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Abstract
Implicit learning (IL) deals with the non-conscious acquisition of structural regularities from the environment. IL is often 
deemed essential for acquiring regularities followed by social stimuli (e.g., other persons’ behavior), hence is hypothesized 
to play a role in typical social functioning. However, our understanding of how this process might operate in social contexts 
is limited for two main reasons. First, while IL is highly sensitive to the characteristics of the surface stimuli upon which it 
operates, most IL studies have used surface stimuli with limited social validity (e.g., letters, symbols, etc.). Second, while 
the social environment is dynamic (i.e., our behaviors and reactions influence those of our social partners and vice-versa), 
the bulk of IL research employed noninteractive paradigms. Using a novel task, we examine whether IL is involved in the 
acquisition of regularities from a dynamic interaction with a realistic real-life-like agent. Participants (N = 115) interacted 
with a cinematic avatar that displayed different facial expressions. Their task was to regulate the avatar’s expression to a 
specified level. Unbeknownst to them, an equation mediated the relationship between their responses and the avatar’s expres-
sions. Learning occurred in the task, as participants gradually increased their ability to bring the avatar in the target state. 
Subjective measures of awareness revealed that participants acquired both implicit and explicit knowledge from the task. 
This is the first study to show that IL operates in interactive situations upon socially relevant surface stimuli, facilitating 
future investigations of the role that IL plays in (a)typical social functioning.

Introduction

One of the biggest contributors to the evolution of human-
kind is our ability to swiftly function as part of complex 
social systems. Recent perspectives suggest that humans 
acquire the necessary skills and knowledge to effectively 
interact within such systems through unconscious learning 
processes (e.g., Lieberman, 2000; Norman & Price, 2012). 
Unconscious or implicit learning (IL; see Cleeremans 
et al., 1998, for a review), as opposed to its explicit coun-
terpart, refers to the acquisition of complex regularities in 
the absence of a conscious intention to learn and without 
full conscious awareness of the acquired knowledge (Reber, 
1967).

Several lines of research have found empirical evidence 
for the involvement of IL in social functioning. For instance, 
in the hidden covariation detection task, researchers have 
found that participants are able to implicitly learn an arbi-
trary covariation between a physical feature (e.g., short vs. 
long hair) and personality features (e.g., kindness), and that 
the judgement of new avatars is influenced by the learned 
covariation (e.g., Ivanchei et al., 2019; Lewicki, 1986). 
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Similarly, Norman and Price (2012) have shown that partici-
pants are able to implicitly learn a grammar that determines 
the order of body movements executed by another person. 
Strachan et al. (2019) showed that statistical regularities 
regarding other people’s behavior—specifically, whether a 
person provides mostly facilitative or misleading informa-
tion—can also be learned unconsciously. Colloquially, one 
can evaluate the affective state of familiar persons even with-
out being aware of the evidence that supports one’s evalua-
tion (e.g., “I know my friend is upset, but I cannot explain 
how I know—I just know”).

Due to the proposed centrality of this process for adap-
tive social functioning, impairments in IL have been inves-
tigated, with mixed results, as etiopathogenetic mechanisms 
in several disorders characterized by impairments in social 
functioning. For brevity, we only mention the equivocal find-
ings obtained in autism (e.g., Brown et al., 2010; Gordon 
& Stark, 2007; Nemeth et al., 2010; Zwart et al., 2017) and 
depression (e.g., Borbély-Ipkovich et al., 2014; Exner et al., 
2009; Janacsek et al., 2018).

Limitations of the extant research investigating IL 
in relation to the social domain

The vast amount of evidence for the existence of IL has 
been obtained using non-social stimuli and tasks, such as the 
Artificial Grammar Learning task (AGL; Reber, 1967) or the 
Serial Reaction Time task (SRTT; Cleeremans & McClel-
land, 1991; Nissen & Bullemer, 1987). In these paradigms, 
participants learn regularities that structure nonsocial stim-
uli such as letter strings (in AGL) or spatial locations (in 
the SRTT) and are generally considered to provide robust 
evidence for IL effects (e.g., Dienes & Seth, 2018; but see 
Shanks, 2004, 2010). In contrast, there is very limited direct 
evidence that IL can operate upon socially relevant stimuli, 
the evidence being restricted to the aforementioned stud-
ies (e.g., Norman & Price, 2012) and few others (but see 
Hendrickx et al., 1997). Hence, the claims that IL could 
be involved in social functioning does not primarily rest on 
studies using social stimuli, but rather on the assumption 
that IL is a general process which unfolds in the same way, 
regardless of the specific stimuli on which it operates (e.g., 
Pothos et al., 2006)—e.g., if IL operates on letter strings, 
it might operate roughly similarly with social stimuli. 
Consequently, for instance, the studies that attempt to test 
whether social functioning deficits in some disorders could 
be caused by deficits in implicit learning use such nonsocial 
tasks (AGL, SRTT) and assume to test a “general” implicit 
learning capacity (e.g., Exner et al., 2009; Naismith et al., 
2006, 2010; Nemeth et al., 2010; Rathus et al., 1994; Zwart 
et al., 2018).

The assumption that IL is a general capacity is, however, 
at odds with a consistent corpus of empirical findings: the 

extant literature on the boundary conditions for IL clearly 
shows that we cannot implicitly extract regularities from all 
categories of stimuli to the same extent. For instance, par-
ticipants automatically learn a task-irrelevant artificial gram-
mar when it is instantiated by evolutionary relevant stimuli 
(human faces), but not when it is instantiated by evolutionary 
irrelevant stimuli (buildings) (Eitam et al., 2014); see also 
Dienes and Altmann (1997), Jimenez et al. (2020), or Scott 
and Dienes (2010), for further evidence for the dependency 
of IL on the characteristics of the surface stimuli. Closer 
to the social domain, Ziori and Dienes (2015) found that 
an artificial grammar was learned less when it structured 
sequences of faces (56% classification accuracy), compared 
to the same grammar that structured letter strings (64% accu-
racy; Dienes & Scott, 2005). In a direct comparison, Norman 
and Price (2012) found less learning of an artificial grammar 
that structured sequences of body postures compared to the 
same grammar when it structured letter sequences (53% vs 
58% classification accuracy). Further evidence comes the 
related field of statistical language learning, which is often 
assumed to occur, partially, implicitly: Li et al. (2022) have 
found that young adults with a high level of autistic traits are 
able to extract statistical regularities from non-social audi-
tory input (pure tones), but not from socially relevant audi-
tory input (Chinese disyllables), bringing further support 
for the stimulus-dependent operation of implicit/statistical 
learning. In sum, there is robust evidence that the surface 
stimuli influence the amount of learning in typical implicit 
learning tasks. There is also emerging evidence that, at least 
in the AGL task, learning is lower with more complex, social 
stimuli, compared to the typical version that uses letters. 
Accordingly, given that IL functions differently with differ-
ent types of stimuli, it may be unwarranted to make infer-
ences regarding the role played by IL in the social domain 
based on studies that use non-social surface stimuli (see 
Norman & Price, 2012; Jimenez et al., 2020, for thorough 
analyses of this problem). Moreover, given the emerging 
evidence that complex social stimuli are learned less well 
than simpler nonsocial stimuli (e.g., Ziori & Dienes, 2015), 
a legitimate concern is whether there is any learning for even 
more ecologically relevant social stimuli than those already 
used, such as dynamic facial emotional expression.

A different limitation is that the few existing studies that 
have employed more socially relevant stimuli have used 
experimental paradigms in which participants are exposed 
to social contingencies in a relatively passive manner. For 
instance, in the hidden covariation detection task, partici-
pants are exposed to avatars that instantiate contingencies 
between physical and psychological features, but there is no 
change in the participants’ behavior as a result of the avatar’s 
behavior or vice versa. In contrast, as we will clarify in the 
subsequent section, the central feature of our social life is its 
deeply interactive, dynamical nature.
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Characteristics of the information exchange loops

We start from the observation that in both real-life and exper-
imental environments, information is being exchanged in 
loops. Specifically, in most cases of real-life interaction, an 
individual’s behavior determines or encourages a response 
from the social environment; further, the individual typi-
cally reacts again to the social environment’s response—thus 
perpetuating a loop of informational exchange. Similarly, in 
experimental contexts, a participant’s behavior determines a 
response from the research paradigm (e.g., advancing to the 
next stimulus) to which the participant typically reacts again, 
thereby perpetuating a loop of informational exchange.

However, the loops through which information is 
exchanged in most IL tasks are fundamentally different from 
those in which information is exchanged in social environ-
ments. Specifically, in the real-world environment, if an 
individual behaves in different manners, s/he should expect 
different responses—i.e., information is being exchanged 
via feedback-driven interactive loops (Becchio et al., 2010). 
By contrast, in most IL paradigms, participants respond to 
overly complex, predefined sequences of stimuli which, 
crucially, do not adapt in reaction to their responses—i.e., 
information is being exchanged via noninteractive loops. For 
instance, in the acquisition phase of the AGL participants are 
exposed to a predetermined list of letter strings; there is no 
modulation in the behavior of the task or of the stimuli as a 
consequence of participant’s behavior. The same principle 
applies to the SRTT and to the hidden covariation detection 
task.

Here, we emphasize that an instrument that aims to 
assess the role of IL in social interactions—besides using 
socially relevant surface stimuli—should also simulate the 
dynamic, feedback-driven manner in which information is 
being exchanged in such environments. One example of such 
a method is the classic Dynamic Systems Control task (DSC; 
Berry & Broadbent, 1984)—which will be detailed in the 
paragraphs below.

In the DSC, participants gradually learn to control the 
value of a dynamic system’s output variable by manipulat-
ing the value of an input variable. For instance, in the Sugar 
Production condition of their seminal paper, Berry and 
Broadbent (1984) asked participants to reach and maintain 
a certain output of a small sugar factory. Participants could 
achieve their task simply by manipulating the number of 
employed workers in any given trial. Unbeknownst to the 
participants, however, the relationship between their inputs 
and the amount of sugar production was mediated by a coun-
terintuitive equation such that the same input from the par-
ticipant determined different outputs depending on the previ-
ous state of the system. In other words, the system interacted 
with the participants, by adapting its responses according 
to participants’ successive inputs, thereby implementing 

an interactive loop of informational exchange. Berry and 
Broadbent (1984) found that participants improved their 
performance maintaining the desired output as the task pro-
gressed, suggesting that learning occurred. Furthermore, 
as assessed by a written post experimental questionnaire, 
the authors found that the performance improvement was 
not associated with reportable knowledge of the underlying 
rule, suggesting that learning had been implicit. Congruent 
results were also obtained by several other investigations 
(e.g., Berry & Broadbent, 1995; Dienes & Fahey, 1995; 
Fahey & Dienes, 1998).

Berry and Broadbent (1984) also attempted to adapt 
their Sugar Production task to assess the role of IL in social 
interactions. For this purpose, in the Personal Interaction 
condition of their experiment, the authors told the partici-
pants that they would be interacting with a virtual person 
named Clegg. Participants were further informed that their 
task was to keep Clegg’s mood at a prespecified level. Par-
ticipants could enter their inputs via a keyboard and Clegg’s 
responses were presented on a display as linguistic labels 
(i.e., text vignettes). The following adjectives were used 
both as Clegg’s possible moods and as participants’ response 
options: “Very Rude, Rude, Very Cool, Cool, Indifferent, 
Polite, Very Polite, Friendly, Very Friendly, Affectionate, 
Very Affectionate or, Loving”. Each of the adjectives was 
assigned a numerical value from 1 to 12. Unbeknownst to 
the participants, the relationship between their inputs and 
Clegg’s mood was mediated by the same equation as that 
used in the Sugar Production condition. Berry and Broad-
bent (1984) found that participants improved their perfor-
mance to keep Clegg’s mood on the target state as the task 
progressed, suggesting that learning occurred in the task. As 
in the Sugar Production condition, learning was also found 
to be mostly implicit.

Importantly, we suggest that while the Personal Inter-
action task implements interactive loops of informational 
exchange between the participants and the task, its use of 
linguistic labels as surface stimuli keeps it abstract in a way 
that severely limits its relevance to the social domain.

The present study

While we consider that the existing studies on the involve-
ment of IL in our social functioning provide encouraging 
starting results, we also think that their relevance for the 
social world is restricted by two main factors: (a) the artifi-
cial nature of the surface stimuli (especially in the case of 
AGL and SRTT) and (b) the static nature of the paradigms 
themselves, which seldom, if ever, afford the kinds of inter-
active contexts that nevertheless constitute the core feature 
of social life.

To overcome these limitations, we developed a novel 
task consisting of a learning phase and of an awareness test 
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phase. In the learning phase, based on the classic DSC task, 
participants responded to the cinematic facial expressions of 
a realistic avatar, with the aim of bringing its facial expres-
sion in a predefined state. Unbeknownst to the participants, 
their responses were related to the avatar’s expressions via 
a complex equation modeled after Berry and Broadbent 
(1984): the equation likewise took into account both the 
avatar’s previous expression and the participants’ response. 
Accordingly, the avatar’s expression was influenced by the 
participants’ response, while the participant had to adapt 
his/her response to the avatar’s previous expression; in other 
words, the avatar and the participant were in a continuous 
interactive loop throughout the learning phase. A significant 
increase in the number of trials in which the participants 
managed to bring the avatar in the target state would indi-
cate that they have acquired knowledge from the task. The 
primary features of the learning phase were that participants 
were in a continuous interaction with the avatar and the fact 
that the avatar’s emotional facial expression changed in a 
cinematic, realistic manner—aspects that give our task an 
unprecedented level of external validity for studying implicit 
social learning.

The awareness test phase measured to what extent partici-
pants were aware of the information required to regulate the 
avatar’s state. As the issue of measuring awareness remains 
highly controversial, we discuss our choices in the following 
subsection.

The awareness measures

First, we used a subjective measure of awareness. Consider-
ing that any awareness measure requires a subjacent theory 
of consciousness, using a subjective measure is informed by 
two of the most validated empirical theories of conscious-
ness: the global workspace theory and the higher-order 
theories. In brief, global workspace theories show that the 
information one is aware of, is globally available for the 
cognitive subsystems, including those responsible for ver-
bal reporting of the information. Hence, information one is 
aware of should be verbally reportable (e.g., Baars, 1997; 
Dienes, 2012). Higher-order theories are predicated on the 
principle that one is aware of a mental content only to the 
extent that one has a meta-representation that one possesses 
the content (i.e., one knows that one knows something; 
Rosenthal, 2004). Accordingly, we assessed the existence 
of such higher-order representations by asking participants 
to express what they know about their acquired knowledge 
(Dienes, 2012; Dienes & Scott, 2005; Ling et al., 2018). An 
alternative to subjective measures is to use performance-
based (so-called “objective”) methods, which equate partici-
pants’ above chance performance in tasks that require them 
to use certain types of knowledge, with them being aware of 
that knowledge. For instance, in the SRTT, if participants are 

able to generate a sequence similar to that they have learned, 
one would conclude that they are aware of the learned 
sequence. However, it has been found that participants are 
able to obtain (objectively) above chance performance, even 
when they (subjectively) report to have no conscious knowl-
edge (e.g., Fu et al., 2012). Hence, above-chance objective 
performance can be sustained by subjectively unconscious 
knowledge (see e.g., Timmermans & Cleeremans, 2015, for 
a discussion). Of course, introspection is not perfect and 
subjective methods of measuring awareness have often been 
criticized (e.g., Berry & Dienes, 1993; Newell & Shanks, 
2014: Shanks & St John, 1994; Shanks, 2010). However, 
most often, the object of criticism has not been their subjec-
tive character per se, but rather the manner in which they 
are typically administered. For example, such measures 
are often collected after multiple trials/responses from the 
participant, and hence a failure of introspection can merely 
reflect forgetting (see the immediacy criterion of Newell & 
Shanks, 2014). As a result, most current studies that use sub-
jective measures attempt to ensure conditions that favor an 
accurate introspection: for example, participants are asked 
to report on their awareness after each response/trial, they 
are provided on each trial with written indications of what 
they have to report, etc. (e.g., Dienes & Scott, 2005; Jurchis 
et al., 2020).

Second, a proper measure of awareness needs to precisely 
specify what content it attempts to capture (see the rele-
vance criterion of Newell & Shanks, 2014). Dienes and Scott 
(2005) have shown that two types of knowledge can operate 
in implicit learning tasks, namely structural knowledge, and 
judgement knowledge. Structural knowledge refers to knowl-
edge of the learned regularities. This structural knowledge 
leads to the development of judgement knowledge, which 
refers to knowledge of whether a certain response follows 
or not the regularity. Thus, judgement knowledge is situ-
ationally specific and develops on the basis of more general 
structural knowledge. One cannot have accurate judgement 
knowledge (cannot know whether an item conforms or not 
to the learned structure) in the absence of accurate struc-
tural knowledge (i.e., without knowing something about the 
structure) (e.g., Dienes & Scott, 2005; Fu et al., 2012). Both 
judgement and structural knowledge can be either conscious 
or unconscious. Of primary interest for our study, as for the 
vast majority of implicit learning studies, was whether par-
ticipants extract accurate unconscious structural knowledge; 
that is, accurate knowledge regarding the regularity, the 
equation, embedded in our learning phase. However, to con-
clude that the structural knowledge is accurate, one first has 
to probe that it leads to accurate judgement knowledge, or, 
more simply put, to accurate judgements/decisions. Hence, 
the standard, most practical, manner to probe the existence 
of accurate unconscious or conscious structural knowledge 
is to have participants make judgements that are based on 
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this knowledge (to accurately determine its accuracy), while 
asking them to report on their subjective, conscious, access 
to this knowledge.

To capture the accuracy of participants’ judgement 
knowledge and the awareness of the underlying struc-
tural knowledge, we used two well established measures: 
the process-dissociation procedure (PDP; Destrebecqz & 
Cleeremans, 2001; Jacoby, 1991), and a subjective response 
attribution method (Dienes & Scott, 2005). The process dis-
sociation method measures the accuracy of participants’ 
judgement knowledge by asking them to either bring or to 
avoid bringing the avatar in a desired state.1 The subjec-
tive response attribution method asks participants to judge 
the source of their own responses which, as detailed in the 
Methods section, reveals the conscious/unconscious status 
of their structural knowledge. Furthermore, this method also 
affords an assessment of the conscious/unconscious status 
of their judgment knowledge (i.e., whether they feel they 
have some confidence in their response or whether they 
feel they are just guessing). This method was introduced by 
Dienes and Scott (2005) and has become one of the most 
widely-used subjective methods of assessing awareness 
across a large variety of IL paradigms, such as the AGL 
(e.g., Dienes & Scott, 2005; Norman et al., 2019), the SRTT 
(Fu et al., 2012, 2018), evaluative conditioning (Waroquier 
et al., 2020), symmetry learning (Ling et al., 2018), and lan-
guage learning (Paciorek & Williams, 2015). However, to 
our knowledge it has never been used in the DSC task.

Some previous DSC studies have found that the judge-
ment knowledge operating in this task is accurate in the 
sense that, given a situation, participants know what the 
appropriate response should be. They also found evidence 
for unconscious structural knowledge in the sense that the 
accuracy of their judgement knowledge was independent 
from participants’ objective performance in a recognition 
task (e.g., Dienes & Fahey, 1998). Accordingly, we expect 
that our task, which exposes participants to a regularity 
that is similarly complex and, presumably, difficult to be 
detected consciously (cf. Jurchis et al., 2020), will also lead 

to the development of accurate judgement knowledge sus-
tained by unconscious structural knowledge. We note that 
previous DSC studies did not assess, in a sensitive manner, 
the awareness of both structural and judgment knowledge. 
Berry and Broadbendt (1984) relied on post-experimental 
questionnaires that have been criticized by Shanks and St 
John (1994) in terms of sensitivity and relevance. Dienes and 
Fahey (1998) equated awareness with participants’ objective 
recognition performance for previous trials, not including 
other types of knowledge that participants could use (e.g., 
more abstract rules or heuristics). Saevland and Norman 
(2016), in a DSC task, measured participants’ confidence, 
which indexes only awareness of the judgment knowledge. 
Hence, for the first time in a DSC task, we aim to sensitively 
assess the conscious/unconscious status of both structural 
and judgment knowledge.

Objectives and hypotheses

The main objective of this study was to determine whether 
IL can be involved in the acquisition of the complex regulari-
ties present in a situation involving dynamic interaction with 
a life-like virtual agent. Based on the previous DSC stud-
ies (e.g., Dienes & Fahey, 1998), our hypotheses were (H1) 
that participants will acquire the regularity, (H2) that they 
will possess accurate judgement knowledge, (H3) that their 
accurate judgement knowledge will be based both on uncon-
scious structural knowledge and on conscious structural 
knowledge. The detection of accurate judgement knowledge 
based on unconscious structural knowledge would enable us 
to conclude that IL occurred in the task. However, compared 
to the existing research, our task features substantially dif-
ferent stimuli (dynamic facial expressions) and modes of 
interaction with the task (responding with a facial expres-
sion). As discussed in the previous sections, the nature of 
the surface stimuli and the mode of interaction with those 
stimuli has been shown to influence the nature and the extent 
of learning (e.g., Jiminez et al., 2020). Accordingly, it is 
entirely possible that our results may diverge from those we 
hypothesize and that have been found in tasks that have used 
non-social or less complex stimuli.

Methods

Participants

We determined our sample size considering the statistical 
power needed to test H3, because it has a smaller expected 
effect size than that of H1 and H2. We expected a small 
to medium effect size for the unconscious learning effect 
stipulated by H3, based on previous studies that used 
similar methods to measure conscious and unconscious 

1 We note here that methods derived from Jacoby’s (1991) PDP were 
initially used in IL research for revealing the conscious/unconscious 
status of learning. They assumed that, if participants can flexibly fol-
low the requirements of the inclusion and exclusion tasks, then they 
are aware of the learned knowledge (e.g., Destrebecqz & Cleeremans, 
2001). More recent studies, however, have shown that accurate PDP 
performance can be based on unconscious structural knowledge 
(Fu et al., 2012, 2018; Norman et al., 2011, 2016, 2019; Wan et al., 
2008), and even on unconscious judgement knowledge (Norman 
et  al., 2019). Accordingly, we consider it unwarranted to take accu-
rate PDP performance as an indicator of awareness. Instead, we use it 
only for establishing the accuracy of participants’ judgement knowl-
edge. As explained, to determine the conscious/unconscious character 
of knowledge we use subjective measures.
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knowledge (e.g., Fu et al., 2012, 2018). Our power analysis 
indicated that a one-tailed test can detect a potential dif-
ference between two paired means (i.e., within-subjects 
design) that has an effect size of Cohen’s dz = 0.3 with 
a statistical power of 1 − β = 0.9 in a sample of 97 par-
ticipants. Note that for the other hypotheses, we expected 
large or medium to large effect sizes (for H1, a dz = 0.798 
based on Dienes & Fahey, 11998 for H2, a η2

p = 0.329, 
based on Fu et al., 2012; for the conscious learning effect 
stipulated by H3, a dz = 0.67, based on Fu et al., 2012), 
and 97 participants provided a statistical power > 99% for 
all these effects. Therefore, we aimed for a sample size of 
at least 97, but, as participants were rewarded with par-
tial course credit, a higher number of persons enrolled. 
A total of 115 first-year undergraduate students in psy-
chology from the Babeș-Bolyai University, (99 female, 
Mage = 19.74, SD = 1.27) participated in this research. All 
participants had normal or corrected-to-normal vision, 
enrolled voluntarily, gave written informed consent, and 
were told that they could withdraw from the experiment at 
any time, without any negative consequences. Participants 
consented to have their anonymized data being made pub-
licly available. This study respected the regulations of the 
Babeș-Bolyai University’s Research committee and have 
therefore been performed in accordance with the ethical 
standards laid down in the 1964 Declaration of Helsinki 
and its later amendments.

Apparatus

The stimuli were designed with iClone (Version 7.2; Real-
lusion; 2017); the JavaScript experiment was coded in Psy-
choPy/PsychoJs (Peirce et al., 2019) and ran on the Pavlo-
via.org servers. The experiment, including all raw stimuli, 
is accessible for download at osf.io/q9bac. For additional 
information on how to access the resource package, see the 
Supplementary material A.

Task and materials

In a within-group design, we used a two-step task with a 
learning phase and an awareness test phase. In the learn-
ing phase, participants were presented with a socially rel-
evant environment that made it possible to quantify the on-
line acquisition of knowledge. In the awareness test phase, 
we assessed the implicit/explicit status of the acquired 
knowledge.

Our learning phase is inspired by the classic DSC task 
(Berry & Broadbent, 1984), but brings important modifi-
cations. Amongst which the most important is the differ-
ent types of surface stimuli. Specifically, on the one hand, 
Berry and Broadbent, as well as the bulk of the research 
implementing this task, used surface stimuli under the form 
of written words with an affective valence (e.g., “extreme 
anger”). On the other hand, we used dynamic facial expres-
sions of a cinematic virtual male avatar (i.e., the video of a 
virtual human depicting—for instance—an actual, standard-
ized, facial expression of extreme anger). The reason for 
which we decided not to design a female avatar is informed 
by the AGL study of Ziori and Dienes (2015), who found 
that the perceived attractiveness of stimuli depicting female 
faces affects learning performance of both male and female 
participants. Given that this effect did not appear for stimuli 
depicting male faces neither for male nor for female par-
ticipants, we prevented the potential stimulus attractiveness 
effects on IL by designing socio-emotionally relevant sur-
face stimuli that were expressed by a male avatar. In the next 
subsection, we detail the characteristics of these emotional 
facial expressions.

The emotional facial expressions

In our task, participants interacted with a cinematic virtual 
avatar that could display a range of seven emotional facial 
expressions (see Fig. 1) and transitioned from one facial 

Intense        
anger

Moderate    
anger

Low            
anger

Neutral      
state

Intense         
joy

Moderate     
joy

Low             
joy

Fig. 1  The seven facial expressions used in this study
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expression to the next in a fluid motion comprised in fixed 
intervals of 30 frames, lasting 500 ms.

The contraction amplitudes and movement successions 
of all digital muscles (i.e., Action Units, AUs) were linear 
and respected the guidelines provided by the Facial Action 
Coding System (FACS; Ekman et al., 2002). If on two tri-
als, the avatar had to morph between two levels of the same 
emotional facial expression (e.g., from Low anger to Intense 
anger), the transition was programmed to occur simply by 
increasing the contraction amplitude of the relevant AUs; 
instead, if on two trials, the avatar had to morph between 
facial expressions of different families, the transition was 
programed to occur by passing through the Neutral state.2 
The last fame of the 30-frame transition—i.e., the frame 
with the peak amplitude—remained on the screen for the 
entire duration of the trial. Next, we clarify the manner in 
which the transitions between different facial expressions 
were sequenced to create the learning phase.

The learning phase

Participants were informed that they will interact with a 
fictional character from an unknown culture who is able to 
display only a limited number of facial expressions and is 
unable to regulate his facial expressions. They were further 
instructed that the avatar attends an important task in which 
he must not express intense facial expressions—neither 
positive nor negative—and that their task is to assist him 
in regulating his emotions, aiming to get him into the Neu-
tral state as many times as possible. Then, participants were 
instructed on how they could interact with the avatar. Spe-
cifically, they were told that the avatar will display a facial 
expression and they will have to show him a picture of him-
self that they think will bring him in the Neutral emotional 
state. For instance, if the avatar displays Intense anger, they 
will have to show him a picture of himself that they think 
can calm him down to the Neutral state. All trials in which 
participants succeeded to regulate the avatar in the target 
(i.e., Neutral) state were classified as On-target trials and 
were considered as the index of learning. Lastly, participants 
were told that because the avatar is from this unknown cul-
ture, he may react to the picture that they show him in ways 
that are not necessarily normal or typical. In sum, in the 

learning phase, on each trial, participants (1) saw a facial 
expression of the avatar and (2) had to respond by selecting 
an expression, so that the avatar’s expression would change 
to neutral in the next trial (or remain neutral, if the expres-
sion was already neutral).

Crucially, undisclosed to participants, in the first millisec-
onds of each trial, the program determined the facial expres-
sion that the avatar will morph into by computing a rule that 
took into account both the avatar’s expression in the previous 
trial and the participant’s response in the previous trial. We 
detail the contents of this rule in the subsection below.

The abstract rule To describe our implementation of the 
equation, it is first necessary to present the fact that each 
of the avatar’s 7 possible facial expressions, as well as each 
of the participants’ seven possible response options were 
assigned a constant position within a looped numerical 
sequence; for a graphical representation, see Fig.  2. The 
starting point of the sequence was set on position 0 (i.e., 
Intense anger) however, transitions within the sequence 
could be made in both a clockwise or an anticlockwise 
direction. Participants were not directly exposed to, or made 
aware of, the existence of this sequence.

To determine the avatar’s facial expression on any given 
trial (i.e., Av. Exp.t), the task was programmed to compute 
the equation “Av. Exp.t = 0 + [Av. Exp.t−1 + (Av. Exp.t−1 − P. 
Resp.t−1)]” where, “Av. Exp.t” denotes the Avatar’s 

0

34

6

5

1

2

Fig. 2  The abstract looped numerical sequence. It depicts both the 
avatar’s possible facial expressions and the participants’ possible 
response options. Intense anger = position 0, moderate anger = posi-
tion 1, low anger = position 2, the neutral state = position 3, low 
joy = position 4, moderate joy = position 5 and, intense joy = position 
6

2 For instance, if between two trials, the avatar had to morph from 
a facial expression of Intense anger to one of Moderate joy then, the 
transition initially started by decreasing the intensity of the facial 
expression of Intense anger towards the Neutral state (this process 
elapsed over the first 14 screen refreshes of the trial); after reach-
ing the Neutral state (where it remained for two screen refreshes), 
the program then increased the expressiveness of the avatar from the 
Neutral state to reach the facial expression of Moderate joy (this pro-
cess elapsed over another 14 screen refreshes).
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expression in the current trial; “0” represents the starting 
point of the stimulus set (i.e., the facial expression of Intense 
anger; this parameter remained constant from trial to trial, 
throughout the task); “Av. Exp.t−1” represents the Avatar’s 
expression in the previous trial and “P. Resp.t−1” represents 
the Participant’s response in the previous trial.

The result of the equation indicated the direction and 
length of the pathway that the task moved within the looped 
sequence—starting from position 0—to select the avatar’s 
facial expression in the current trial. The task was pro-
gramed to move within the sequence in a clockwise direc-
tion if the result was a positive number and vice versa if the 
result was a negative number. Participants were instructed 
to regulate the avatar’s facial expression in the Neutral state 
as many times as possible. Thus, all instances in which “Av.
Exp.t = 0 + 3” or, “Av.Exp.t = 0–4” were considered On-
target trials because, according to these results, the avatar 
will morph into the Neutral facial expression. For a possi-
ble interaction sequence between a participant and the task 
across the first three trials of a block, see the Table 1 below 
(for a complete matrix that contains all the possible interac-
tions, see the Supplementary material B).

Noteworthy, our task has no specific input—specific 
output mapping; therefore, task habituation cannot explain 
performance improvements. Instead, participants could 
become proficient in controlling the system by engaging in 

an abstract learning process or, alternatively, by engaging in 
an instance-specific learning process. To better exemplify, 
it is possible that participants acquired the abstract equa-
tion from the task {i.e., Av.Exp.t = 0 + [Av.Exp.t−1 + (Av.
Exp.t−1 − P.Resp.t−1)]} or, alternatively, it is possible that 
they eventually learned to respond adequately in several spe-
cific interaction instances [e.g., “If the avatar’s expression is 
Moderate anger and I select a response of Intense anger then 
its expression becomes Neutral.” or “If the avatar’s expres-
sion is Neutral, and I select a response of Neutral, then its 
expression remains Neutral”]. Note that, according to the 
equation, after the avatar reached the Neutral state, it could 
be maintained in this state indefinitely simply by repeatedly 
choosing the Neutral response option. However, to prevent 
participants from obtaining a high performance in the learn-
ing phase based on this instance-specific rule, they were 
not allowed to repeat the same response in two consecutive 
trials. In this case if the avatar reached the Neutral state, 
participants could maintain its expression Neutral for just 
another trial (i.e., by selecting the response of Neutral). If 
they attempted to repeat their response, a feedback message 
was displayed on the screen and participants were asked to 
select a different response.

Participants interacted with the avatar dynamically. Spe-
cifically, given the same facial expression of the avatar, two 
different responses from the participants would produce 

Table 1  Simulates how the equation mediates the interaction between a participant’s responses and the avatar’s facial expressions

The table describes the events from three consecutive trials. Av. Exp.tx—the avatar’s expression in trial x. P. Resp.tx—participants’ response in 
trial x;  Changetx—the change in position within the looped sequence, required for reaching the avatar’s state in trial x

Event order Event description Equation

1 Avatar’s expression in trial 1 is Intense anger Av. Exp.t1 = 0 [i.e., Intense anger]
2 If participants’ response in trial 1 is Neutral P. Resp.t1 = 3 [i.e., Neutral]
3 Computation of the required change in position Changet2 = 0 + [Av. Exp.t1 + (Av. Exp.t1 − P. Rresp.t1)]

Changet2 = 0 + [0 + (0 − 3)]
Changet2 = 0 + [0 + (− 3)]
Changet2 = 0 + (− 3)

4 The location moves three positions counterclockwise, starting from zero Changet2 = − 3
5 Outcome: Avatar’s expression in trial 2 is low joy Av. Exp.t2 = 4 [i.e., Low joy]
6 If participants’ response in trial 2 is intense joy P. Resp.t2 = 6 [i.e., Intense joy]
7 Computation of the new state by the algorithm Changet3 = 0 + [Av. Exp.t2 + (Av. Exp.t2 − P. Resp.t2)]

Changet3 = 0 + [4 + (4 − 6)]
Changet3 = 0 + [4 + (− 2)]
Changet3 = 0 + 2

8 The location moves two positions clockwise, starting from zero Changet3 =  + 2
9 Outcome: Avatar’s expression in trial 3 is low anger Av. Exp.t3 = 2 [i.e., low anger]
10 If participants’ response in trial 3 is moderate anger P. Resp.t3 = 1 [moderate anger]
11 Computation of the new state by the algorithm Changet4 = 0 + [Av. Exp.t3 + (Av. Exp.t3 − P. Resp.t3)]

Changet4 = 0 + [2 + (2 − 1)]
Changet4 = 0 + [2 + (1)]
Changet4 = 0 + 3

12 The location moves three positions clockwise, starting from zero Changet4 =  + 3
13 Outcome: Avatar’s expression in trial 4 is Neutral Av. Exp.t4 = 3 [i.e., Neutral]
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different responses from the avatar in the next trial (for an 
example, view the Supplementary material C).

Task performance was indexed by the number of trials 
in which participants regulated the avatar to the Neutral 
facial expression (i.e., On-target trial). In other words, an 
On-target trial was achieved when the result of the equa-
tion indicated the facial expression that will be displayed 
by the avatar is the Neutral state (i.e., Av. Exp. = 0 + 3 or, 
Av. Exp. = 0–4). Evidence of learning was considered if the 
number of On-target trials increased with practice (i.e., as 
the task progressed). In the next section, we present a spe-
cific account of the events that occurred during a typical 
trial.

A typical trial structure At the beginning of each block, the 
avatar started a preprogramed transition from the Neutral 
expression to a facial expression of Intense anger. This tran-
sition occurred as presented in the Sect. 2.3.1. The transition 
between the two emotional facial expressions elapsed over 
a time interval of 500 ms (see the segment A of Fig. 3). The 
last frame of the transition (i.e., Intense anger at peak ampli-

tude) remained exposed on the screen until a response from 
the participant was given, the program computed the next 
facial expression of the avatar and the transition/morphing 
of the avatar toward that facial expression started. After the 
transition was complete, for a time-interval of 500 ms the 
facial expression at peak amplitude remained the only stim-
ulus being exposed on the screen. This time interval was 
introduced to encourage active processing of the current 
facial expression (see the segment B of Fig. 3). Then, the 
seven facial expressions which served as response options 
were displayed horizontally on the bottom of the screen for 
a time interval of maximum 10 s (see the segments C and 
D of Fig. 3). Participants were asked to click on the facial 
expression with which they wish to respond. If participants 
did not indicate a response after 7  s, a counter appeared 
on the screen. This counter asked them to respond in no 
more than three seconds. (See the segment D of Fig. 3). If a 
response had not been registered, a “late response” feedback 
was presented on the screen. The trial was marked as “late” 
in our data bases and it was discarded from the analyses 
(see the segment E of Fig. 3). If a response has been made 

Fig. 3  Depicts a typical trial 
structure. A = 500 ms. (This is 
the time interval in which the 
task first, determined the facial 
expression that will present in 
the current trial, based on both, 
the avatar’s expression and par-
ticipant’s response in the earlier 
trial and second, morphed the 
facial expression of the avatar 
from the expression that it 
displayed in the earlier trial to 
the one that it will display in 
the current trial); B = 500 ms. 
(The time interval in which 
only the facial expression of 
the avatar at peak amplitude 
was displayed on the screen); 
C = 6000 ms. (The seven facial 
expressions which served as 
response options were displayed 
horizontally on the bottom of 
the screen. After a response 
has been made, the experiment 
went ahead to the next trial.); 
D = 2999 ms. (The counter 
appeared on the screen if no 
response has yet been given); 
E = ∞ (The late response feed-
back appeared on the screen if 
no responses were registered) B

C

D

A

E
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within the 10  s interval, the program moved to the next 
trial. The “thumbs-up” feedback appeared on the left side 
of the screen only on those trials where the avatar reached 
the target, Neutral state (see Fig. 3). If participants repeated 
more than two consecutive responses, a “repeated response, 
chose another!” feedback was displayed on the screen, par-
ticipants were asked to select a different response, and the 
specific trial was discarded from analyses.

The learning phase was structured as a self-paced seven 
alternative forced choice task (7AFC) and consisted of 
300 trials divided to ten equal blocks, with 30 s rest breaks 
between each of them.

The awareness test phase

The main goal of this phase was to determine whether par-
ticipants had acquired accurate unconscious and conscious 
knowledge about the equation (structural knowledge). To 
this end, we employed an extensively used subjective meas-
ure of awareness, called knowledge attribution (e.g., Dienes 
& Scott, 2005; Fu et al., 2012, 2018; Norman et al., 2011, 
2016, 2019; Waroquier et al., 2020) which was used in the 
context of a Process Dissociation Procedure (PDP; Destre-
becqz & Cleeremans, 2001; Jacoby, 1991). In the following, 
we will present the specific modality in which we combined 
these two measures in the present experiment.

The PDP assesses participants’ ability to flexibly oper-
ate with their acquired knowledge. The procedure consists 
of two tasks: inclusion and exclusion. As applied here, in 
each trial of both tasks, participants were presented with an 
image depicting one of the previously encountered facial 
expressions of the avatar. They were then asked to respond 
(by selecting a facial expression out of the same response 
options that were used in the learning phase) to either bring 
the avatar in the target state (in the inclusion task) or to 
bring the avatar in any other state but the target state (in the 
exclusion task). The avatar’s seven facial expressions were 
randomly presented twice in each task. The task order effect 
was controlled by a counterbalanced design, 64 participants 
started the test phase by completing the inclusion task, and 
the other 51 participants started the test phase by complet-
ing the exclusion task. To prevent learning during the test 
phase, the experiment proceeded without feedback as soon 
as a response has been given. If participants regulated the 

avatar to the target state on significantly more trials in inclu-
sion vs. exclusion, we would conclude that they had acquired 
accurate judgement knowledge. Crucially, however, accurate 
judgement knowledge can be based on unconscious struc-
tural knowledge (e.g., I feel that the fourth facial expres-
sion would bring the avatar in the target state, but I have 
no idea why). Indeed, this is what was found by most—if 
not all—IL studies that used a PDP in conjunction with 
subjective measures: participants are able to control their 
knowledge even when they are subjectively unaware of the 
learned structures (e.g., Fu et al., 2012, 2018; Norman et al., 
2011, 2016, 2019). Accordingly, to examine the accuracy of 
judgement knowledge and, also, to uncover the conscious/
unconscious status of structural knowledge, we employed 
this mixed assessment of awareness, which combines the 
PDP with knowledge attributions.

Participants were required to indicate the subjective 
attribution of their response after each trial of the PDP. 
Do participants think that the response they just produced 
(in the PDP) reflects conscious knowledge of the rules or 
memory of a similar instance? Did they respond based on 
an intuition they cannot justify? Or did they feel that they 
just guessed? The response attribution trial was presented 
as four alternative forced choice (4AFC) with Guess, Intui-
tion, Rules and Memory as response options. The Guess 
and Intuition response options denote that participants 
attribute their answer to unconscious structural knowledge 
(hereinafter implicit attributions) whereas the Rules and 
Memory response options denote that participants attribute 
their answer to conscious structural knowledge (hereinaf-
ter, explicit attributions). Participants were presented with 
explanations of these response options after each trial of 
the PDP (see Table 2 below) and were asked to choose the 
option that they think best describes what they relied on 
when they gave the previous answer.

The existence of accurate unconscious structural knowl-
edge is inferred if, in trials in which participants use implicit 
attributions (i.e., Guess and Intuition), they are able to accu-
rately use their judgement knowledge (i.e., by including 
significantly more responses that conform to the learned 
equation in inclusion than in exclusion; cf., e.g., Fu et al., 
2012, 2018).In the following section, we present the specific 
sequence of instructions and tasks that were administered to 
the participants.

Table 2  Definition of the self-reported decision strategies

Guess Your answer had no basis whatsoever. You could have just as well flipped a coin to decide
Intuition You felt that your answer was correct but you have no idea why you felt this. That is, you had a feeling that by responding with that 

facial expression, you were regulating John in the Neutral state—but you do not know what that impression was based on
Rules Your answer was based on a rule (or on a fragment of a rule) that you know consciously and you can describe if we ask
Memory Your answer was based on the fact that you consciously remember that by responding with that facial expression you were bringing 

John in the Neutral state
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Procedure

Next, we will present an overview of our procedure—for a 
more detailed account, consult the Supplementary material 
D. Participants were first asked to give written informed 
consent prior to completing the experimental activities. Sec-
ond, they were asked for their demographic information. 
Third, they completed the learning phase and, fourth, they 
completed the awareness test phase. The entire experiment 
lasted around 25 min.

In the learning phase, before initiating the experiment, 
participants were given the following written instruction: 
“You will interact with John, a fictional character from 
an unknown culture; he is able to display only a limited 
number of facial expressions and is unable to regulate his 
facial expressions in the way that we do. John attends an 
important task and in order to be successful, he must not 
express intense facial expressions—neither positive nor 
negative. Your task is to assist him in regulating his facial 
expressions, aiming to bring him into a neutral state as many 
times as possible. Finally, John may respond to your inputs 
in ways that might seem atypical”. After participants read 
the instructions, we presented the feedback messages that 
could appear in this phase of the experiment (i.e., the posi-
tive feedback, the feedback for repeated responses and the 
feedback for late responses). Before initiating the experi-
mental trials of the learning phase, we verified that partici-
pants knew how to interact with the avatar by asking them to 
perform 10 practice trials. Here, the avatar reacted randomly 
to participants’ inputs and these trials were dropped from 
the analyses.

After they completed the learning phase, participants 
were given the written instructions for the awareness test 
phase. Participants were informed that they would be pre-
sented with a facial expression of the avatar and they would 
have to choose the response they thought would bring the 
avatar in the target state (for the inclusion task) or in any 
other state but the target (for the exclusion task). They were 
further instructed to indicate the subjective basis of their 
response by choosing one of the four possible response 
options (i.e., Guess, Intuition, Rules or Memory). After par-
ticipants indicated that they understood their task, we pre-
sented them with one practice trial (from the inclusion or the 
exclusion phase, depending on the condition). The practice 
trial was also discarded from the analyses. After complet-
ing the practice trial, participants started the awareness test 
phase. The definition of the response options appeared on 
the screen after each trial of the PDP.

After the awareness test phase was completed, partici-
pants were thanked for their involvement in this research and 
were given the contact information of the principal investi-
gator in order to address their potential questions.

Results

In the following, we will first analyze whether participants 
acquired knowledge of the regularity. Then, we analyze 
whether they possess accurate judgement knowledge. Last, 
we assess whether their accurate judgement knowledge is 
based both on unconscious structural knowledge and on con-
scious structural knowledge.

(H1) Did learning occur?

The raw dataset generated for this study is available on 
the Center for Open Science repository (osf.io/q9bac). If 
participants acquired knowledge from the task, we would 
expect an increase of the number of On-target trials as the 
task progressed. A one-way repeated measures ANOVA 
revealed a significant effect of Block (1–10, within-sub-
jects) on the number of On-target trials, F(9, 114) = 38.33, 
p < 0.001, η2

p = 0.252. A follow up repeated measures t test 
indicated that participants generated significantly more On-
target trials in the 10th acquisition block (Mproportion = 0.309, 
SD = 0.198) than in the 1st acquisition block (Mprop. = 0.135, 
SD = 0.106), t(114) = − 9.05, p < 0.001, Cohen’s d = 0.84. 
Altogether, these results clearly show that learning had 
occurred during the task (see Fig. 4).

(H2) Did participants possess accurate judgement 
knowledge?

Participants’ ability to flexibly conform to the opposing 
requirements of the inclusion and of the exclusion tasks 
would be enabled by their possession of accurate judge-
ment knowledge. To determine whether they possessed this 
accurate judgement knowledge, we compared the number 
of On-target trials from the inclusion task with those from 
the exclusion task.

A mixed ANOVA assessed the effects of Instruction 
(within-subjects: inclusion vs. exclusion) and task order 
(between-subjects: inclusion–exclusion vs. exclusion–inclu-
sion) on the number of On-target trials generated in the 
test phase. We found a significant Instruction effect, F(1, 
113) = 107.01, p < 0.001, η2

p = 0.486, indicating that partici-
pants generated significantly more On-target trials in the 
inclusion (Mprop. = 0.357, SD = 0.220) than the exclusion 
(Mprop. = 0.104, SD = 0.098) task. We failed to detect either 
a significant Task order effect, F(1, 113) = 0.61, p = 0.435, 
η2

p = 0.005, or a significant Instruction by Task order inter-
action effect F(1, 113) = 0.07, p = 0.794, η2

p = 0.005. These 
results suggest that participants acquired accurate judgement 
knowledge from the task. For a graphical representation and 
analysis of participants’ accuracy in the PDP against the 
chance level, consult Supplementary material E.
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(H3) Did participants acquire accurate conscious 
and unconscious structural knowledge?

After having established that participants possessed accu-
rate judgement knowledge, we now analyze to what extent 
it is based on unconscious and/or on conscious structural 
knowledge.

Following established analytical strategies in IL research 
(Norman & Price, 2012; Ziori & Dienes, 2015), we com-
bined the Guess and Intuition response attributions to create 
Implicit attributions scores, and the Rules and Memory attri-
butions to create the Explicit attributions scores. Roughly 
half of the total responses were based on Implicit attribu-
tions (in inclusion, Mprop. = 0.528, SD = 0.306 and in exclu-
sion, Mprop. = 0.465, SD = 0.368) and the other half were 
based on Explicit attributions (in inclusion, Mprop. = 0.472, 
SD = 0.306 and in exclusion, Mprop. = 0.535, SD = 0.368). For 
a detailed perspective on the distribution for each of the four 
response bases (i.e., Guess, Intuition, Rule and Memory) 
across the inclusion and the exclusion tasks of the PDP, see 
the Table 3 below.

We then analyzed the accuracy of participants’ judge-
ment knowledge depending on the conscious/unconscious 

status of their structural knowledge. First, we assessed 
whether participants had accurate judgement knowledge 
when they reported that their responses were based on 
explicit structural knowledge. Note that the overall analy-
sis only included the 96 (out of 115) participants, who 
reported relying on an explicit attribution (i.e., Rule or 
Memory) on at least one trial in both the inclusion and 
the exclusion tasks. For responses based on Explicit attri-
butions, a paired sample t test indicated that participants 
generated significantly more On-target trials in the inclu-
sion (Mprop. = 0.558, SD = 0.347) than the exclusion task 
(Mprop. = 0.072, SD = 0.114), t(96) = 13.02, p < 0.001, 
d = 1.32. In a more granular perspective, for responses 
based on Rules, a paired sample t test indicated that partic-
ipants generated significantly more On-target trials in the 
inclusion (Mprop. = 0.542, SD = 0.369) than the exclusion 
task (Mprop. = 0.062, SD = 0.133), t(62) = 9.38, p < 0.001, 
d = 1.18. The same pattern of results was observed for 
the responses based on Memory—participants gener-
ated significantly more On-target trials in the inclusion 
(Mprop. = 0.537, SD = 0.401) than in the exclusion task 
(Mprop. = 0.076, SD = 0.159), t(53) = 10.09, p < 0.001, 
d = 1.37. Collectively, the analyses above indicate that 
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Fig. 4  The mean proportion of On-target trials (i.e., the trials in which participants managed to bring the emotional facial expression of the ava-
tar in the Neutral state) generated across the acquisition blocks. Error bars depict 95% CIs

Table 3  The frequency of each response basis options within the two PDP tasks

The values represent proportions and, in paratheses, standard deviations.

Guess Intuition Rule Memory

Inclusion Exclusion Inclusion Exclusion Inclusion Exclusion Inclusion Exclusion

0.263 (0.246) 0.173 (0.236) 0.265 (0.227) 0.292 (0.299) 0.260 (0.292) 0.291 (0.348) 0.212 (0.257) 0.244 (0.307)
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participants had accurate judgement knowledge on tri-
als where they reported relying on conscious structural 
knowledge.

We then assessed whether participants had accurate judge-
ment knowledge when they reported that their responses 
were based on unconscious structural knowledge. Note 
that the overall analysis only included the 87 (out of 115) 
participants who reported relying on an implicit attribu-
tion (i.e., Guess or Intuition) in at least one trial in both the 
inclusion task and the exclusion tasks. For responses based 
on Implicit attributions, a paired sample t test indicated that 
participants generated significantly more On-target trials 
in the inclusion (Mprop. = 0.200, SD = 0.209) than the exclu-
sion task (Mprop. = 0.130, SD = 0.156), t(87) = 2.88, p = 0.006, 
dz = 0.31. In a more granular perspective, for responses based 
on Intuition, a paired sample t test indicated that participants 
generated significantly more On-target trials in the inclu-
sion (Mprop. = 0.186, SD = 0.229) than the exclusion task 
(Mprop. = 0.126, SD = 0.153), t(73) = 1.67, p = 0.05, d = 0.19. 
Furthermore, even for responses that were attributed to 
Guess, the inclusion (Mprop. = 0.210, SD = 0.287)—exclusion 
(Mprop. = 0.134, SD = 0.222) difference on the number of On-
target trials that were generated by the participants remained 
statistically significant, t(61) = 1.76, p = 0.041, d = 0.224.

In the following, we employed an alternative method to 
verify if IL occurred in the task: the guessing criterion (Dienes 
et al., 1995)—which can be computed by comparing partici-
pants’ performance in the inclusion task against the chance 
level. However, to do this, it was first necessary to specify our 
chance level. Given that in each trial of the PDP, out of the 7 
possible response options, only one could regulate the avatar’s 
facial expression to the target state, our chance level is 0.143. 
According to the guessing criterion, if participants acquired 
unconscious knowledge of the rule, we would expect them to 
show above-chance performance for the trials on which they 
indicated that they based their responses on guesses. Indeed, 
congruent with the analysis above, a one-sample t test indi-
cated that even when indicating guessing as a response attribu-
tion, participants generated significantly more On-target trials 
(Mprop. = 0.201, SD = 0.287) than what would be expected at 
the chance level (i.e., 0.143), t(88) = 2.26, p = 0.0013, Cohen’s 
d = 0.239.

Collectively, the analyses above clearly indicate that partici-
pants had accurate judgement knowledge on trials where they 
reported relying on unconscious structural knowledge—when 
they reported basing their answers on an intuition or, even 
when they indicated that they had chosen them at random.

Discussion

We aimed to investigate whether it is possible to learn and 
use, without awareness, regularities that govern interac-
tions with a virtual avatar that displays socio-emotional 
content, under the form of dynamic facial emotional 
expressions. The results are largely consistent with our 
hypotheses and with other evidence obtained in previous 
IL studies that have used the DSC paradigm (Berry & 
Broadbent, 1984). Namely, our data indicate that learn-
ing occurred, demonstrated by the fact that participants 
gradually increased their ability to regulate the avatar’s 
facial expression to the target state during the learning 
phase. Furthermore, they were also able to flexibly operate 
with the acquired knowledge in the PDP, even when their 
self-report indicated that they were relying on guesses and 
intuitions, that is, when they felt they were not using con-
scious knowledge of the rules. Instead, according to the 
terminology of Scott and Dienes (2005), they relied on 
unconscious knowledge of the structure their responses 
were based on (see also Fu et al., 2012, 2018; Norman 
et  al., 2011, 2016, 2019). This indicates that, indeed, 
participants have extracted unconscious knowledge of 
the equation governing our task. Nevertheless, partici-
pants acquired a consistent amount of accurate conscious 
knowledge indicated by the fact that, in the PDP, they 
could operate accurately with their knowledge, when they 
reported awareness of it. As the issue of awareness can 
be controversial, in the next subsection we would like to 
discuss several aspects of our findings with respect to the 
involvement of unconscious knowledge in our task.

The conscious: unconscious status of learning

First, people frequently (i.e., in 49.65% of the trials, aver-
aged over inclusion and exclusion tasks) reported that 
their decisions were based on implicit decision strategies, 
indicating that they did not feel that they were aware of 
the structure that guided their responses in the PDP. We 
note that initial IL studies operated on the assumption that 
an accurate PDP performance indicates conscious knowl-
edge of the learned structure; that is, participants would 
be able to respond according to the learned structure in 
inclusion, or avoid responding according to it in exclusion, 
only if they were aware of the structure (e.g., Destrebecqz 
& Cleeremans, 2001). Nevertheless, a plethora of more 
recent studies have shown that equating PDP performance 
with awareness is unwarranted, since subjectively uncon-
scious knowledge can successfully guide participants’ PDP 
performance. To our knowledge, this is what every study 
that has supplemented the PDP with subjective response 
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attribution has found (Fu et al., 2012, 2018; Norman et al., 
2011, 2016, 2019; Wan et al., 2008), and that is what we 
have also found: that participants can flexibly follow the 
requirements of the inclusion and of the exclusion tasks, 
even when they report not being aware of the structure. 
Our results also conceptually replicate previous DSC 
research; similar to Fahey and Dienes (1998), we found 
that the judgement knowledge is accurate in the sense that, 
given a situation, participants know what the appropriate 
response should be. Furthermore, similar to Fahey and 
Dienes, we found evidence for unconscious knowledge in 
the sense that subjective access to the memory representa-
tion enabling accurate judgement is not required for opti-
mal task performance. More to this point, we consider that 
this pattern of results resembles natural social phenomena; 
for instance, situations in which one knows how to behave 
in a certain context even if one is unable to consciously 
access the underlying knowledge which substantiated 
one’s decision/way of action.

Second, as in most other IL tasks, our results do not pro-
vide a clear answer regarding the exact nature of the acquired 
knowledge. For instance, as discussed in the introduction, in 
the AGL task, participants could learn both specific combi-
nations of letters that make a string grammatical or not, but 
could also learn more abstract types of knowledge pertaining 
to the structure of the grammar (such as the global or the 
local repetition proportion; see, e.g., Scott & Dienes, 2008). 
Similarly, in the context of DSC, Dienes and Fahey (1995) 
have found that participants’ performance is not typically 
guided by the abstract equation embedded in the task, but 
rather by implicit and explicit memories of interacting with 
the system on specific trials. Accordingly, we claim that par-
ticipants have extracted structural knowledge from the task, 
because they had accurate performance in the PDP and in 
turn, accuracy in the PDP requires at least knowledge of the 
mappings between stimuli and responses. However, we do 
not claim that participants necessarily developed an abstract, 
mathematical, representation of the equation itself. Rather, 
it is likely that they have acquired a memory base regarding 
specific interactions with the task and their outcome. This 
memory base then informed participants’ ability to conform 
to the opposing tasks of the PDP while being partly implicit 
(i.e., the proportion of On-target trials attributed to implicit 
response bases was 0.198 in the inclusion and 0.13 in the 
exclusion) and partly explicit (i.e., the proportion of On-
target trials attributed to explicit response bases was 0.542 
in the inclusion and 0.07 in the exclusion task).

A third aspect regarding the conscious/unconscious 
status of learning in the present study is that our task has 
produced a higher proportion of trials attributed to explicit 
decision strategies compared to the already established IL 
paradigms. For example, most AGL studies reveal that about 
2/3 of the responses are attributed to unconscious structural 

knowledge (e.g., Dienes & Scott, 2005). In our study, par-
ticipants attributed their responses to strategies based on 
unconscious structural knowledge on only about half the tri-
als (see Table 3 above). Thus, it seems that our participants 
felt that they were applying explicit knowledge to a larger 
extent than participants have done in other IL experiments. 
This apparent enhanced acquisition of explicit knowledge in 
our task affords several candidate explanations. According 
to the first these candidate accounts, as in all DSC studies, 
our instructions asked participants to control the state of a 
system—this instruction by itself is likely to have triggered 
a more analytical processing style (Dienes & Scott, 2005). 
A second explanation might be that, in contrast to previous 
DSC research, we did not use noise in our task. Specifically, 
in each trial of Berry and Broadbent’s (1984) acquisition 
phase, the novel state of the system was determined by run-
ning an equation to which the computer added 1, 0, or − 1 
units on a random basis. Crucially, responses were correct 
if they were either on target or one unit around the target. 
We consider that this liberal method to quantify task perfor-
mance has the potential to be contaminated by both false-
positives as well as false-negatives. Therefore, we chose 
not to introduce the random factor.3 As a third explanation, 
previous research argued that different implementations of 
the PDP offer different estimates of the implicit and explicit 
judgement knowledge. For instance, in the context of the 
SRTT, by using a PDP with free generation tasks, Destre-
becqz and Cleeremans (2001) showed that participants 
acquired unconscious judgement knowledge of a sequence; 
whereas by using a PDP with cued generation tasks, Wilkin-
son and Shanks (2004) indicated that participants acquired 
explicit judgement knowledge of a sequence. Our version 
of the PDP used pseudo-cued generation tasks. Specifically, 
instead of being exposed to a succession of stimuli, partici-
pants were exposed to only one facial expression and asked 
to generate the next to either bring the avatar in the target 
state (in the inclusion task) or avoid bringing the avatar in 
the target state (in the exclusion task). As Stahl et al. (2015) 
showed that the cued generation tasks have the potential to 
introduce bias in the PD estimates, future research could 
investigate if the implicit-explicit estimates of the acquired 
knowledge from our paradigm differ as a function of the 
generation task (free generation vs cued generation).

Contributions

The discovery of implicit learning for rules that govern 
dynamic interactions with a social stimulus advances the 

3 Future research could design a more complex equation that would 
promote the acquisition of rather implicit than explicit knowledge or, 
alternatively, implement a shorter acquisition phase.
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existing tools for investigating the involvement of non-
conscious learning in social contexts in several important 
ways, which we will detail in the paragraphs below.

First, as briefly mentioned in the introduction, results 
obtained in the hidden covariation detection task indicated 
that participants were able to implicitly learn an arbitrary 
covariation between a physical feature and personality fea-
tures, and that the judgement of new avatars is influenced 
by the learned covariation (Ivanchei et al., 2019; Lewicki, 
1986). On a more distal note, Geiger et al. (2018) have 
shown that social cues (the gaze of an avatar) can guide 
and facilitate the development of implicit knowledge in a 
motor task (a variant of the SRTT). While they employed 
surface stimuli that are relevant for social functioning, 
the loops through which information is being exchanged 
between participants and these tasks of these studies are 
fundamentally different from those in which information 
is exchanged in social environments. Specifically, while in 
these tasks (i.e., Geiger et al., 2018; Ivanchei et al., 2019; 
Lewicki, 1986) information is being exchanged via nonin-
teractive loops, in the real social environment, information 
is being exchanged via feedback-driven interactive loops. 
The fact that our task implements such feedback-driven 
interactive loops increases its external validity for evaluat-
ing the function of IL in the social domain.

Second, the present study is the first one to use surface 
stimuli under the form of realistic emotional facial expres-
sions. The inclusion of socially relevant surface stimuli in 
our task does not have a mere cosmetic effect but is moti-
vated by two arguments: a first argument, as presented in 
the introduction, is that the existing studies show that IL 
is highly sensitive to the stimuli it operates on: the same 
regularity can be learned to a variable degree (e.g., Jime-
nez et al., 2020) or can be learned more or less explicitly 
(Norman & Price, 2012) depending on the characteristics 
of the surface stimuli. To our knowledge, this is the first 
study to use kinematic, realistic, facial expressions, bring-
ing our research one step closer to the habitual mode of 
processing this information in the real social environment. 
A second argument for the necessity of tailoring the exper-
imental task to the domain of investigation (e.g., social, 
motor, linguistic) derives from a core principle of current 
neural and computational theories of IL: that is, IL occurs 
through changes in the speed, strategy, and efficiency of 
processing specific stimuli with different processing con-
straints. For instance, in their influential paper, Frost et al. 
(2015) present ample evidence that implicit and statisti-
cal learning are represented by “a set of domain-general 
computational principles that operate in different modali-
ties and, therefore, are subject to the specific constraints 
characteristic of their respective brain regions” (see also 
Conway, 2020; Reber, 2013).

Third, the strategy for assessing knowledge awareness 
represents another strong point of the study. Specifically, 
previous DSC research measured knowledge awareness by 
direct questioning (i.e., post experimental questionnaires) or 
verbal report. To the best of our knowledge, this is the first 
DSC study to employ trial by trial subjective measures of 
awareness (i.e., response attributions and the PDP); thereby, 
offering a more precise perspective on the way in which 
explicit knowledge, as well as implicit knowledge, contrib-
ute to task performance.

Limitations and implications for future research

First, the test phase consisted of precisely the same interac-
tion instances encountered in the acquisition phase. There-
fore, on the grounds of this method, we cannot infer trans-
fer of the learned information to novel situations. Future 
research could use different avatars across the acquisition 
blocks while maintaining the same rule that structures the 
interactions to assess the transference of the learned content 
to novel situations. At this stage, our task cannot provide a 
definitive answer to whether participants learned the abstract 
mathematical equation or they learned specific interaction 
sequences (Dienes & Fahey, 1995). Third, the interaction 
between participants and the avatar was centered around a 
limited number of emotional facial expressions that were 
displayed in exactly the same parameters—however, in 
the natural social environment, different configurations of 
a facial expression can express, for instance, an intense 
level of joy; these two aspects depart from the diversity that 
characterizes genuine social environments. Hence, future 
research could employ a larger variety of different surface 
stimuli that would express similar emotional states.

Despite the importance of IL for social functioning, 
investigations focusing on the IL of socially relevant infor-
mation are relatively limited. A potential cause for this may 
be represented by the challenges involved in the develop-
ment of methodologically sound experimental paradigms 
that assess IL in a socially relevant context. Given that 
the implicit acquisition of regularities unfolds differently 
depending on the characteristics of the stimuli that follow 
those regularities (e.g., on their perceptual complexity, 
motivational relevance, habitual mode of processing those 
stimuli; see, e.g., Jimenez et al., 2020; Seger, 1994), we sug-
gest that the inclusion of socially relevant surface stimuli 
could enable our task to reveal untapped, social, facets of 
this non-homogenous process. We conclude by suggesting 
that our findings could foster novel research avenues into the 
role that IL might play in different conditions characterized 
by atypical social functioning. For instance, it could comple-
ment or even replace, in some cases, the AGL and SRTT in 
studies that investigate the integrity of implicit learning in 
autism spectrum disorders, depression etc.
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Conclusions

The present study is one of the first to propose a task for 
assessing the role of IL in interactive situations with socially 
relevant surface stimuli. Furthermore, by employing one of 
the most versatile measures of awareness that was used in 
the DSC research up until this point, we provide evidence 
that, similar with other well-established IL tasks (e.g., the 
AGL and SRTT), our DSC task indeed produces implicit 
knowledge, along with a significant amount of explicit 
knowledge.”
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