Skip to main content
Log in

Stand up to better pay attention, sit down to better subtract: a new perspective on the advantage of cognitive-motor interactions

  • Research
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The Stroop task and subtraction rely on the different cognitive processes and cerebral regions, but both these cognitive functions interact with posture. The study of cognitive-motor interactions falls under the concept of sharing resources, implying that resources for processing are limited. Researchers try to understand this interaction by constructing dual task (DT) paradigms. None have investigated the Stroop and subtraction tasks in three inherently simple postures in two groups of young adults. This study aimed to test whether a given posture benefits a given cognitive function when cognitive and postural tasks are not overly demanding and are underpinned by common cerebral structures. This study presents the results of 60 healthy young adults performing a subtraction task in three postures (sitting, standing, and walking) and 57 healthy young adults performing the Stroop task in the same three postures. Our results showed that performance at the Stroop task, in terms of number of correct answers and interference, are better while standing or even walking compared to sitting while subtraction is better sitting compared to standing and walking. Moreover, static postural parameters did not vary when in DT compared to single task. This means that there was no additional cost on posture when achieving the cognitive activity simultaneously. The absence of impact of the DT on postural parameters in static postures and the changes in the gait pace when walking suggest that cognitive tasks can be achieved in various postures, without being too costly on posture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Data available upon request.

References

  • Abou Khalil, G., Doré-Mazars, K., & Legrand, A. (2022). Is better selective attention while standing possible without cost on postural sway? Quarterly Journal of Experimental Psychology. https://doi.org/10.1177/17470218221126591.

    Article  Google Scholar 

  • Abou Khalil, G., Doré-Mazars, K., Senot, P., et al. (2020). Is it better to sit down, stand up or walk when performing memory and arithmetic activities? Experimental Brain Research, 238, 2487–2496. https://doi.org/10.1007/s00221-020-05858-z.

    Article  PubMed  Google Scholar 

  • Al-Yahya, E., Dawes, H., Smith, L., Dennis, A., Howells, K., & Cockburn, J. (2011). Cognitive motor interference while walking: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 35(3), 715–728. https://doi.org/10.1016/j.neubiorev.2010.08.008.

    Article  PubMed  Google Scholar 

  • Banerjee, J., Majumdar, D., Pal, M. S., & Majumdar, D. (2011). Readability, subjective preference and mental workload studies on young indian adults for selection of optimum font type and size during onscreen reading. Al Ameen Journal of Medical Sciences, 4(2), 131–143.

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.

  • Bayot, M., Dujardin, K., Tard, C., Defebvre, L., Bonnet, C. T., Allart, E., & Delval, A. (2018). The interaction between cognition and motor control: A theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning. Neurophysiologie Clinique, 48(6), 361–375.

    Article  PubMed  Google Scholar 

  • Bear, M., Connors, B., & Paradiso, M. A. (2015). Neuroscience: Exploring the brain (4th ed.). Jones & Bartlett Learning.

    Google Scholar 

  • Beauchet, O., Allali, G., Poujol, L., Barthelemy, J. C., Roche, F., & Annweiler, C. (2010). Decrease in gait variability while counting backward: a marker of “magnet effect”? Journal of Neural Transmission (vienna, Austria: 1996), 117(10), 1171–1176. https://doi.org/10.1007/s00702-010-0463-y.

    Article  PubMed  Google Scholar 

  • Beauchet, O., Dubost, V., Herrmann, F. R., & Kressig, R. W. (2005). Stride-to-stride variability while backward counting among healthy young adults. Journal of Neuroengineering and Rehabilitation, 2(1), 1–8.

    Article  Google Scholar 

  • Boisgontier, M. P., Beets, I. A., Duysens, J., Nieuwboer, A., Krampe, R. T., & Swinnen, S. P. (2013). Age-related differences in attentional cost associated with postural dual tasks: Increased recruitment of generic cognitive resources in older adults. Neuroscience & Biobehavioral Reviews, 37(8), 1824–1837.

    Article  Google Scholar 

  • Brown, L., Shumway-Cook, A., & Wollacott, M. (1999). Attentional demands and postural recovery: The effects of aging. J Gerontol Biol Sci Med Sci, 54, 165–171.

    Article  Google Scholar 

  • Ceyte, H., Lion, A., Caudron, S., Kriem, B., Perrin, P. P., & Gauchard, G. C. (2014). Does calculating impair postural stabilization allowed by visual cues? Experimental Brain Research, 232(7), 2221–2228.

    Article  PubMed  Google Scholar 

  • Cipora, K., Szczygieł, M., Willmes, K., & Nuerk, H.-C. (2015). Math anxiety assessment with the abbreviated math anxiety scale: Applicability and usefulness: Insights from the polish adaptation. Frontiers in Psychology, 6, 1833.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. Chapman Hall.

    Google Scholar 

  • Craig, C. L., Marshall, A. L., Sjöström, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., Pratt, M., Ekelund, U., Yngve, A., Sallis, J. F., et al. (2003). International physical activity questionnaire: 12-country reliability and validity. Medicine and Science in Sports and Exercise, 35(8), 1381–1395.

    Article  PubMed  Google Scholar 

  • Dault, M. C., Geurts, A. C., Mulder, T. W., & Duysens, J. (2001). Postural control and cognitive task performance in healthy participants while balancing on different support-surface configurations. Gait & Posture, 14(3), 248–255.

    Article  Google Scholar 

  • Dault, M. C., Yardley, L., & Frank, J. S. (2003). Does articulation contribute to modifications of postural control during dual-task paradigms? Cognitive Brain Research, 16(3), 434–440.

    Article  PubMed  Google Scholar 

  • Derakshan, N., & Eysenck, M. W. (2009). Anxiety, processing efficiency, and cognitive performance: New developments from attentional control theory. European Psychologist, 14(2), 168.

    Article  Google Scholar 

  • Dreisbach, G., & Haider, H. (2009). How task representations guide attention: Further evidence for the shielding function of task sets. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(2), 477–486. https://doi.org/10.1037/a0014647

    Article  PubMed  Google Scholar 

  • Dubois, B., Slachevsky, A., Litvan, I., & Pillon, B. (2000). The fab: A frontal assessment battery at bedside. Neurology, 55(11), 1621–1626.

    Article  PubMed  Google Scholar 

  • Dykeman, C. (2017). The Weighted Average of Abbreviated Math Anxiety Scale (AMAS) Studies on College Students. Oregon State University.

  • Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340–347.

    Article  PubMed  Google Scholar 

  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using g* power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160.

    Article  PubMed  Google Scholar 

  • Field, A. (2013). Discovering statistics using ibm spss statistics. Sage.

    Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    Article  PubMed  Google Scholar 

  • Honado, S. A. (2019). Adaptation et validation du Questionnaire International de l'Activité Physique (IPAQ) chez les personnes saines et les survivants d'un accident vasculaire cérébral au Bénin (Doctoral dissertation, Université Laval).

  • Hopko, D. R., Mahadevan, R., Bare, R. L., & Hunt, M. K. (2003). The abbreviated math anxiety scale (amas) construction, validity, and reliability. Assessment, 10(2), 178–182.

    Article  PubMed  Google Scholar 

  • Hunter, S. J., & Sparrow, E. P. (2012). Executive function and dysfunction: Identification, assessment and treatment. Cambridge University Press.

    Book  Google Scholar 

  • Inagaki, K., Shimizu, T., & Sakairi, Y. (2018). Effects of posture regulation on mood states, heart rate and test performance in children. Educational Psychology, 38(9), 1129–1146. https://doi.org/10.1080/01443410.2018.1504003

    Article  Google Scholar 

  • Johnson, S. B., Blum, R. W., & Giedd, J. N. (2009). Adolescent maturity and the brain: The promise and pitfalls of neuroscience research in adolescent health policy. Journal of Adolescent Health, 45(3), 216–221.

    Article  Google Scholar 

  • Jones, P. R. (2019). Sit still and pay attention: Using the Wii Balance-Board to detect lapses in concentration in children during psychophysical testing. Behavior Research Methods, 51(1), 28–39.

    Article  PubMed  Google Scholar 

  • Kahneman, D. (1973). Attention and effort. Prentice-Hall.

    Google Scholar 

  • Kerr, B., Condon, S. M., & McDonald, L. A. (1985). Cognitive spatial processing and the regulation of posture. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 617–622. https://doi.org/10.1037/0096-1523.11.5.617

    Article  PubMed  Google Scholar 

  • Lacour, M., Bernard-Demanze, L., & Dumitrescu, M. (2008). Posture control, aging, and attention resources: Models and posture-analysis methods. Neurophysiologie Clinique/clinical Neurophysiology, 38(6), 411–421.

    Article  PubMed  Google Scholar 

  • Lanzarin, M., Parizzoto, P., Libardoni, T. D. C., Sinhorim, L., Tavares, G. M. S., & Santos, G. M. (2015). The influence of dual-tasking on postural control in young adults. Fisioterapia e Pesquisa, 22, 61–68.

    Google Scholar 

  • Lewis, G. N., Byblow, W. D., & Walt, S. E. (2000). Stride length regulation in Parkinson’s disease: The use of extrinsic, visual cues. Brain: A Journal of Neurology, 123(Pt 10), 2077–2090. https://doi.org/10.1093/brain/123.10.2077

    Article  PubMed  Google Scholar 

  • Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108(2), 393.

    Article  PubMed  Google Scholar 

  • Lu, C.-F., Liu, Y.-C., Yang, Y.-R., Wu, Y.-T., & Wang, R.-Y. (2015). Maintaining gait performance by cortical activation during dual-task interference: A functional near-infrared spectroscopy study. PLoS One, 10(6), e129390.

    Google Scholar 

  • Maatar, D. (2013). Analyse des signaux stabilométriques et de la stabilité chez l’homme: Application à la biométrie (Doctoral dissertation). Université Paris-Est.

  • Marsh, A., & Geel, S. (2000). The effect of age on the attentional demands of postural control. Gait & Posture, 12, 105–115. https://doi.org/10.1016/S0966-6362(00)00074-6

    Article  Google Scholar 

  • Mathôt, S., Schreij, D., & Theeuwes, J. (2012). Opensesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44(2), 314–324.

    Article  PubMed  Google Scholar 

  • Microsoft Corporation. (2018). Microsoft excel (Version 2019 (16.0). https://office.microsoft.com/excel

  • Mihara, M., Miyai, I., Hatakenaka, M., Kubota, K., & Sakoda, S. (2008). Role of the prefrontal cortex in human balance control. NeuroImage, 43(2), 329–336.

    Article  PubMed  Google Scholar 

  • Mirelman, A., Maidan, I., Bernad-Elazari, H., Nieuwhof, F., Reelick, M., Giladi, N., & Hausdorff, J. M. (2014). Increased frontal brain activation during walking while dual tasking: An fNIRS study in healthy young adults. Journal of Neuroengineering and Rehabilitation, 11(1), 1–7.

    Article  Google Scholar 

  • Mitra, S. (2004). Adaptive utilization of optical variables during postural and suprapostural dual-task performance: Comment on Stoffregen, Smart, Bardy, and Pagulayan (1999). Journal of Experimental Psychology: Human Perception and Performance, 30(1), 28–38. https://doi.org/10.1037/0096-1523.30.1.28

    Article  PubMed  Google Scholar 

  • Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140. https://doi.org/10.1016/s1364-6613(03)00028-7

    Article  PubMed  Google Scholar 

  • Montefinese, M., & Semenza, C. (2018). Number line estimation and complex mental calculation: Is there a shared cognitive process driving the two tasks? Cognitive Processing, 19(4), 495–504.

    Article  PubMed  Google Scholar 

  • Montefinese, M., Turco, C., Piccione, F., & Semenza, C. (2017). Causal role of the posterior parietal cortex for two-digit mental subtraction and addition: A repetitive tms study. NeuroImage, 155, 72–81.

    Article  PubMed  Google Scholar 

  • Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining r2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133–142.

    Article  Google Scholar 

  • Navon, D., & Miller, J. (1987). Role of outcome conflict in dual-task interference. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 435.

    PubMed  Google Scholar 

  • Negahban, H., Karimi, M., Goharpey, S., Mehravar, M., & Namnik, N. (2015). Posture–cognition interaction during quiet standing in patients with knee osteoarthritis. Physiotherapy Theory and Practice, 31(8), 540–546.

    Article  PubMed  Google Scholar 

  • Olivier, I., Cuisinier, R., Vaugoyeau, M., Nougier, V., & Assaiante, C. (2010). Age-related differences in cognitive and postural dual-task performance. Gait & Posture, 32(4), 494–499.

    Article  Google Scholar 

  • Papegaaij, S., Hortobagyi, T., Godde, B., Kaan, W. A., Erhard, P., & Voelcker-Rehage, C. (2017). Neural correlates of motor-cognitive dual-tasking in young and old adults. PLoS One, 12(12), e0189025.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, P., Lamar, M., & Bhatt, T. (2014). Effect of type of cognitive task and walking speed on cognitive-motor interference during dual-task walking. Neuroscience, 260, 140–148.

    Article  PubMed  Google Scholar 

  • Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Plummer, P., Eskes, G., Wallace, S., Giuffrida, C., Fraas, M., Campbell, G., Clifton, K.-L., Skidmore, E. R., et al. (2013). Cognitive-motor interference during functional mobility after stroke: State of the science and implications for future research. Archives of Physical Medicine and Rehabilitation, 94(12), 2565–2574.

    Article  PubMed  Google Scholar 

  • Polskaia, N., & Lajoie, Y. (2016). Reducing postural sway by concurrently performing challenging cognitive tasks. Human Movement Science, 46, 177–183.

    Article  PubMed  Google Scholar 

  • Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1–23.

    Article  PubMed  Google Scholar 

  • Price, G. R., Mazzocco, M. M., & Ansari, D. (2013). Why mental arithmetic counts: Brain activation during single digit arithmetic predicts high school math scores. Journal of Neuroscience, 33(1), 156–163.

    Article  PubMed  Google Scholar 

  • R Development Core, T. (2017). A language and environment for statistical computing.

  • Rostami, M., Razeghi, M., Daneshmandi, H., Hassanzadeh, J., & Choobineh, A. (2022). Cognitive and skill performance of individuals at sitting versus standing workstations: A quasi-experimental study. International Journal of Occupational Safety and Ergonomics, 28(1), 544–554.

    Article  PubMed  Google Scholar 

  • Sandoval, R., Pesquera, M., Kim, A., Dickerson, C., Dedick, J., & Brown, N. (2021). Noon is the best time to perform a dual task while cognitive performance may be boosted by concurrent performance of a physical task. Gait & Posture, 87, 95–100.

    Article  Google Scholar 

  • Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2(6), 110–114.

    Article  PubMed  Google Scholar 

  • Smith, K. C., Davoli, C. C., Knapp, W. H., & Abrams, R. A. (2019). Standing enhances cognitive control and alters visual search. Attention, Perception, and Psychophysics, 81(7), 2320–2329. https://doi.org/10.3758/s13414-019-01723-6

    Article  Google Scholar 

  • Srygley, J. M., Mirelman, A., Herman, T., Giladi, N., & Hausdorff, J. M. (2009). When does walking alter thinking? Age and task associated findings. Brain Research, 1253, 92–99.

    Article  PubMed  Google Scholar 

  • Stins, J. F., & Beek, P. J. (2012). A critical evaluation of the cognitive penetrability of posture. Experimental Aging Research, 38(2), 208–219.

    Article  PubMed  Google Scholar 

  • Stoffregen, T. A., Hove, P., Bardy, B. G., Riley, M., & Bonnet, C. T. (2007). Postural stabilization of perceptual but not cognitive performance. Journal of Motor Behavior, 39(2), 126–138.

    Article  PubMed  Google Scholar 

  • Straub, E. R., Dames, H., Kiesel, A., & Dignath, D. (2022). Does body posture reduce the stroop effect? Evidence from two conceptual replications and a meta-analysis. Acta Psychologica, 224, 103497.

    Article  PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643.

    Article  Google Scholar 

  • Sugihara, Y., Matsuura, T., Kubo, Y., & Ohgomori, T. (2021). Activation of the prefrontal cortex and improvement of cognitive performance with standing on one leg. Neuroscience, 477, 50–62.

    Article  PubMed  Google Scholar 

  • Suzuki, M., Miyai, I., Ono, T., Oda, I., Konishi, I., Kochiyama, T., & Kubota, K. (2004). Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: An optical imaging study. NeuroImage, 23(3), 1020–1026.

    Article  PubMed  Google Scholar 

  • Viarouge, A. (2020). Chapitre 5: Le nombre et l’arithmétique. dans: Nicolas poirel éd., neurosciences cognitives développementales. De Boeck Supérieur.

    Google Scholar 

  • Winter, B. (2013). A very basic tutorial for performing linear mixed effects analyses (pp. 1–22). arXiv preprint arXiv:1308.5499.

  • Wollesen, B., Voelcker-Rehage, C., Regenbrecht, T., & Mattes, K. (2016). Influence of a visual–verbal stroop test on standing and walking performance of older adults. Neuroscience, 318, 166–177.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., Goodbody, S. J., & Husain, M. (1998). Maintaining internal representations: The role of the human superior parietal lobe. Nature Neuroscience, 1(6), 529–533.

    Article  PubMed  Google Scholar 

  • Woollacott, M., & Shumway-Cook, A. (2002). Attentional demands and postural control: The effect of sensory context. Journals of Gerontology-Biological Sciences and Medical Sciences, 55(1), M10.

    Google Scholar 

  • World Health Organization. (2010). A healthy lifestyle—who recommendations. https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle-who-recommendations. Accessed 6 May 2010.

  • Wulf, G., & Prinz, W. (2001). Directing attention to movement effects enhances learning: A review. Psychonomic Bulletin & Review, 8(4), 640–660. https://doi.org/10.3758/BF03196201.

    Article  Google Scholar 

  • Yogev-Seligmann, G., Hausdorff, J. M., & Giladi, N. (2012). Do we always prioritize balance when walking? Towards an integrated model of task prioritization. Movement Disorders, 27(6), 765–770.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors thank the editor and reviewers for considering this manuscript. We thank El Mostafa Laassel with Biometrics. Finally, we thank the Faculty of Human Sciences of Université Paris Cité for the BRIO funding and the Société Francophone Posture Équilibre et Locomotion for the “bourse sur projet”.

Author information

Authors and Affiliations

Authors

Contributions

GAK wrote the main manuscript text, KD-M and AL reviewed the manuscript.

Corresponding author

Correspondence to G. Abou Khalil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to participate and to publish

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1462 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou Khalil, G., Doré-Mazars, K. & Legrand, A. Stand up to better pay attention, sit down to better subtract: a new perspective on the advantage of cognitive-motor interactions. Psychological Research 88, 735–752 (2024). https://doi.org/10.1007/s00426-023-01890-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-023-01890-0

Navigation