok W, Ittarat W, Chamulitrat W (2014) Study designs to investigate Nox1 acceleration of neoplastic progression in immortalized human epithelial cells by selection of differentiation resistant cells. Redox Biol 2:140–147. https://doi.org/10.1016/j.redox.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  47. Shanley DK, Kiely PA, Golla K, Allen S, Martin K, O'Riordan RT, Ball M, Aplin JD, Singer BB, Caplice N, Moran N, Moore T (2013) Pregnancy-specific glycoproteins bind integrin αIIbβ3 and inhibit the platelet-fibrinogen interaction. PLoS One 8(2):e57491. https://doi.org/10.1371/journal.pone.0057491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kammerer R, Zimmermann W (2010) Coevolution of activating and inhibitory receptors within mammalian carcinoembryonic antigen families. BMC Biol 8:12. https://doi.org/10.1186/1741-7007-8-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang L, Hu S, Tan J, Zhang X, Yuan W, Wang Q, Xu L, Liu J, Liu Z, Jia Y, Huang X (2016) Pregnancy-specific glycoprotein 9 (PSG9), a driver for colorectal cancer, enhances angiogenesis via activation of SMAD4. Oncotarget 7(38):61562–61574. https://doi.org/10.18632/oncotarget.11146

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. https://doi.org/10.1038/nature07935

    Article  CAS  PubMed  Google Scholar 

  51. Driehuis E, Kolders S, Spelier S, Lõhmussaar K, Willems SM, Devriese LA, de Bree R, de Ruiter EJ, Korving J, Begthel H, van Es JH, Geurts V, He GW, van Jaarsveld RH, Oka R, Muraro MJ, Vivié J, Zandvliet M, Hendrickx APA, Iakobachvili N, Sridevi P, Kranenburg O, van Boxtel R, Kops G, Tuveson DA, Peters PJ, van Oudenaarden A, Clevers H (2019) Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov 9(7):852–871. https://doi.org/10.1158/2159-8290.Cd-18-1522

    Article  CAS  PubMed  Google Scholar 

  52. Tanaka N, Osman AA, Takahashi Y, Lindemann A, Patel AA, Zhao M, Takahashi H, Myers JN (2018) Head and neck cancer organoids established by modification of the CTOS method can be used to predict in vivo drug sensitivity. Oral Oncol 87:49–57. https://doi.org/10.1016/j.oraloncology.2018.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yoshii Y, Furukawa T, Waki A, Okuyama H, Inoue M, Itoh M, Zhang MR, Wakizaka H, Sogawa C, Kiyono Y, Yoshii H, Fujibayashi Y, Saga T (2015) High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment. Biomaterials 51:278–289. https://doi.org/10.1016/j.biomaterials.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  54. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR (2007) Patterns of somatic mutation in human cancer genomes. Nature 446(7132):153–158. https://doi.org/10.1038/nature05610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD, Clevers H (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141(5):1762–1772. https://doi.org/10.1053/j.gastro.2011.07.050

    Article  CAS  PubMed  Google Scholar 

  56. Kondo J, Endo H, Okuyama H, Ishikawa O, Iishi H, Tsujii M, Ohue M, Inoue M (2011) Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc Natl Acad Sci U S A 108(15):6235–6240. https://doi.org/10.1073/pnas.1015938108

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Yayoi Aoyama (Department of Pathology, Tohoku University Hospital) for technical support in immunohistochemistry and the technical staff of Biomedical Research Core of Tohoku University Graduate School of Medicine for tissue sample preparation.

Funding

This work was supported in part by Grant-in-Aid from JSPS KAKENHI Grant Number of 16 K11221.

Author information

Authors and Affiliations

Authors

Contributions

T. I. developed the concept of the study; T. O., Y. K., and T. F. supervised the study; T. I. and H. U. performed the histological and immunohistochemical analysis; T. O., A. N., and Y. Y. collected clinical sample and data; Y. O. and K. K. analyzed next-generation sequencing data; T. I. and T. Y. performed HPV assay; T. I. and M. S. performed the organoid culture; T. I. and T. F. interpreted the experimental and clinical data; T. I. wrote the draft and all authors contributed to the final manuscript; T.F. is the guarantor of this work and, as such, had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Toru Furukawa.

Ethics declarations

This study was approved by the ethical committee of Tohoku University Graduate School of Medicine (#2019-1-082), and the patient provided informed consent. All procedures involving human participants in this study were in accordance with the ethical standards of this institutional research committee and with the 1964 Helsinki Declaration.

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, T., Ogawa, T., Nakanome, A. et al. Whole exome sequencing and establishment of an organoid culture of the carcinoma showing thymus-like differentiation (CASTLE) of the parotid gland. Virchows Arch 478, 1149–1159 (2021). https://doi.org/10.1007/s00428-020-02981-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-020-02981-8

Keywords

Navigation