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Abstract The molecular genetic changes that have been
described in sarcomas over the past era have aided our
understanding of their pathogenesis. The majority of
sarcomas carry nonspecific genetic changes within a
background of a complex karyotype. These constitute the
challenges in sarcoma research for unraveling a putative
multistep genetic model, such as for chondrosarcoma, and
finding targets for therapeutic strategies. Approximately
15-20% of mesenchymal tumors carry a specific translo-
cation within a relatively simple karyotype. The resulting
fusion products act either as transcription factors upregulat-
ing genes responsible for tumor growth, as for instance in
Ewing sarcoma, or translocate a highly active promoter in
front of an oncogene driving tumor formation, as for
instance in aneurysmal bone cyst. In addition, a small subset
of mesenchymal tumors have specific somatic mutations
driving oncogenesis. The specific genetic changes unraveled
so far had great impact on the classification of bone and soft
tissue tumors. In addition, these changes can assist the
pathologist in the differential diagnosis of some of these
entities, especially within the groups of small blue round cell
tumors and spindle cell tumors, if performed in specialized
centers. While a putative association between certain fusion
products and outcome is still under debate, the role of
predicting response of targeted therapy has been well
established for KIT and PDGFRA mutations in gastrointes-
tinal stromal tumors.
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Introduction

More and more knowledge has become available aiding our
understanding of the genetic background of cancer. Chro-
mosomal translocations or gene mutations can give the cells
in which they arise a growth advantage, ultimately leading
to cancer. For bone and soft tissue tumors, an increasing
amount of tumor-specific genetic data has become avail-
able. Approximately 15-20% of mesenchymal tumors carry
a specific translocation [1] and have relatively simple
karyotypes. These translocations are restricted to specific
tumor types; in Ewing sarcoma, synovial sarcoma, and
myxoid liposarcoma up to 90-95% of the tumors carry a
tumor type-specific translocation. In addition, some tumors
carry specific somatic gene mutations (e.g., KIT or
PDGFRA mutations in gastrointestinal stromal tumors). In
contrast, in the more frequent sarcomas such as osteo-
sarcoma, chondrosarcoma, leiomyosarcoma, or high-grade
pleomorphic sarcoma, more complex karyotypes are found
with numerous gains and losses, without specific genetic
alterations [2].

These molecular data help us to understand the
pathogenesis of sarcomas. Moreover, they constitute the
basis of the 2002 WHO classification of bone and soft
tissue tumors, integrating morphology with genetics [3, 4].
Tumor-specific molecular changes have found their way in
daily clinical practice as molecular diagnostic tools to
assist the pathologist in diagnosing these lesions, but may
also serve as markers to detect minimal residual disease
and to predict clinical outcome, although the latter is still
somewhat controversial. Finally, our increasing knowl-
edge of the genetic background of sarcomas, including the
ones without specific genetic changes, will hopefully
enable the development of more types of targeted therapeutic
strategies.
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Clues about sarcoma pathogenesis
Sarcomas with specific reciprocal translocations

For translocation-derived sarcomas, such as Ewing sarcoma,
the occurrence of the translocation is considered a very early
step in tumorigenesis [5]. In many of the translocations in
sarcomas, the EWSRI1 or the FUS gene is involved. These
promiscuous genes are strongly homologous and encode
RNA-binding proteins. Most probably, EWSR1 and FUS
have a similar effect when they are involved in a chromo-
somal translocation. The type of DNA-binding domain
originating from the fusion partner probably determines the
tumor type that is induced by the translocation.

These hybrid oncoproteins subsequently act as aberrant
transcription factors dysregulating gene expression patterns
initiating tumor formation. Target genes of the EWSRI1-
ETS fusion products were shown to stimulate cell prolifer-
ation (upregulation of PDGF-C, CCDNI, ¢-MYC), evade
growth inhibition (downregulation of cyclin-dependent
kinase inhibitors and TGF-beta receptor type II), escape
from senescence (upregulation of hTERT), escape from
apoptosis (repression of IGFBP-3 promoter), induce angio-
genesis (VEGF), invasion and metastases (MMPs) [6].

Alternative to aberrant transcription factor activity of
fusion products, some other mechanisms of translocation-
based tumorigenesis have been described. One of the genes
involved in a translocation can be placed under control of
the other gene involved in the translocation, which usually
leads to over expression. The growth factor PDGFB is
placed under control of the COL1Al promoter in the
COL1A1-PDGFB fusion in dermatofibrosarcoma protu-
berans [7]. This leads to autocrine stimulation and tumor
cell proliferation through the PDGF receptor [7, &].
Similarly, in aneurysmal bone cyst, many different trans-
locations have been described [9, 10], all resulting in
oncogenic activation of the USP6 (TRE2 and TRE17) gene
on chromosome 17p13 by placing it under transcriptional
control of other, highly active promoters [11]. The
mechanism by which upregulation of USP6, involved in
actin remodeling [12], causes ABC formation is so far
unknown. Finally, in congenital fibrosarcoma, the ETV6-
NTRK3 fusion product represents a chimeric tyrosine
kinase in itself leading to constitutively active Ras/MAPK
mitogenic pathway and PI3K/Akt pathway-mediated cell
survival [13].

Sarcomas with specific somatic mutations
In addition, some mesenchymal tumors carry specific somatic
mutations that upon their discovery elucidated the pathogen-

esis of these tumors. For instance, KIT mutations in GIST
revealed its relation with the interstitial cells of Cajal. Another
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example is fibrous dysplasia, a benign fibro-osseous lesion in
the medulla of the bone. Polyostotic fibrous dysplasia can be
associated with endocrine abnormalities and cafe au lait
pigmentation in nonhereditary Mc Cune Albright Syndrome
(Online Mendelian inheritance in man NCBI number MIM
174800). Fibrous dysplasia has for long been regarded a
nonneoplastic process. Its neoplastic nature was suggested by
the occurrence of clonal chromosomal abnormalities found in
cytogenetic studies [14]. Fibrous dysplasia is characterized
by activating mutations in the Gs alpha (GNASI1) gene
localized on chromosome 20q12—q13.3, encoding the alpha
subunit of the stimulatory guanine nucleotide-binding protein
(G-protein) [15]. G-proteins couple extracellular receptors to
intracellular effector enzymes and ion channels, mediating
the cellular response to an external stimulus. The identifica-
tion of GNAS] mutations also in Mc Cune Albright
syndrome (postzygotic) and nonskeletal-isolated endocrine
lesions clarified that these disorders represent a spectrum of
phenotypic expressions of the same basic disorder, probably
reflecting different patterns of somatic mosaicism [15].
Moreover, GNAS1 mutations are also found in (intramuscu-
lar and cellular) myxomas [16] and the cooccurrence of
fibrous dysplasia and myxomas is known as Mazabraud
syndrome [17]. Interestingly, GNAS1 mutations are found in
the cooccurring myxomas as well and are absent in a
morphological mimic of myxoma: low-grade myxofibrosar-
coma [18]. Finally, inactivating mutations of the hSNF5/INI1
gene are found in rhabdoid tumors. hSNF5 is a core member
of the SWI/SNF chromatin remodeling complex and hSNF5
loss leads to epigenetically based changes in transcription
resulting in cell cycle progression [19] and genomically
stable tumors [20].

Sarcomas with more or less specific amplifications

While in principle not tumor specific, some sarcomas are
characterized by a highly reproducible amplification such
as in case of atypical lipomatous tumor/ well-differentiated
liposarcoma/dedifferentiated liposarcoma the amplification
of CDK4 and MDM2 [21-23]. While most if not all of the
aforementioned tumors harbor such an amplification and as
such it can be used to recognize a lipogenic origin in the
dedifferentiated areas of dedifferentiated liposarcoma, it is
by no means tumor specific as similar amplifications occur
for instance in osteosarcoma or chondrosarcoma [24]. This
genetic marker however is in context quite useful for
diagnostic purposes.

Sarcomas with nonspecific complex karyotypes
The more frequent sarcomas, like high-grade pleomorphic

sarcoma, myxofibrosarcoma [25] or leiomyosarcoma [26],
have complex karyotypes lacking specific genetic aberrations.
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For instance, for chondrosarcoma development, a multistep
genetic model is presumed. Chondrosarcomas can be either
central (arising in the medullar cavity of bone) or peripheral
(at the surface of bone). Peripheral chondrosarcomas arise
secondarily within the cartilaginous cap of a benign osteo-
chondroma. Osteochondromas can occur within an autosomal
dominantly inherited syndrome, Multiple Osteochondromas,
in which mutations occur in either EXT1 or EXT2 [27]. These
encode glycosyltransferases catalyzing heparan sulphate
chain elongation on heparan sulphate proteoglycans, which
are important for cellular signaling of Hedgehog, Fibroblast
Growth Factor, Wnt, Bone Morphogenetic Protein and
Transforming Growth Factor beta. Thus, while it is clear
that inactivation of EXT underlies osteochondroma develop-
ment [28, 29], so far, unidentified additional genetic changes
are required for malignant transformation towards secondary
peripheral chondrosarcoma, resulting in more complex
karyotypes including near-haploidy and polyploidization
[30, 31]. In contrast, in the more common central chon-
drosarcoma EXT is not involved [32]. Instead, complex
karyotypes are found especially in high-grade chondrosar-
coma [31, 33, 34], and 96% of them contains alterations at
some level in the pRb pathway [35]. Thus, the genetic
background of tumors without specific genetic aberrations is
slowly being elucidated.

Classification of sarcomas

Since soft tissue tumors are relatively rare compared with
epithelial malignancies, they are generally regarded difficult
by surgical pathologists. Soft tissue tumors constitute a very
heterogeneous group of tumors containing >100 histological
types and subtypes. The considerable morphological overlap
between the different diagnostic entities further adds to
difficulties in classification [36]. Classification is however
essential since these different entities require different
treatment strategies and have a different outcome. In
classifying tumors, the pathologist can be assisted by
immunohistochemistry and molecular diagnostics [37]. Im-
munohistochemistry is used to confirm the line of differen-
tiation, while molecular techniques can identify specific
chromosomal translocations or mutations. The 2002 WHO
classification of bone and soft tissue tumors is mainly based
on the integration of morphology and genetics [36]. This
classification is at present widely accepted and used.

Use of specific molecular changes in differential
diagnosis

The differential diagnosis among the groups of small blue
round cell tumors and spindle cell tumors can be very

difficult for pathologists due to the high number of entities
and their morphological overlap. Although the morphology
and immunohistochemistry remain at the cornerstone of the
diagnosis, the detection of specific genetic alterations,
either translocations or somatic mutations, can be very
helpful. Molecular diagnostics is especially important in
those cases with unusual morphology, immunohistochem-
istry or clinical presentation.

The term “small blue round cell” tumor encompasses a
heterogeneous group of tumors that share the presence of
undifferentiated small round cells with scant cytoplasm at
histology. The differential diagnosis includes Ewing
sarcoma/PNET, neuroblastoma, non-Hodgkin lymphoma,
poorly differentiated (round cell) synovial sarcoma,
rhabdomyosarcoma, small cell osteosarcoma, desmoplas-
tic round cell tumor, and mesenchymal chondrosarcoma
(Table 1). Due to the absence of distinguishing morpho-
logical features, their distinction can be difficult. Using
immunohistochemistry and conventional histochemical
stainings, many of these entities can already be distin-
guished. In addition, molecular diagnostics can be used to
detect specific reciprocal translocations in Ewing sarcoma,
rhabdomyosarcoma, synovial sarcoma or desmoplastic
small round cell tumor. Either (Real-Time) PCR [38] on
RNA isolated from frozen or paraffin-embedded tumor
tissue,or FISH on paraffin-embedded slides can be used to
detect these translocations. Especially in case of poorly
differentiated synovial sarcoma versus Ewing sarcoma /
PNET the morphology and the immunohistochemical
profile can be identical requiring the demonstration of a
EWSRI1 or SS18 rearrangement to come to a correct
diagnosis and therapy.

Spindle cell tumors share, as their name implies, a
spindle cell morphology of the tumor cells. The differential
diagnosis includes monophasic synovial sarcoma, leiomyo-
sarcoma, solitary fibrous tumor, malignant peripheral nerve
sheath tumor, clear cell sarcoma, fibrohistiocytic tumors,
dedifferentiated liposarcoma, spindle cell rhabdomyosarco-
ma, and in abdominal localization, gastrointestinal stromal
tumor (Table 2). Monophasic synovial sarcoma and clear
cell sarcoma carry specific chromosomal translocations that
can be used. This is especially helpful in the distinction of
MPNST and monophasic synovial sarcoma, which can be
morphologically and immunohistochemically indistinguish-
able. KIT or PDGFRA mutation analysis can be helpful to
diagnose gastrointestinal stromal tumor, especially in
the small proportion in which CD117 is negative. The
diagnosis of dedifferentiated liposarcoma especially if the
well-differentiated liposarcoma component is not present at
morphology can be facilitated by demonstrating the 12q13
amplification that is characteristic for these lesions, either
by immunohistochemistry or FISH for amplification of
MDM2 [39, 40].
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Table 1 Distinguishing features in small blue round cell tumors

Histochemical staining

Immunohistochemistry

Molecular diagnostics

Ewing sarcoma/PNET
Neuroblastoma
Alveolar rhabdomyosarcoma

Non-Hodgkin lymphoma/leukemia

Small cell carcinoma

PAS positive

PAS negative

CD99+
CD99—, CD56+
MYF4 (myogenin)+, Desmin+

CD45+

Translocation EWSR1
MYCN amplification

Translocation FKHR
(FOXO1A)

Depending on subtype

(Poorly differentiated) synovial -

sarcoma

Small cell osteosarcoma Deposition of bone
(alkaline phosphatase)

Mesenchymal chondrosarcoma Deposition of cartilage

Desmoplastic small round -
cell tumor
Melanoma -

Keratin+, neuroendocrine -
markers

CD99+, BCL-2+ Translocation SS18 (SYT)

Coexpression keratin Translocation EWSR1
and desmin

Melanocytic markers+ -

Detection of minimal residual disease

Following exciting results in molecular screening of lymph
nodes for micrometastases of colonic cancer and bone
marrow for minimal residual disease after lymphoma
treatment, efforts have been made to do the same for
sarcomas harboring a tumor-specific translocation as for
instance Ewing sarcomas [41, 42]. Presence of tumor cells
in bone marrow but not in blood was claimed to be
associated with adverse prognosis [43], while others
showed an increased risk of systemic relapses associated
with bone marrow micrometastasis and circulating tumor
cells in localized Ewing tumor.[44]. Tumor cells were
shown to be present in a subset of stem cell harvests of
Ewings sarcoma patients and their persistence following
transplantation was claimed to be associated with relapse.
Large prospective multinational randomized trials have
been designed such as the EuroEwing 99 trial to investigate
these questions. Although this trial is now open for 10 years,
still, the data are not mature to draw final conclusions with
regard to this question, implying that when a difference is
present, this should be minimal at best for the individual
patient. For alveolar rhabdomyosarcoma, molecular

Table 2 Distinguishing features in spindle cell tumors

markers have been advocated for early detection of tumor
relapses as well as using a reverse transcriptase-polymerase
chain reaction method [45].

Prediction of outcome

Some tumors like Ewing sarcoma or synovial sarcoma may
carry individually one of a spectrum of tumor specific
cytogenetic or molecular genetic abnormalities. In retro-
spective studies, it has been claimed that the prognoses for
these tumor entities was influenced by the specific
molecular-defined translocation type [46—48]. These
appeared in these first studies a powerful prognostic
indicator and in case of synovial sarcoma even a predictor
of the biphasic versus the monophasic subtype. In due
course however, based on either prospectively collected
cases treated in the context of a clinical trial or large
national sarcoma databases, the prognostic value of these
subtypes of translocations has been questioned for both
tumor types [49—52]. Next to the specific translocations,
some sarcomas, especially well documented in Ewing
sarcoma, harbor numerical chromosomal abnormalities,

Histochemical stainings

Immunohistochemistry Molecular diagnostics

Monophasic synovial sarcoma -
Leiomyosarcoma -
Solitary fibrous tumor -
MPNST
Clear cell sarcoma -
GIST —

Dedifferentiated liposarcoma -

Reticulin staining

EMA+, keratin+ Translocation SS18 (SYT)
Smooth muscle markers+ -

CD34+ -

S100 protein in a subset of cases -

Translocation EWSR1
KIT/PDGFRA mutation
MDM2 amplification

Melanocytic markers+
CD117+, DOGI1+
MDM2, CDK4 over expression

@ Springer



Virchows Arch (2010) 456:193—-199

197

deletions of the p16 region or additional point mutations in
p53 [53-57]. These abnormalities are most often grossly
overlooked when applying an RT-PCR approach just
focusing on the known fusion breakpoints. An important
role in tumor progression and prognosis has been claimed
for these additional, nontumor-specific events. In case of
metastatic GIST, the prognosis is highly correlated to the
response to tyrosine kinase-inhibiting drugs [58]. While
also immunohistochemical phenotypic markers have been
studied with potential prognostic impact [59], these failed
to show prognostic impact in contrast to clinical [60] and
morphological [61] parameters. Here, especially the type of
mutation in KIT or PDGFRA appears to have an important
impact on response to tyrosine kinase inhibition [62, 63]
while additional molecular events superimposed to the
original tumor-specific ones like those described earlier for
Ewing sarcoma are increasingly more of interest in
studying resistance [64,65] and tumor progression [66].

Identification of molecular targets for treatment

With the identification of some of the specific changes in
sarcomas, therapeutic targets were disclosed. The most
well-known example is KIT/PDGFRA mutations in gastro-
intestinal stromal tumors of which the constitutively active
signaling and subsequent tumor growth can be inhibited
using tyrosine kinase inhibitors such as imatinib (STI571,
Gleevec) [67]. Also, specific translocations have revealed
targets for therapy. The COL1A1-PDGFB fusion product in
dermatofibrosarcoma protuberans signals through the
PDGF receptor in an autocrine loop [8], of which the
signaling can be blocked using tyrosine kinase inhibitors
acting at PDGFR such as imatinib. Imatinib treatment of
this superficially located low-grade sarcoma can be bene-
ficial to reduce tumor size in otherwise inoperable tumors.

Conclusion

Molecular and cytogenetic studies performed over the past
decades have been proven to have major impact in identifi-
cation, classification, and in some cases, prognostication of a
large variety of sarcomas. With regard to diagnosis, the use of
molecular techniques for an array of tumor entities has found
their way into routine clinicopathological practice. Like the
treatment of sarcomas, the application of molecular techni-
ques needs to be under strict protocol and in morphological
context in order to avoid disastrous mistakes in tumor
classification. Here, a need for vigorous (multi) national
quality control assessments, centralization not only of
treatment but also of (molecular) diagnosis and development
of (multi) national guidelines [68—71] is a future view which

needs attention of the pathology community as well as
health-care decision makers.
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