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Abstract
Domestication transforms once wild animals into tamed animals that can be then exploited by humans. The process entails 
modifications in the body, cognition, and behavior that are essentially driven by differences in gene expression patterns. 
Although genetic and epigenetic mechanisms were shown to underlie such differences, less is known about the role exerted 
by trans-regulatory molecules, notably transcription factors (TFs) in domestication. In this paper, we conducted extensive in 
silico analyses aimed to clarify the TF landscape of mammal domestication. We first searched the literature, so as to establish 
a large list of genes selected with domestication in mammals. From this list, we selected genes experimentally demonstrated 
to exhibit TF functions. We also considered TFs displaying a statistically significant number of targets among the entire 
list of (domestication) selected genes. This workflow allowed us to identify 5 candidate TFs (SOX2, KLF4, MITF, NR3C1, 
NR3C2) that were further assessed in terms of biochemical and functional properties. We found that such TFs-of-interest 
related to mammal domestication are all significantly involved in the development of the brain and the craniofacial region, 
as well as the immune response and lipid metabolism. A ranking strategy, essentially based on a survey of protein-protein 
interactions datasets, allowed us to identify SOX2 as the main candidate TF involved in domestication-associated evolution-
ary changes. These findings should help to clarify the molecular mechanics of domestication and are of interest for future 
studies aimed to understand the behavioral and cognitive changes associated to domestication.
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Introduction

Domestication is the process that transforms once wild animals 
into tamed animals after extensive contact with humans. Under-
standing domestication is crucial for diverse and productive 

domestic animal varieties, but also for testing how evolution 
works, particularly in response to quick changes in social envi-
ronment. Trends towards increased prosocial behavior, without 
human intervention, have been claimed to trigger domesticated 
features also in wild species, as observed in bonobos (Hari et al. 
2012) and hypothesized for humans (Hare 2017), but also in 
cases of commensalism (Brooker et al. 2020).Communicated by Tamara Franz-Odendaal
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Domestication impacts on the body, cognition, and behav-
ior of animals, with relevant changes becoming ultimately 
fixed and transmitted to the offspring. Being such a rapid 
process, domestication has been argued to result mostly from 
epigenetic changes (Trut et al. 2009a; Janowitz Koch et al. 
2016; Vogt 2017; Vogt 2021). But when selective forces 
persist, epigenetic changes can be assimilated as genetic 
variants (O’Dea et al. 2016; Vogt 2021). Genetic differences 
between domesticated animals and wild conspecifics have 
been found for several species: the pig (Larson et al. 2005), 
the dog (Axelsson et al. 2013; Freedman et al. 2016), the 
cat (Montague et al. 2014), cattle (Qanbari et al. 2014), the 
rabbit (Carneiro et al. 2014), or the horse (Pendleton et al. 
2018). Overall, domestication seems to result from subtle 
changes in multiple regulatory networks and, ultimately, in 
many genes, each finely contributing to the phenotype. There 
is only partial overlap across species between candidate genes 
(see Wilkins et al. 2014a for review); still, animals that have 
been domesticated for millennia share a set of distinctive fea-
tures, commonly referred to as the domestication syndrome. 
This includes smaller skulls/brains, reduced teeth and snouts, 
neotenic features, earlier sexual maturation, altered hairiness 
and pigmentation, and reduced sexual dimorphism (Wilkins 
et al. 2014b). The features encompassing the syndrome are 
expressed variably in different species, with some occasion-
ally absent (Sánchez-Villagra et al. 2016). It has been hypoth-
esized that the co-occurrence of (some of) these traits stems 
from tameness resulting in socialization-induced molecular 
cues. Mostly related to the hypothalamic-pituitary-adrenal 
axis and ultimately associating to fear control and bounding, 
these cues alter the migration and fate of neural crest (NC) 
cells. These are a type of stem cells that contribute to the 
formation of body organs during embryonic growth (Wilkins 
et al. 2014a; Wilkins 2017). However, such a hypothesis and 
the very existence of a domestication syndrome have been 
debated (Sánchez-Villagra et al. 2016; Lord et al. 2020, and 
Johnsson et al. 2021). Indeed, domestication has induced 
physiological changes that vary greatly, depending on species 
and domestication contexts. Moreover, multiple phenotypic 
traits presently observed in domesticated mammals have been 
selected by humans for exploitation purposes, so they cannot 
be considered as resulting from socialization (i.e., selection 
for tameness) as such. Finally, the multifactorial nature of 
domestication is in line with most tame species having been 
domesticated at various places and historical times: present-
day domesticated populations spring from an admixture of 
diverse domesticated subpopulations (Bruford et al. 2003; 
Larson et al. 2005, 2010). It thus appears particularly chal-
lenging to decipher the evolutionary mechanisms that were 
genuinely triggered by socialization in domesticated animals.

Most differences between domesticated and wild animals 
are thought to result from differences in gene expression 
patterns. Interestingly, (epi)mutations in the regulatory 

regions of key developmental genes have been shown to 
result in profound dissimilarities between domesticates and 
wild counterparts (see, e.g., Lindblad-Toh et al. (2005) on 
dogs vs. wolves). Studies have also uncovered changes in the 
methylation profiles of multiple genes between domestic and 
wild populations (e.g., Sundman et al. (2020) on dogs; Nätt 
et al. (2012) on chickens; or Albert et al. (2012a) on guinea 
pigs, pigs, and rabbits). Less is known about the trans-regu-
latory molecules, notably transcription factors (TFs), which 
orchestrate domestication-driven genomic events. Most 
studies have focused on the role of given TFs on particular 
traits that can be found selected in specific domesticated 
species (e.g., Baranowska Körberg et al. (2014) on the role 
of MITF-M on pigmentation changes in dogs). Identifying 
such TFs is important, as epigenetic modifications found to 
be transmissible (notably methylation of histone or DNA 
cytosines) impact the regulatory functions of TFs (Hughes 
and Lambert 2017; Yin et al. 2017).

In this paper, we explore the TF landscape of 
domestication, to consider the potential effect of TF 
activity changes on the phenotypic expression of 
domestication in mammals. We have uncovered a limited 
set of TFs potentially orchestrating the multiple genomic 
programs underlying domestication events in mammals. 
To identify such core TFs, we first searched the literature, 
so as to establish a large list of 764 genes selected with 
domestication in mammals. This list was then filtered out 
to retain TF genes. We also searched for TFs displaying 
a statistically significant number of targets among the 
whole list of domestication selected genes. This workflow 
allowed us to identify 5 candidate core TFs that were 
further assessed in terms of protein-protein interactions 
and functional properties. We found evidence indicating 
that the pathways and biological processes regulated 
by such TFs-of-interest are significantly involved in the 
development of both brain and craniofacial features—
traits that are notably impacted by domestication 
events. Potential consequences for the emergence of the 
domesticated phenotype in mammals are subsequently 
discussed. Although the set of TFs we highlight in the 
paper opens a promising window into the regulatory 
aspects of mammal domestication, other contributors such 
as microRNAs and other non-coding RNAs are likely 
involved and deserve a closer examination in future studies.

Materials and methods

We first compiled a list of genes that show signals of selec-
tion in domesticated mammals, compared to their non-
domesticated counterparts. For this, we consulted general 
bibliographic databases like PubMed (https:// pubmed. ncbi. 
nlm. nih. gov/) and Google Scholar (https:// schol ar. google. 

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://scholar.google.com/


125Development Genes and Evolution (2023) 233:123–135 

1 3

com/) with “selection “+ “genes” + “domestication” as 
search criteria. We then selected papers focusing on mam-
mal domesticated species vs. their wild counterparts. The 
species we relied on include guinea pig, pig, rat, dog, cat, 
cattle, domesticated fox, horse, rabbit, and sheep (Wom-
ack 2005; Trut et al. 2009b; Albert et al. 2012b; Axelsson 
et al. 2013; Bellone et al. 2013; Carneiro et al. 2014; Mon-
tague et al. 2014; Qanbari et al. 2014; Schubert et al. 2014; 
Wilkins et al. 2014b; Wright 2015; Cagan and Blass 2016; 
Freedman et al. 2016; Zapata et al. 2016; Benítez-Burraco 
et al. 2017; Theofanopoulou et al. 2017; Pendleton et al. 
2018). The list includes 764 genes (Supplemental Data File 
1; sheet 1). The enrichment analysis platform Enrichr (Kule-
shov et al. 2016; Xie et al. 2021) was used to perform enrich-
ment analyses in pathways and TF targets. Briefly, pathway 
enrichments with an adjusted p value < 0.01 were extracted 
from the analyses of 4 libraries: Reactome 2022 (Gillespie 
et al. 2022), Bioplanet 2019 (Huang et al. 2019), KEGG 
2021 (Kyoto encyclopedia of genes and genomes) (Kane-
hisa et al. 2021), and Martens et al. 2021 (Martens et al. 
2021). These libraries gather lists of genes that, based on the 
available literature, can be regarded as involved in specific 
regulatory pathways. Naturally, these 4 libraries may exhibit 
differences concerning the number and nature of pathways 
to which a gene list can be associated. To fix this issue, 
we combined the outcomes of the survey of each individ-
ual library then extracting and ranking the most significant 
enrichments across the 4 libraries. The principle underlying 
pathway enrichment analyses can be summarized as follows. 
Considering the existence of roughly 22,000 protein-coding 
genes in the human or murine genome, one can determine if 
a given set of genes harbors a higher-than-expected number 
of genes involved in one specific pathway. Then, for each 
enrichment found, a p value is calculated, generally based on 
the Fisher exact test. For our analyses, we used the Enrichr 
platform (https:// maaya nlab. cloud/ Enric hr/), which provides 
a computed adjusted p value based on a corrected Fisher 
exact test (see Kuleshov et al. 2016 for details). For enrich-
ment analyses in TF targets, we queried the ChEA 2022 
library of experimentally demonstrated TF targets and bind-
ing sites, which is mostly based on ChIP-seq results. The 
principle underlying TF targets enrichment analysis can be 
summarized as follows. ChEA 2022 is a library of ChIP-seq 
data consisting of sets of genes that have been experimen-
tally shown to be regulated by specific TFs. Each TF is thus 
associated to a specific set of experimentally demonstrated 
target genes out of a total of roughly 22,000 human protein-
coding genes in the human or murine genome. Accord-
ingly, one can determine if a given list of genes harbors a 
higher-than-expected number of genes previously verified 
to be targeted by a given TF. Finally, we used the Harmoni-
zome website (https:// maaya nlab. cloud/ Harmo nizome/), an 
Enrichr-connected integrated resource of OMICs datasets 

(see Rouillard et al. (2016) for details), to obtain the lists of 
experimentally demonstrated targets of each of our candidate 
TFs and to perform pathway enrichment analyses on these 
lists, following the same strategy described above. Data min-
ing analyses were performed in triplicate between October 
2022 and January 2023. The general workflow applied to 
this study is summarized in Fig. 1.

Results

We first considered whether genes selected in domesticated 
mammals significantly comprise genes coding for TFs. By 
crossing the list of domestication selected genes with cur-
rently known human TFs (Lambert et al. 2018) (Supple-
mental Data File 2; sheet 1), we identified 53 TFs which are 
thus candidate transcriptional regulators of domestication 
processes (Table 1; left) (Supplemental Data File 2; sheet 1). 
Generally, the set was significantly enriched in TFs involved 
in pathways which are poorly specific (such as “gene expres-
sion” or “cell differentiation”) (Supplemental Data File 2; 
sheet 2). Among the most statistically significant pathways, 
we found “neural crest differentiation” (adjusted p value: 
1.60E−5) and “oligodendrocyte specification and differen-
tiation, leading to myelin components for CNS” (adjusted p 
value: 4.54E−5), as well as pathways involved in beta-catenin 
signaling (“deactivation of beta-catenin transactivating com-
plex”, adjusted p value: 0.004) and Wnt signaling (“Wnt 
signaling pathway”, adjusted p value: 0.006) (Supplemental 
Data File 2; sheet 2).

As a complementary approach, we determined whether 
the list of genes selected with domestication was enriched 
in genes previously found to be regulated by specific TFs. 
To this aim, we surveyed the data library “ChEA 2022”, 
which gathers results from 757 ChiP-seq (or ChIP-seq-
related) experiments performed in a large variety of human 
or rodent cell types. By this method, we identified 66 TFs 
exhibiting among their targets a statistically significant num-
ber of genes selected with domestication (adjusted p value 
< 0.01) (Table 1, right column) (Supplemental Data File 3; 
sheets 1 and 2). Again, this list was significantly enriched 
in TFs involved in poorly specific pathways such as “pre-
implantation embryo”, “signaling pathways regulating 
pluripotency of stem cells”, or “mesodermal commitment 
pathway” (Supplemental Data File 3; sheet 3). However, a 
significant enrichment was also observed for specific path-
ways of interest for the domesticated phenotype, notably 
including “TGF-beta Receptor Signaling” (adjusted p value: 
4.97E−10), and again beta-catenin signaling “Nuclear beta-
catenin signaling and target gene transcription regulation” 
(adjusted p value: 2.10E−8), and Wnt signaling “Wnt signal-
ing pathway” (adjusted p value: 2.01E−7). It is noteworthy 
that a significant enrichment was also found for TFs involved 

https://scholar.google.com/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Harmonizome/
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in the transcriptional regulation by RUNX1 (adjusted p 
value: 1.25E−5), RUNX2 (adjusted p value: 6.94E−4), and 
RUNX3 (adjusted p value: 1.23E−6) (Supplemental Data 
File 3; sheet 3).

It should be underscored that the sets of pathways found 
to be enriched for TFs’ list 1 (n = 53) and list 2 (n =66) did 
not overlap, except for the beta-catenin signaling pathway. 
For this reason and because our goal was to establish a set of 
candidate master TFs regulating a putative domestication-
associated transcriptional program, we crossed our two lists 
of candidate TFs. This enabled us to identify TFs that were 
selected in domesticated mammals and that regulate a statisti-
cally significant number of genes selected during domestica-
tion. We found five overlapping TFs: KLF4, MITF, NR3C1, 
NR3C2, and SOX2. We, thus, concluded that these five TFs 
represent the main candidate TFs regulating the transcrip-
tional landscape of domestication in mammals. Table 2 con-
tains some functional features of interest within these TFs.

We then aimed at determining how the functional roles 
currently assigned to these core candidate TFs may relate 
with domestication-associated events. To achieve this goal, 

we first performed enrichment analyses on the lists of the 
known targets of 4 of our core candidates, as experimentally 
demonstrated by ChIP-seq (or ChIP-seq-related) experi-
ments (no data were available for NR3C2 via the ChEA 
2023 library) (Supplemental Data File 4; sheet 1 to 4). 
As shown in Table 3, among the only 6 pathways that are 
enriched across the lists of TF targets, 2 are directly related 
to the brain (namely, “axon guidance” and “BDNF signaling 
pathway”, adjusted p values < 0.01) (Supplemental Data 
File 4; sheets 1 to 4).

We then sought to identify a potential key regulatory TF 
among our short list of five candidate TFs. To this aim, we 
first surveyed the ChEA 2022 databank extracting transcrip-
tional regulatory links between our five TFs (Fig. 1). In the 
identified regularity network linking these five TFs, SOX2 
exhibited the highest number of targets among candidate 
TFs. Additionally, we surveyed the proteomics databank 
“BioGrid” to find out about potential interactions between 
these five core candidates together with the list of 53 TFs 
subject to a positive selection process in domesticated 
mammals (Table 4, central column) and the list of 66 TFs 

Fig. 1  Analytical workflow. The main analytical tasks (in oval shapes) and resulting data (in rectangular shapes) are grouped by colors indicating 
successive chronological steps of the workflow
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Table 1  TFs potentially 
involved in mammal 
domestication

TFs subject to a positive selection process 
in domesticated mammals

TFs targeting a statistically significant (adjusted p value < 
0.01) number of genes positively selected in domesticated 
mammals

ARID3B AF4
CBX2 AR
CUX2 ARNT
DMRT3 BRD4
EEA1 CDX2
ELF2 CEBPA
ETV4 CEBPD
FOXD3 CTBP1
FOXI1 CTBP2
FOXJ3 CTCF
GRHL3 CTNNB1
HMGA2 DROSHA
IKZF1 FLI1
JRKL FOXA1
KLF4 FOXA2
LIN28B FOXM1
LTF GATA1
MAFK GATA2
MBD2 GF1
MITF GF1B
NPAS3 JARID2
NR2F2 KDM2B
NR3C1 KLF1
NR3C2 KLF4
NRF1 KLF5
OLIG1 LEF1
PAX2 LMO2
PAX3 LUZP1
PHF20 MBD3
PLAG1 MEIS1
PPARD MITF
PRMT3 MTF2
SETBP1 NFKB1
SKI NR3C1
SOX10 NR3C2
SOX2 OCT4
SOX6 OLIG2
SOX9 P300
SREBF1 POU3F2
TFCP2L1 POU5F1
THYN1 PPAR
TLX3 REST
ZFAT RING1B
ZNF236 RUNX2
ZNF286A SMAD3
ZNF286B SMAD4
ZNF436 SMARCA4
ZNF492 SMARCD1
ZNF516 SOX11
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targeting a significant number of genes positively selected in 
domesticated mammals (Table 4, right column) (Supplemen-
tal Data File 5; sheets 1 to 5). We found that SOX2 exhib-
its by far the highest number of partners among both lists 
(Table 4, Fig. 2, and Supplemental Data File 5; sheet 1 to 5).

Discussion

We have delved into the regulatory landscape of mammal 
domestication via different in silico analyses, aimed at 
identifying TFs potentially contributing to domestication 

Table 1  (continued) TFs subject to a positive selection process 
in domesticated mammals

TFs targeting a statistically significant (adjusted p value < 
0.01) number of genes positively selected in domesticated 
mammals

ZNF521 SOX2
ZNF555 STAT1
ZNF679 STAT3
ZNF780B SUZ12

TAL1
TBX3
TCF3
TCF4
TEAD4
TOP2B
TP53
TP63
UBTF
WT1
YAP1
ZFP57
ZNF217

Table 2  Functional characterization of core TFs involved in mammal domestication

KLF4 - Involved in cell growth, proliferation, and differentiation, including the induction of pluripotent stem cells (Ghaleb and Yang 2017)
MITF - Involved in NC-derived melanocyte development and differentiation (Hershey and Fisher 2005)

- Mutations of the gene result in auditory-pigmentary syndromes categorized as neurocrestopathies (e.g., Waardenburg syndrome) 
(Hershey and Fisher 2005)

NR3C1 - Encodes the glucocorticoid receptor (GR), with glucocorticoid levels affecting stability of dendritic spines (Bennett and Lagopoulos 
2014)

- Undergoes epigenetic modifications in response to in utero stress (Duffy et al. 2019), epigenetic modifications associated to stress and 
fear regulation being an aspect of domestication (Jensen 2015)

NR3C2 - Encodes the aldosterone or mineralocorticoid receptor (MR), which also binds glucocorticoids, involved in sodium reabsorption and 
potassium excretion (Le et al. 2004; Baker and Katsu 2017)

- Candidate for autism spectrum disorders (Turner et al. 2016)
SOX2 - Encodes one component of the SHH-GLI signaling pathway, which regulates the fate of NC cells (Oosterveen et al. 2012; Oosterveen 

et al. 2013; Peterson et al. 2012)
- Contributes to the maintenance of cell totipotency during embryonic development, the pluripotency of embryonic stem cells, and the 

multipotency of neural stem cells (Sarlak and Vincent 2016)
- Plays key role in neurogenesis, and neuronal and glial differentiation of NC-derived cells (Wakamatsu and Uchikawa 2021; Mercurio 

et al. 2022)
- Also involved in adult tissue homeostasis, particularly in the central nervous system (Feng and Wen 2015), contributing to the devel-

opment of specific brain areas, like the ventral telencephalon (Ferri et al. 2013) or the hippocampus (Mercurio et al. 2021)
- Also involved in the formation of the sensorimotor system, including the eye, the ear, and the pituitary (Kondoh et al. 2004; Kelber-

man et al. 2008; Dvorakova et al. 2020), as well as its connectivity with the cortex (Mercurio et al. 2019)
- Contributes to tooth development via Wnt signaling (Lee et al. 2016)
- Mutations in the gene result in eye abnormal growth, brain malformations (particularly impacting the hippocampus and the forebrain), 

developmental delay (including intellectual disability and growth delay), and abnormal gonadal growth (Hever et al. 2006; William-
son et al. 2006; Tziaferi et al. 2008; Dash et al. 2020; Mercurio et al. 2022)
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features, as well as core molecular pathways significantly 
targeted by these TFs. We found that several pathways 
stand out as particularly relevant, in light of previously 
published studies: the pathway depending on RUNX2, 
the Wnt/β-catenin signaling pathway, and the neural crest 
differentiation pathway. RUNX2 is one osteogenic master 

gene involved in skull morphogenesis (Lattanzi 2016), 
but also in brain development, particularly thalamic and 
hippocampal GABAergic neurons (Pleasure et al. 2000; 
Benes et al. 2007; Reale et al. 2013). RUNX2 deficits 
result in cleidocranial dysplasia, a condition involving 
reduced skull ossification; RUNX2 overexpression is 

Table 3  Shared pathway enrichments across lists of genes targeted by SOX2, KLF4, MITF, and NR3C1

Signal transduction
Axon guidance
BDNF signaling pathway
Interleukin-2 signaling pathway
TGF-beta regulation of extracellular matrix
VEGFA-VEGFR2 signaling pathway
Adipogenesis

Table 4  TF protein partners of 
core TFs involved in mammal 
domestication

Core candidate TFs Protein partners of core candi-
date TFs
Among domestication selected 
TFs

Protein partners of core candidate 
TFs
Among TFs targeting a significant 
number of domestication selected 
genes

SOX2 ARID3B
CBX2
ELF2
MBD2
MITF
SOX2
SOX6

ARNT
CEBPD
CTBP1
CTBP2
CTCF
CTNNB1
FLI1
KDM2B
LUZP1
MBD3
MITF
POU5F1
RUNX2
SMARCA4
SMARCD1
SOX2
TBX3
TCF3
TP63
UBTF
YAP1

MITF SOX2 SOX2
LEF1

KLF4 ZNF516 AR
KDM2B

NR3C1 ARID3B
FOXJ3
NR2F2
NR3C1
NR3C2
ZNF516

CEBPA
KDM2B
NFKB1
NR3C1
NR3C2
SMAD3
STAT3
TP53

NR3C2 NR3C1 NR3C1
TP53
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associated to syndromic craniosynostosis (Lattanzi 2016). 
RUNX2 has been related to morphological variation in 
dog breeds, particularly with differences in limb and skull 
morphology, the latter being a universal target of domes-
tication (Fondon 3rd and Garner 2004). In our analysis, 
we have found that RUNX2 targets a significant num-
ber of genes positively selected in domesticated mam-
mals. Additionally, our findings give some support to the 
NC hypothesis of domestication (Wilkins et al. 2014a; 
Wilkins 2017), as we found a significant enrichment in 
TFs involved in NC differentiation and Wnt/β-catenin 
signaling, a molecular pathway playing a key role in NC 
cell induction and differentiation (Wu et al. 2003; Hari 
et al. 2012; Leung et al. 2016).

Because the Runx2 pathway and the NC-related path-
ways—although partially overlapping—are distinct in 
nature, we tried to identify specific candidate TFs for 
domestication by searching for TFs sharing two features: (i) 
being selected in domesticated mammals and (ii) regulat-
ing a statistically significant number of genes selected with 
domestication. This resulted in a small set of TFs (SOX2, 
MITF, KLF4, NR3C1, NR3C2), with SOX2 exhibiting sev-
eral functional and biochemical properties that may confer 
it a major role in domestication. Although SOX2 is known 
to be particularly important for brain development (Feng 
and Wen 2015; Wakamatsu and Uchikawa 2021; Mercurio 
et al. 2022), its specific role in domestication processes is 
not well known, despite its use as a generator of induced 
pluripotent stem cells (iPSCs) in large domesticated animals 
(Bressan et al. 2020). Nonetheless, as reflected in Table 2, 
SOX2 contributes to the development of most body parts 
impacted by domestication, like the teeth and brain areas 
known to be modified in domesticated mammals, such as 

the hippocampus (Mercurio et al. 2021). From our analy-
ses, one can further conclude that, although SOX2 has not 
been selected in most domesticated species, the functions 
it contribute to may have been impacted by domestication, 
via selection of (i) TFs coding for SOX2 partners, (ii) genes 
targeted by SOX2, and/or (iii) genes targeted by SOX2 TF 
partners. This is because SOX2 forms dimers with an impor-
tant share of TFs that are either selected with, or regulating 
a significant number of genes selected with, domestication 
(Table 4). This proposed central role of SOX2 in domestica-
tion events might be seen as supporting (a refined version 
of) the NC hypothesis of domestication. Indeed, SOX2 in 
vertebrate embryos is abundantly expressed by a subpopula-
tion of multipotent stem cells in the neural plate border, the 
embryonic structure from which the NC emerges. Besides 
NC cells, such neural plate border stem cells generate 3 other 
lineages: (i) neural progenitor cells giving rise to neurons 
and glial cells of the brain; (ii) the craniofacial placodes 
forming the sensory organs supporting the visual, auditory, 
and olfactory functions; and (iii) the cranial epidermis (Pla 
and Monsoro-Burq 2018; Thawani and Groves 2020; Milet 
and Monsoro-Burq 2012). These three lineages, along with 
the NC cell lineage, appear to be relevant in the context of 
domestication: to ensure a proper head formation, the fate of 
neural plate border stem cells is finely tuned by the expres-
sion of Sox2 and a few other TFs (Kimura-Yoshida et al. 
2015; Thier et al. 2019). More specifically, SOX2 in neural 
plate border stem cells acts as a rheostat TF controlling the 
balance between two distinct cell fates: neural progenitors vs 
NC cells (Mandalos et al. 2014; Mandalos and Remboutsika 
2017; Roellig et al. 2017; Mandalos et al. 2023). Aside from 
its role in neural plate border stem cells, SOX2 is necessary 
for the physiological development of the hypothalamic-pitu-
itary-adrenal axis in mammals (Kelberman et al. 2006; Jaya-
kody et al. 2012). As noted, these are the main endocrine 
organs impacted by domestication events (Belyaev 1979; 
Künzl and Sachser 1999; Herbeck et al. 2021).

The possibility that, as noted, the TFs involved in domes-
tication might significantly target pathways important for 
the development of the brain and the craniofacial region is 
interesting, in view of the skull, brain, and even cognitive 
changes brought about by domestication (Kruska 2005; Trut 
et al. 2009a; Zeder 2012; Wilkins et al. 2014b; Hecht et al. 
2023), but also if one considers the face, brain, and cognitive 
differences between humans and other extant and extinct 
hominid species, with our species claimed to have gone 
through a self-domestication process, as noted in the intro-
duction (here self means that we might have followed an evo-
lutionary path similar to domesticated mammals in absence 
of a domesticator agent) (see Hare 2017; Wrangham 2019 
for details). This significant involvement of domestication-
associated TFs in the development of the brain and the crani-
ofacial region is reinforced by the specific roles performed 

Fig. 2  Regulatory and interaction network linking core TFs involved 
in mammal domestication. Red plain arrows indicate transcriptional 
regulatory links. Black dashed lines indicate protein/protein interac-
tions
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by some of our core TFs, particularly, NR3C1 and NR3C2, 
as glucocorticoid activity is key for regulating basic aspects 
of brain development and function, including dendritic spine 
activity (Maggi et al. 2013; Saaltink and Vreugdenhil 2014; 
Uchoa et al. 2014; Koning et al. 2019). Also of interest, 
the core domestication-associated TFs we have identified 
in the paper target sets of genes that are likewise related to 
brain development (“axon guidance” and “BDNF signaling” 
pathways), but also to immunity (“Interleukin-2 signaling 
pathway”). Adaptive immunity is known to be impacted by 
domestication (Chen et al. 2017; Zheng et al. 2020; Suzuki 
and Okanoya 2021). Interestingly, it is known to also play a 
key role in brain development via the gut-brain axis (Zenge-
ler and Lukens 2021). Furthermore, we found that the tar-
gets of our core domestication-associated TFs also share an 
enrichment in genes involved in the VEGFA/VEGFR2 path-
way. VEGF signaling in the NC participates in the process 
of vessel formation in the cranial region, a fundamental step 
for the increase of the telencephalon in gnathostomes (Etch-
evers et al. 1999; Etchevers et al. 2001). Of note, besides 
angiogenesis, the VEGFA/VEGFR2 pathway is involved in 
axon guidance (Luck et al. 2019) and neuronal differentia-
tion (Mackenzie and Ruhrberg 2012).

Indirectly, our findings can help clarify the mechanisms 
accounting for some other domestication features. In this 
regard, we find of interest the shared enrichment in the 
“regulation of extra-cellular matrix” pathway, which can be 
related to the morphological changes found in most domes-
ticates in particular, changes in the conjunctive tissue (which 
could account for the floppy ears and tail-form modifica-
tions typically found in domesticated animals). Additionally, 
the enrichment in the adipogenesis pathway could explain 
the links between domestication and diet (Axelsson et al. 
2013; Jin et al. 2020). Finally, we also find it relevant that 
some of the genes and pathways we have highlighted in the 
paper (particularly, the Wnt signaling pathway) are involved 
in the NC-mediated development of the adrenal cortex, as 
suggested by the fact that, in chicks, Wnt antagonists are 
expressed in migrating cephalic and truncal NC cells, and, 
ultimately, in NC derivatives (Duprez et al. 1999). Because 
the adrenal glands are one key target of domestication pro-
cesses, our findings can be seen as reinforcing the suggested 
connection between the physiological triggers of domestica-
tion events, NC activity, and domestication-associated TF 
activity.

We conclude that, although domestication usually 
results in changes in many different body parts, alterations 
in TF activity might mostly impact the development and 
function of the brain and craniofacial region. This finding 
can be of particular interest for future studies aimed at 
understanding the behavioral and cognitive consequences 
of domestication (and self-domestication). That said, 
further research is needed to identify the molecular and 

physiological processes that are specifically contributed 
by the TFs we have highlighted in the paper and to clarify 
whether they play a direct role in domestication events. 
More importantly, this additional research should help 
properly test the possibility, implicit in our approach, 
that the disparate developmental genomic mechanisms 
underlying domestication are orchestrated by a core set 
of TFs.
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