Skip to main content

Advertisement

Log in

The expression and prognostic role of EBP1 and relationship with AR in HER2+ breast cancer

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Human epidermal growth factor receptor (HER)-2 positive (HER2+) breast cancer (BC) has a poor survival rate and is more aggressive in nature. HER2-targeting agents could be beneficial for patients with HER2+ BC. In addition, targeted therapy and chemotherapy have been successfully used. However, a few patients are resistant to treatment. ErbB3 binding protein 1 (EBP1) binds to HER3 and inhibits the proliferation and invasive potential of tumor cells. However, its role in HER2+ BC has not been demonstrated. In this study, we aimed to analyze the relationship between androgen receptor (AR) and EBP1 expression in HER2+ BC. A total of 282 cases (140 cases of HER2+ invasive BC and 142 HER2-negative invasive BC) were included in this study. We performed immunohistochemistry (IHC) to analyze the expression of AR and EBP1; thereafter, we evaluated the relationship between these two biomarkers and estrogen receptor (ER), progesterone receptor (PR), HER2, p53, Ki67 expression, and other clinicopathological parameters. Of the HER2+ cases, 67 (47.9%) showed high expression of EBP1 (EBP1high) and 73 (52.1%) showed low/no expression of EBP1 (EBP1low/no). EBP1 expression was correlated with AR expression, histological grade, and lymphatic metastasis (p < 0.001, < 0.001, and 0.013, respectively). Kaplan–Meier analysis revealed that AR+ and EBP1low/no group had poorer overall survival (OS) and disease-free survival (DFS) compared with other groups (AR and EBP1low/no, AR+ and EBP1high, and AR and EBP1high). AR+ and EBP1low/no expression were independent prognostic factors for OS and DFS in HER2+ BC. This study showed the clinicopathological role of EBP1 and AR in HER2+ BC. Targeting EBP1 may be an effective treatment strategy for patients with AR+ HER2+ BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  2. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Journal of Clinical Oncology 31(31):3997–4013. https://doi.org/10.1200/jco.2013.50.9984

    Article  PubMed  Google Scholar 

  3. Yang L, Li Y, Bhattacharya A, Zhang Y (2019) A recombinant human protein targeting HER2 overcomes drug resistance in HER2-positive breast cancer. Sci Transl Med 11(476). https://doi.org/10.1126/scitranslmed.aav1620

  4. Collins LC, Cole KS, Marotti JD, Hu R, Schnitt SJ, Tamimi RM (2011) Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the nurses’ health study. Mod Pathol 24(7):924–931. https://doi.org/10.1038/modpathol.2011.54

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cao L, Xu C, Xiang G, Liu F, Liu X, Li C, Liu J, Meng Q, Jiao J, Niu Y (2018) AR-PDEF pathway promotes tumour proliferation and upregulates MYC-mediated gene transcription by promoting MAD1 degradation in ER-negative breast cancer. Mol Cancer 17(1):136. https://doi.org/10.1186/s12943-018-0883-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao L, Xiang G, Liu F, Xu C, Liu J, Meng Q, Lyu S, Wang S, Niu Y (2019) A high AR:ERalpha or PDEF:ERalpha ratio predicts a sub-optimal response to tamoxifen therapy in ERalpha-positive breast cancer. Cancer Chemother Pharmacol 84(3):609–620. https://doi.org/10.1007/s00280-019-03891-6

    Article  CAS  PubMed  Google Scholar 

  7. Xiang G, Liu F, Liu J, Meng Q, Li N, Niu Y (2019) Prognostic role of Amphiregulin and the correlation with androgen receptor in invasive breast cancer. Pathol Res Pract 215(6):152414. https://doi.org/10.1016/j.prp.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  8. Cao L, Li C, Xu C, Xiang G, Liu F, Liu X, Jiao J, Lv S, Niu Y (2018) Clinical significance of PDEF factor expression and its relation to androgen receptor in ER(-) breast cancer. Histopathology 73(5):819–831. https://doi.org/10.1111/his.13699

    Article  PubMed  Google Scholar 

  9. Liu X, Feng C, Liu J, Cao L, Xiang G, Liu F, Wang S, Jiao J, Niu Y (2018) Androgen receptor and heat shock protein 27 co-regulate the malignant potential of molecular apocrine breast cancer. J Exp Clin Cancer Res 37(1):90. https://doi.org/10.1186/s13046-018-0762-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li C, Cao L, Xu C, Liu F, Xiang G, Liu X, Jiao J, Niu Y (2018) The immunohistochemical expression and potential prognostic value of HDAC6 and AR in invasive breast cancer. Hum Pathol 75:16–25. https://doi.org/10.1016/j.humpath.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  11. Ni M, Chen Y, Lim E, Wimberly H, Bailey ST, Imai Y, Rimm DL, Liu XS, Brown M (2011) Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell 20(1):119–131. https://doi.org/10.1016/j.ccr.2011.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Venema CM, Bense RD, Steenbruggen TG, Nienhuis HH, Qiu SQ, van Kruchten M, Brown M, Tamimi RM, Hospers GAP, Schroder CP, Fehrmann RSN, de Vries EGE (2019) Consideration of breast cancer subtype in targeting the androgen receptor. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2019.05.005

  13. Naderi A, Chia KM, Liu J (2011) Synergy between inhibitors of androgen receptor and MEK has therapeutic implications in estrogen receptor-negative breast cancer. Breast Cancer Res 13(2):R36. https://doi.org/10.1186/bcr2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Naderi A, Hughes-Davies L (2008) A functionally significant cross-talk between androgen receptor and ErbB2 pathways in estrogen receptor negative breast cancer. Neoplasia 10(6):542–548. https://doi.org/10.1593/neo.08274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao L, Niu F, Shen H, Liu X, Chen L, Niu Y (2016) Androgen receptor and metastasis-associated protein-1 are frequently expressed in estrogen receptor negative/HER2 positive breast cancer. Virchows Arch 468(6):687–696. https://doi.org/10.1007/s00428-016-1930-0

    Article  CAS  PubMed  Google Scholar 

  16. Yoo JY, Wang XW, Rishi AK, Lessor T, Xia XM, Gustafson TA, Hamburger AW (2000) Interaction of the PA2G4 (EBP1) protein with ErbB-3 and regulation of this binding by heregulin. Br J Cancer 82(3):683–690. https://doi.org/10.1054/bjoc.1999.0981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Z, Ahn JY, Liu X, Ye K (2006) Ebp1 isoforms distinctively regulate cell survival and differentiation. Proc Natl Acad Sci U S A 103(29):10917–10922. https://doi.org/10.1073/pnas.0602923103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okada M, Jang SW, Ye K (2007) Ebp1 association with nucleophosmin/B23 is essential for regulating cell proliferation and suppressing apoptosis. J Biol Chem 282(50):36744–36754. https://doi.org/10.1074/jbc.M706169200

    Article  CAS  PubMed  Google Scholar 

  19. Lu Y, Zhou H, Chen W, Zhang Y, Hamburger AW (2011) The ErbB3 binding protein EBP1 regulates ErbB2 protein levels and tamoxifen sensitivity in breast cancer cells. Breast Cancer Res Treat 126(1):27–36. https://doi.org/10.1007/s10549-010-0873-4

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Wang XW, Jelovac D, Nakanishi T, Yu MH, Akinmade D, Goloubeva O, Ross DD, Brodie A, Hamburger AW (2005) The ErbB3-binding protein Ebp1 suppresses androgen receptor-mediated gene transcription and tumorigenesis of prostate cancer cells. Proc Natl Acad Sci U S A 102(28):9890–9895. https://doi.org/10.1073/pnas.0503829102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ko HR, Nguyen TL, Kim CK, Park Y, Lee KH, Ahn JY (2015) P42 Ebp1 functions as a tumor suppressor in non-small cell lung cancer. BMB Rep 48(3):159–165. https://doi.org/10.5483/bmbrep.2015.48.3.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu JY, Shih YL, Lin SP, Hsieh TY, Lin YW (2019) YC-1 antagonizes Wnt/beta-catenin signaling through the EBP1 p42 isoform in hepatocellular carcinoma. Cancers (Basel) 11(5). https://doi.org/10.3390/cancers11050661

  23. He HC, Ling XH, Zhu JG, Fu X, Han ZD, Liang YX, Deng YH, Lin ZY, Chen G, Chen YF, Mo RJ, Zhong WD (2013) Down-regulation of the ErbB3 binding protein 1 in human bladder cancer promotes tumor progression and cell proliferation. Mol Biol Rep 40(5):3799–3805. https://doi.org/10.1007/s11033-012-2458-2

    Article  CAS  PubMed  Google Scholar 

  24. Sinn HP, Schneeweiss A, Keller M, Schlombs K, Laible M, Seitz J, Lakis S, Veltrup E, Altevogt P, Eidt S, Wirtz RM, Marme F (2017) Comparison of immunohistochemistry with PCR for assessment of ER, PR, and Ki-67 and prediction of pathological complete response in breast cancer. BMC Cancer 17(1):124. https://doi.org/10.1186/s12885-017-3111-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, Bilous M, Ellis IO, Fitzgibbons P, Hanna W, Jenkins RB, Press MF, Spears PA, Vance GH, Viale G, McShane LM, Dowsett M (2018) Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. J Clin Oncol 36(20):2105–2122. https://doi.org/10.1200/JCO.2018.77.8738

    Article  CAS  PubMed  Google Scholar 

  26. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, Senn HJ, Panel M (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol 24(9):2206–2223. https://doi.org/10.1093/annonc/mdt303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ogawa Y, Hai E, Matsumoto K, Ikeda K, Tokunaga S, Nagahara H, Sakurai K, Inoue T, Nishiguchi Y (2008) Androgen receptor expression in breast cancer: relationship with clinicopathological factors and biomarkers. Int J Clin Oncol 13(5):431–435. https://doi.org/10.1007/s10147-008-0770-6

    Article  CAS  PubMed  Google Scholar 

  28. Hamburger AW (2008) The role of ErbB3 and its binding partners in breast cancer progression and resistance to hormone and tyrosine kinase directed therapies. J Mammary Gland Biol Neoplasia 13(2):225–233. https://doi.org/10.1007/s10911-008-9077-5

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lessor TJ, Yoo JY, Xia X, Woodford N, Hamburger AW (2000) Ectopic expression of the ErbB-3 binding protein ebp1 inhibits growth and induces differentiation of human breast cancer cell lines. J Cell Physiol 183(3):321–329. https://doi.org/10.1002/(SICI)1097-4652(200006)183:3<321::AID-JCP4>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Linn D, Liu Z, Melamed J, Tavora F, Young CY, Burger AM, Hamburger AW (2008) EBP1, an ErbB3-binding protein, is decreased in prostate cancer and implicated in hormone resistance. Mol Cancer Ther 7(10):3176–3186. https://doi.org/10.1158/1535-7163.MCT-08-0526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghosh A, Awasthi S, Hamburger AW (2013) ErbB3-binding protein EBP1 decreases ErbB2 levels via a transcriptional mechanism. Oncol Rep 29(3):1161–1166. https://doi.org/10.3892/or.2012.2186

    Article  CAS  PubMed  Google Scholar 

  32. Vernieri C, Milano M, Brambilla M, Mennitto A, Maggi C, Cona MS, Prisciandaro M, Fabbroni C, Celio L, Mariani G, Bianchi GV, Capri G, de Braud F (2019) Resistance mechanisms to anti-HER2 therapies in HER2-positive breast cancer: current knowledge, new research directions and therapeutic perspectives. Crit Rev Oncol Hematol 139:53–66. https://doi.org/10.1016/j.critrevonc.2019.05.001

    Article  PubMed  Google Scholar 

  33. Zhang Y, Fondell JD, Wang Q, Xia X, Cheng A, Lu ML, Hamburger AW (2002) Repression of androgen receptor mediated transcription by the ErbB-3 binding protein, Ebp1. Oncogene 21(36):5609–5618. https://doi.org/10.1038/sj.onc.1205638

    Article  CAS  PubMed  Google Scholar 

  34. Zhou H, Mazan-Mamczarz K, Martindale JL, Barker A, Liu Z, Gorospe M, Leedman PJ, Gartenhaus RB, Hamburger AW, Zhang Y (2010) Post-transcriptional regulation of androgen receptor mRNA by an ErbB3 binding protein 1 in prostate cancer. Nucleic Acids Res 38(11):3619–3631. https://doi.org/10.1093/nar/gkq084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kono M, Fujii T, Lim B, Karuturi MS, Tripathy D, Ueno NT (2017) Androgen receptor function and androgen receptor-targeted therapies in breast cancer: a review. JAMA oncology 3(9):1266–1273. https://doi.org/10.1001/jamaoncol.2016.4975

    Article  PubMed  Google Scholar 

  36. Rizza P, Barone I, Zito D, Giordano F, Lanzino M, De Amicis F, Mauro L, Sisci D, Catalano S, Dahlman Wright K, Gustafsson JA, Ando S (2014) Estrogen receptor beta as a novel target of androgen receptor action in breast cancer cell lines. Breast Cancer Res 16(1):R21. https://doi.org/10.1186/bcr3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin HY, Sun M, Lin C, Tang HY, London D, Shih A, Davis FB, Davis PJ (2009) Androgen-induced human breast cancer cell proliferation is mediated by discrete mechanisms in estrogen receptor-alpha-positive and -negative breast cancer cells. J Steroid Biochem Mol Biol 113(3–5):182–188. https://doi.org/10.1016/j.jsbmb.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  38. Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D'Amato NC, Spoelstra NS, Edgerton SM, Jean A, Guerrero J, Gomez F, Medicherla S, Alfaro IE, McCullagh E, Jedlicka P, Torkko KC, Thor AD, Elias AD, Protter AA, Richer JK (2014) Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res 16(1):R7. https://doi.org/10.1186/bcr3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Robinson JL, Macarthur S, Ross-Innes CS, Tilley WD, Neal DE, Mills IG, Carroll JS (2011) Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J 30(15):3019–3027. https://doi.org/10.1038/emboj.2011.216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Elebro K, Borgquist S, Simonsson M, Markkula A, Jirstrom K, Ingvar C, Rose C, Jernstrom H (2015) Combined androgen and estrogen receptor status in breast cancer: treatment prediction and prognosis in a population-based prospective cohort. Clin Cancer Res 21(16):3640–3650. https://doi.org/10.1158/1078-0432.CCR-14-2564

    Article  CAS  PubMed  Google Scholar 

  41. Jiang HS, Kuang XY, Sun WL, Xu Y, Zheng YZ, Liu YR, Lang GT, Qiao F, Hu X, Shao ZM (2016) Androgen receptor expression predicts different clinical outcomes for breast cancer patients stratified by hormone receptor status. Oncotarget 7(27):41285–41293. https://doi.org/10.18632/oncotarget.9778

    Article  PubMed  PubMed Central  Google Scholar 

  42. Proverbs-Singh T, Feldman JL, Morris MJ, Autio KA, Traina TA (2015) Targeting the androgen receptor in prostate and breast cancer: several new agents in development. Endocr Relat Cancer 22(3):R87–R106. https://doi.org/10.1530/ERC-14-0543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (grant number: 81470119) and the Tianjin Municipal Science and the Technology Commission Research Fund (grant number: 15JCYBJC27800).

Author information

Authors and Affiliations

Authors

Contributions

Yun Niu contributed to the design of the study and re-evaluate the cases; Jing Liu contributed significantly to the analysis of the results and wrote the manuscript; Danni Xu and Cong Xu performed the data analyses and provided writing assistance; Lu Cao, Huiqin Xue and Qingxiang Meng helped performed the analysis with constructive discussions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yun Niu.

Ethics declarations

The study protocol was approved by the Human Ethical Committee of Tianjin Medical University Cancer Institute and Hospital and has been performed in accordance with the Declaration of Helsinki (1964) and its later amendments.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all patients before their surgery and before examination of the specimens.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Quality in Pathology

Electronic supplementary material

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xu, C., Xu, D. et al. The expression and prognostic role of EBP1 and relationship with AR in HER2+ breast cancer. Virchows Arch 477, 279–289 (2020). https://doi.org/10.1007/s00428-020-02773-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-020-02773-0

Keywords

Navigation