Skip to main content

Advertisement

Log in

An evolutionarily conserved Myostatin proximal promoter/enhancer confers basal levels of transcription and spatial specificity in vivo

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Myostatin (Mstn) is a negative regulator of skeletal muscle mass, and Mstn mutations are responsible for the double muscling phenotype observed in many animal species. Moreover, Mstn is a positive regulator of adult muscle stem cell (satellite cell) quiescence, and hence, Mstn is being targeted in therapeutic approaches to muscle diseases. In order to better understand the mechanisms underlying Mstn regulation, we searched for the gene’s proximal enhancer and promoter elements, using an evolutionary approach. We identified a 260-bp-long, evolutionary conserved region upstream of tetrapod Mstn and teleost mstn b genes. This region contains binding sites for TATA binding protein, Meis1, NF-Y, and for CREB family members, suggesting the involvement of cAMP in Myostatin regulation. The conserved fragment was able to drive reporter gene expression in C2C12 cells in vitro and in chicken somites in vivo; both normally express Mstn. In contrast, the reporter construct remained silent in the avian neural tube that normally does not express Mstn. This suggests that the identified element serves as a minimal promoter, harboring some spatial specificity. Finally, using bioinformatic approaches, we identified additional genes in the human genome associated with sequences similar to the Mstn proximal promoter/enhancer. Among them are genes important for myogenesis. This suggests that Mstn and these genes may form a synexpression group, regulated by a common signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta J, Carpio Y, Borroto I, Gonzalez O, Estrada MP (2005) Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J Biotechnol 119:324–331

    Article  CAS  PubMed  Google Scholar 

  • Alvares LE, Schubert FR, Thorpe C, Mootoosamy RC, Cheng L, Parkyn G, Lumsden A, Dietrich S (2003) Intrinsic, hox-dependent cues determine the fate of skeletal muscle precursors. Dev Cell 5:379–390

    Article  CAS  PubMed  Google Scholar 

  • Amthor H, Huang R, Mckinnell I, Christ B, Kambadur R, Sharma M, Patel K (2002) The regulation and action of myostatin as a negative regulator of muscle development during avian embryogenesis. Dev Biol 251:241–257

    Article  CAS  PubMed  Google Scholar 

  • Chen AE, Ginty DD, Fan C (2005) Protein kinase A signaling via CREB control myogenesis induced by Wnt proteins. Nature 433:317–322

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Alvares LE, Ahmed MU, El-Hanfy AS, Dietrich S (2004) The epaxial-hypaxial subdivision of the avian somite. Dev Biol 274:348–369

    Article  CAS  PubMed  Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol 191:381–396

    Article  CAS  PubMed  Google Scholar 

  • Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen J-M, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38(7):813–818

    Article  CAS  PubMed  Google Scholar 

  • Dietrich S, Schubert FR, Healy C, Sharpe PT, Lumsden A (1998) Specification of the hypaxial musculature. Development 125:2235–2249

    CAS  PubMed  Google Scholar 

  • Du R, Na X, Chen Y, Qin J (2007) Some motifs were important for myostatin transcriptional regulation in sheep (Ovis aries). J Biochem Mol Biol 40(4):547–553

    CAS  PubMed  Google Scholar 

  • Faniello MC, Bevilacqua MA, Condorelli G, de Crombrugghe B, Maity SN, Awedimento VE, Cimino F, Costanzo F (1999) The B subunit of the CAAT-binding factor NFY binds the central segment of the Co-activator p300. J Biol Chem 274:7623–7626

    Article  CAS  PubMed  Google Scholar 

  • Fiorucci S, Rizzo G, Donini A, Distrutti E, Santucci L (2007) Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol Med 13:298–309

    Article  CAS  PubMed  Google Scholar 

  • Funkenstein B, Balas V, Rebhan Y, Pliatner A (2009) Characterization and functional analysis of the 5′ flanking region of Sparus aurata myostatin-1 gene. Comp Biochem Physiol A Mol Integr Physiol 153:55–62

    Article  PubMed  Google Scholar 

  • Gu Z, Zhang Y, Shi P, Zhang Y-P, Zhu D, Li H (2004) Comparison of avian myostatin genes. Anim Genet 35:462–504

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hacker A, Guthrie S (1998) A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo. Development 125:3461–3472

    CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  Google Scholar 

  • Heidt AB, Rojas A, Harris IS, Black BL (2007) Determinants of myogenic specificity within MyoD are required for noncanonical E box binding. Mol Cell Biol 27:5910–5920

    Article  CAS  PubMed  Google Scholar 

  • Jespersen J, Kjaer M, Schjerling P (2006) The possible role of myostatin in skeletal muscle atrophy and cachexia. Scand J Med Sci Sports 16:74–82

    Article  CAS  PubMed  Google Scholar 

  • Joulia-Ekaza D, Cabello G (2007) The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol 7:1–6

    Article  Google Scholar 

  • Kerr T, Roalson EH, Rodgers BD (2005) Phylogenetic analysis of the myostatin gene sub-family and the diferential expression of a novel member in zebrafish. Evol Dev 7:390–400

    Article  CAS  PubMed  Google Scholar 

  • Kiefer JC, Hauschka SD (2001) Myf-5 is transiently expressed in nonmuscle mesoderm and exhibits dynamic regional changes within the presegmented mesoderm and somites I-IV. Dev Biol 232:77–90

    Article  CAS  PubMed  Google Scholar 

  • Knoepfler PS, Bergstrom DA, Uetsuki T, Dac-Korytko I, Sun YH, Wright WE, Tapscott SJ, Kamps MP (1999) A conserved motif N-terminal to the DNA-binding domains of myogenic bHLH transcription factors mediates cooperative DNA binding with Pbx-Meis/Prep1. Nucleic Acids Res 27:3752–3761

    Article  CAS  PubMed  Google Scholar 

  • Lee MG, Pedersen PL (2003) Glucose metabolism in cancer: importance of transcription factor-DNA interactions within a short segment of the proximal regions of the type II hexokinase promoter. J Biol Chem 278:41047–41058

    Article  CAS  PubMed  Google Scholar 

  • Lee CY, Hu SY, Gong HY, Chen MH, Lu JK, Wu JL (2009) Suppression of myostatin with vector-based RNA interference causes a double-muscle effect in transgenic zebrafish. Biochem Biophys Res Commun 387:766–771

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128

    Article  CAS  PubMed  Google Scholar 

  • Linker C, Lesbros C, Gros J, Burrus LW, Rawls A, Marcelle C (2005) Beta-Catenin-dependent Wnt signalling controls the epithelial organisation of somites through the activation of paraxis. Development 132:3895–3905

    Article  CAS  PubMed  Google Scholar 

  • Ma K, Mallidis C, Artaza J, Taylor W, Gonzales-Cadavid N, Bhasin S (2001) Characterization of 5′-regulatory region of human myostatin gene: regulation by dexamethasone in vivo. Am J Physiol Endocrinol Metab 281:E1128–E1136

    CAS  PubMed  Google Scholar 

  • Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzales-Cadavid N, Arias J, Salehian B (2003) Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 285:E363–E371

    CAS  PubMed  Google Scholar 

  • McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162:1135–1147

    Article  CAS  PubMed  Google Scholar 

  • Mcpherron AC, Lee S-J (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94:12457–12461

    Article  CAS  PubMed  Google Scholar 

  • McPherron AC, Lawier AM, Lee S-J (1997) Regulation of skeletal muscle mass by a new TGF-β superfamily member. Nature 387:83–90

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704

    Article  CAS  PubMed  Google Scholar 

  • Mootoosamy RC, Dietrich S (2002) Distinct regulatory cascades for head and trunk myogenesis. Development 129:573–583

    CAS  PubMed  Google Scholar 

  • Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA (2007) A mutation in the Myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 3:0779–0786

    Article  CAS  Google Scholar 

  • Osawa H, Robey RB, Printz RL, Granner DK (1996) Identification and characterization of basal and cyclic AMP response elements in the promoter of the rat hexokinase II gene. J Biol Chem 271:17296–17303

    Article  CAS  PubMed  Google Scholar 

  • Pie MR, Alvares LE (2006) Evolution of myostatin in vertebrates: is there evidence for positive selection? Mol Phylogenetic Evol 41:730–734

    Article  CAS  Google Scholar 

  • Pourquié O (2005) A new canon. Nature 433:208–209

    Article  PubMed  Google Scholar 

  • Pugh BF (2000) Control of gene expression through regulation of the TATA-binding protein. Gene 255:1–14

    Article  CAS  PubMed  Google Scholar 

  • Ríos R, Carneiro I, Arce VM, Devesa J (2001) Myostatin regulates cell survival during C2C12 myogenesis. Biochem Biophys Res Commun 280:561–566

    Article  PubMed  Google Scholar 

  • Salerno MS, Thomas M, Forbes D, Watson T, Kambadur R, Sharma M (2004) Molecular analysis of fiber type-specific expression of murine myostatin promoter. Am J Physiol Cell Physiol 287:1031–1040

    Article  Google Scholar 

  • Sharma M, Kambadur R, Matthews KG, Somers WG, Devlin GP, Conaglen JV, Fowke PJ, Bass JJ (1999) Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol 180:1–9

    Article  CAS  PubMed  Google Scholar 

  • Spiller MP, Kambadur R, Jeanplong F, Thomas M, Martyn JK, Bass JJ, Sharma M (2002) The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor myoD. Mol Cell Biol, Oct, pp 7066–7082

    Google Scholar 

  • Sundaresan NR, Saxena VK, Singh R, Jain P, Singh KP, Anish D, Singh N, Saxena M, Ahmed KA (2008) Expression profile of myostatin mRNA during the embryonic organogenesis of domestic chicken (Gallus gallus domesticus). Res Vet Sci 85:86–91

    Article  CAS  PubMed  Google Scholar 

  • Tobin JF, Celeste AJ (2005) Myostatin, a negative regulator of muscle mass: implications for muscle degenerative diseases. Curr Opin Pharmacol 5:328–332

    Article  CAS  PubMed  Google Scholar 

  • Uchikawa M, Ishida Y, Takemoto T, Kamachi Y, Kondoh H (2003) Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev Cell 4:509–519

    Article  CAS  PubMed  Google Scholar 

  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S, Zhuang Y, Lassar A (1991) The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766

    Article  CAS  PubMed  Google Scholar 

  • Wotton KR, Weierud FK, Dietrich S, Lewis KE (2008) Comparative genomics of Lbx loci reveals conservation of identical Lbx ohnologs in bony vertebrates. BMC Evol Biol 8:171–186

    Article  PubMed  Google Scholar 

  • Xing F, Tan X, Zhang PJ, Ma J, Zhang Y, Xu P, Xu Y (2007) Characterization of amphioxus GDF8/11 gene, an archetype of vertebrate MSTN and GDF11. Dev Genes Evol 217:549–554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. José Xavier-Neto for providing the pTKeGFP vector, Dr. Vera Nisaka Solferini for allowing the use of her laboratory facilities for the development of this work, and Dr. Chao Yun Irene Yan for the kind loan of equipment essential for this research. The work was a collaboration between the Alvares, Dietrich, Schubert and Salerno laboratory, supported by FAPESP (06/05375-9), CNPq (480960/07-0), and FAEPEX (1039/07) grants to LEA, by the EU grant no. LSH-CT-2004-511978 Myores to SD and by the EU Interreg IV AdMiN grant to FRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lúcia Elvira Alvares.

Additional information

Communicated by M. Hammerschmidt

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Online resource 1

Phylogenetic tree of Mstn proteins in bony vertebrates, using the Gdf8/Gdf11 sequence of the cephalochordate Branchiostoma belcheri tsingtauense as out-group. Note that the lamprey, an agnathan vertebrate, has a Gdf8/Gdf11-type protein. In contrast, the gnathostome vertebrates investigated here have distinct Mstn/Gdf8 and Gdf11 proteins, in line with the idea that gnathostome Mstn/Gdf8 and Gdf11 genes evolved from a common ancestor during the two rounds of jawed vertebrate genome duplications. Also note that tetrapod and teleost Mstn/Gdf8 sequences form two subgroups. Teleost Mstn proteins are further subdivided into distinct mstn a and mstn b type sequences, in line with the idea of a third genome duplication in this lineage. (GIF 151 kb)

High resolution image (TIFF 5967 kb)

Online resource 2

Abbreviations for the species investigated in this study. (DOC 26 kb)

Online resource 3

Genomic organization of Mstn loci in bony vertebrates (DOC 54 kb)

Online resource 4

Position and overall similarity of the conserved sequence upstream of the translation start of Mstn/mstn b genes in bony vertebrates. (DOC 42 kb)

Online resource 5

Vibratome cross section of a somite electroporated with pGgGDF8/eGFP and pCAB/RFP. Upon fixation, the embryos was eviscerated, bisected, and subjected to in situ hybridization with a GFP probe. The GFP signal is observed in the dermal precursor cells originating from the hypaxial dermomyotome (black arrow). Dorsal is to the top, NT stands for neural tube. (GIF 321 kb)

High resolution image (TIFF 6417 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grade, C.V.C., Salerno, M.S., Schubert, F.R. et al. An evolutionarily conserved Myostatin proximal promoter/enhancer confers basal levels of transcription and spatial specificity in vivo. Dev Genes Evol 219, 497–508 (2009). https://doi.org/10.1007/s00427-009-0312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-009-0312-x

Keywords

Navigation