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Abstract
For more than 4 decades, it has been shown that humans are particularly sensitive to biological motion and extract socially 
relevant information from it such as gender, intentions, emotions or a person’s identity. A growing number of findings, 
however, indicate that identity perception is not always highly accurate, especially due to large inter-individual differences 
and a fuzzy self-recognition advantage compared to the recognition of others. Here, we investigated the self-other identifi-
cation performance and sought to relate this performance to the metric properties of perceptual/physical representations of 
individual motor signatures. We show that identity perception ability varies substantially across individuals and is associ-
ated to the perceptual/physical motor similarities between self and other stimuli. Specifically, we found that the perceptual 
representations of postural signatures are veridical in the sense that closely reflects the physical postural trajectories and 
those similarities between people’ actions elicit numerous misattributions. While, on average, people can well recognize 
their self-generated actions, they more frequently attribute to themselves the actions of those acting in a similar way. These 
findings are consistent with the common coding theory and support that perception and action are tightly linked and may 
modulate each other by virtue of similarity.

Introduction

One of the more stunning examples of the human visual sys-
tem ability is to ‘decode’ the identity of individuals directly 
through their motion even from impoverished point-light 
animations (Beardsworth & Buckner, 1981; Cutting & 

Kozlowski, 1977; Loula, Prasad, Harber & Shiffrar, 2005; 
Yovel & O’Toole, 2016). Such an ability requires fine per-
ceptual information reflecting the subtle nuances in the way 
people move as well as a certain robustness against intra-
individual variations such as viewpoint changes, inter-trials 
variability or affect (e.g., Jokisch, Daum & Troje, 2006; 
Pilz & Thornton, 2017; Prasad & Shiffrar, 2009). While it 
has long been shown the importance of familiarity through 
repeated exposure to cope with the real-world within-per-
son variability (Beardsworth & Buckner, 1981; Cutting 
& Kozlowski, 1977; Hohmann, Troje, Olmos & Munzert, 
2011; Loula et al., 2005; Repp & Knoblich, 2004), it was 
only recently that the existence of a person-specific motion 
signature—a sort of kinematic fingerprint—has been empiri-
cally demonstrated (e.g., Hart, Noy, Feniger-Schaal, Mayo & 
Alon, 2014; Słowiński et al., 2016). In theory, the individual 
motor signature is supposed to be largely stable across time 
(invariance) and different from those of others (distinctive-
ness). In fact, dynamic laws of motion shared by all human 
beings strongly constrain body motion and lead inevitably 
to low inter-individual variations. Thus, behavioural traits 
including gait and gestures are occasionally qualified as 
soft biometrics due to their lack of distinctiveness and low 
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reliability compared to physiological-based measurements 
such as fingerprints or DNA matching (Dantcheva, Velardo, 
D’angelo & Dugelay, 2011; Steel, Ellem & Baxter, 2015). 
They remain, however, commonly used alongside other cues 
(e.g., faces) and have the advantage of being accessible from 
a distance and do not involve the subject cooperation (Rice, 
Phillips, Natu, An & O’Toole, 2013). Moreover, recogni-
tion accuracy can be enhanced using less constrained actions 
such as dancing or boxing to promote the uniqueness of per-
son’s motion signature (Loula et al., 2005). Some movement 
styles may also facilitate the identification of individuals, 
whereas others may make it more difficult (Koul, Cavallo, 
Ansuini & Becchio, 2016). For instance, skilled perform-
ers such as musicians, dancers or athletes often have more 
individualistic movement styles providing rich kinematic 
patterns available for recognition (Calvo-Merino, Glaser, 
Grèzes, Passingham & Haggard, 2005; Repp & Knoblich, 
2004). Similarly, it has been shown that distinctiveness or 
caricature may enhance identification (e.g., Lee, Byatt & 
Rhodes, 2000). In the same way as distinctive faces are eas-
ier to recognize than more typical faces (e.g., Light, Kayra-
Stuart & Hollander, 1979), the manipulation of kinematic 
pattern by exaggerating temporal (Hill & Pollick, 2000) or 
spatial properties (Pollick, Fidopiastis & Braden, 2001) of a 
biological movement can enhance identity recognition per-
formance. Otherwise, identity recognition from point-light 
displays is not always highly accurate and the conditions 
leading to successful recognition remain largely unclear. 
Recognition rates for self-recognition vary between 40% 
and 100% depending on the study (Beardsworth & Buck-
ner, 1981; Cutting & Kozlowski, 1977; Wolff, 1931). Large 
inter-individual differences are also generally reported and 
are not fully explained. For instance, Beardsworth and Buck-
ner (1981) reported differences in the participants’ ability to 
recognize themselves and others and that some subjects were 
easier to recognize than others. One currently unexplored 
explanation path is linked to motion similarity. Similarity 
effects on perceptual recognition tasks are indeed predicted 
by common coding theory of perception and action and the 
related psychological studies of pattern and form recogni-
tion. According to common coding theory (Prinz, 1997; 
Hommel, Müsseler, Aschersleben & Prinz, 2001), percep-
tion and action are tightly linked and may modulate each 
other by virtue of similarity. Perceiving or performing an 
action results in the activation of the same representations 
(i.e., common codes) and the degree of activation is assumed 
to vary depending on whether the observed actions are in a 
similar way as one would perform them oneself, or in a dif-
ferent way. Since each individual can best reproduce its own 
actions, the perceived similarity as well as the activation of 
action representation are assumed to be maximal and might 
explain a greater performance for self-recognition despite 
the fact that people are not used to observing themself from 

an external point of view (Beardsworth & Buckner, 1981; 
Cook, Johnston & Heyes, 2012; Jokish, Daum & Troje, 
2006; Knoblich & Flach, 2001; Loula et al., 2005; Prasad & 
Shiffrar, 2009). Yet, it raises the problem of action attribu-
tion in particular if a person moves the same way as ours. 
One would, therefore, expect that an increase in overlap 
between self-generated actions and other-generated actions 
should cause attribution errors. The related studies of pat-
tern and form recognition often assume that the greater the 
similarity between a pair of stimuli, the more likely one will 
be confused with the other one (e.g., Luce, 1963; Tversky & 
Gati, 1982; Ashby & Perrin, 1988). Since the perception of 
moving shapes is derived from the perception of static forms 
(Cutting & Kozlowski, 1977), one would expect the same 
effect. Finally, the similarity issue between individuals is 
also problematic from an algorithmic point of view. Biom-
etric systems compute the similarity between the input bio-
metric signature (i.e., features set extracted from data) and 
the signatures previously stored in the database (Jain, Ross 
& Nandakumar, 2011). If the similarity measure exceeds a 
threshold, then a “match” or an “accept” is declared, if not, 
then a “non-match” or a “reject” occurs. However, when 
the biometric signatures of two individuals are very similar, 
errors occur (false accept or false reject).

In the present study, we examined the extent to which 
motor similarities mediate identity perception. To this end, 
we first recorded the idiosyncratic motion variability of 
individuals (i.e., individual motor signatures) in a postural 
improvisation task. Next, using point-light depictions of 
themselves and fourteen other people (unknown to the par-
ticipants) with a wide range of signatures (similar/different), 
we probed the self/other discrimination performance.

Methods

Participants

Twenty healthy volunteers (12 males, 8 females; mean 
age = 22.6 years, SD = 1.7; mean height = 173 cm, SD = 7.5; 
mean weight = 69.4 kg, SD = 11.9) participated in the study. 
Five of them were excluded from the analysis, since they did 
not complete the full experiment (three sessions). All had 
normal or corrected to normal vision and none was expert in 
performing arts (dance, music, mime or theatre) or in sports.

Procedure

Recording sessions

In a series of three individual sessions, each one separated 
by at least 1 week and at most 2 months between the first 
and the last, participants performed a postural improvisation 
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task in the antero-posterior direction (nine trials of 30 s per 
session). Inspired by the mirror game paradigm (Noy, Dekel 
& Alon, 2011), adapted for studying whole-body movements 
(Coste, Słowiński, Tsaneva-Atanasova, Bardy & Marin, 
2017), participants were asked to create interesting and vari-
ous postural motions by keeping their knees extended with 
their toes and heels in constant contact with the floor (force 
platform). This task enables participants to produce rhyth-
mic postural motions at different amplitudes and frequen-
cies. Movement kinematics was acquired using a VICON 
motion capture system (Nexus MX13 Vicon System) with 
eight infrared cameras. The 3D positions of seven reflective 
markers placed on the participants’ left side were recorded 
with a 100 Hz sampling frequency and a spatial accuracy 
below 1 mm. Markers were located on head (forehead), neck 
(C5 vertebrae) shoulder (acromion), hip (greater trochanter), 
knee (lateral condyle of femur), ankle (lateral malleolus) and 
toe (distal head of the 1st metatarsal). This set of markers 
served both for the generation of point-light stimuli and for 
computing the similarities between participants’ signatures.

Perceptive task

During the third and final session, immediately after the 
motor task, subjects performed a self-other identity discrimi-
nation task. Sitting in front of a computer screen (22-inch 
Dell P2213 LED monitor, resolution: 1680 × 1050 pixels, 
refresh rate: 60 Hz) at a distance of about 50 cm, partici-
pants viewed a total of 144 sagittal 15-s displays of point-
light depictions of themselves (18 videos) and fourteen other 
people (14 people × 9 videos) in a random order. Trials were 
run in blocks of 24 videos, with 60-s break between suc-
cessive blocks. Point-light displays (PLD) were produced 
from the recordings of the first two sessions of the same 
15 subjects with Matlab R2014b (The MathWorks, Natick, 
MA) using the MoCap Toolbox (Burger & Toiviainen, 

2013), and appeared as seven moving white dots, shape-
normalized, on a black background with a 90° view angle 
relative to the main motion direction. The stimulus pres-
entation sequence (Fig. 1) was also programmed in Mat-
lab using Psychophysics Toolbox extensions (Brainard & 
Vision, 1997; Pelli, 1997) and consisted of a fixation period 
(1.5 s), a PLD movie (15 s) and two answer screens: (1) 
in the first one, participant was asked to judge whether the 
actor was himself/herself or someone else on a 4-point rat-
ing scale (1: sure other; 2: probably other; 3: probably self; 
4: sure self), and (2) in the second one, participant reported 
a subjective measure of the perceived kinematic similarity 
between the actor’s movements and himself/herself, using a 
visual analogue scale ranging from 0 (strongly dissimilar) to 
100 (strongly similar). The answer screens were presented 
without time limit, until the participant responded using the 
mouse (see SI Appendix for an illustration). No instruction 
was given about response time (e.g., respond as quickly as 
possible) to prevent any effect of time pressure on perfor-
mance accuracy. Moreover, participants were not informed 
about the ratio between self- and other videos to prevent any 
response bias (i.e., the tendency to favour one response over 
another). Data concerning participants’ responses, response 
times (RTs) and mouse trajectories were all automatically 
stored in the computer.

Data analysis

Perceptive task performance

To get a performance measure in this self/other identifi-
cation task, we calculated the receiver operating charac-
teristic (ROC) curves and their associated area under the 
curve (AUC) from confidence ratings (response 1). The 
ROC curves plot on the vertical axis the True Positive Rate 
(TPR) or sensitivity, i.e., the proportion of self’s trials that 

Fig. 1  Illustration of the stimu-
lus presentation sequence and 
timing
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are correctly identified as such, and on the horizontal axis 
the False Positive Rate (FPR) or 1-specificity, i.e., the pro-
portion of other’s trials that are wrongly identified as self’s 
trials, for all possible thresholds values. One of the main 
advantages of the ROC curves is its ease of interpretation. 
Random performance is represented by a diagonal straight 
line that separates the graph into two triangles. Any ROC 
curve in the upper left triangle indicates a good level of per-
formance, while any ROC curve in the bottom right triangle 
indicates a poor level of performance. Another advantage of 
using the ROC curves is that the performance can be sum-
marized with a single number between 0 and 1 by quantify-
ing the area under the curve. An AUC score above/below 0.5 
characterizes a good/bad performance, 0.5 being the AUC 
score of a random performance and 1 (0) the best (worst) 
performance.

Self‑attribution index

A breakdown of misattributions of other productions to 
self-production was expressed by means of a self-attribution 
index. Self-attribution index ranges from 0 and 1 and repre-
sents the proportion of trials in which participant-attributed 
movement of another actor to him/herself (false positives). It 
is calculated for each of the fourteen other actors as the sum 
of the number of answers ‘Probably Self’ and ‘Sure Self’ for 
their nine videos corresponding and normalized by dividing 
it by nine. We also computed this index for the subject’s own 
trials as the sum of the number of answers ‘Probably Self’ 
and ‘Sure Self’ for the eighteen videos of the subject himself 
(true positives) and normalized by dividing it by eighteen.

Quantification of motor similarities

An important point of our study was to quantify the similari-
ties between individual postural signatures using relevant 
metrics. One major difficulty to calculate motor similarities 
lied in selecting kinematic and dynamic features among a 
myriad of potentially relevant features (e.g., markers, joint 
angles, position signals and their derivatives, etc.). In addi-
tion, the selected features should, as far as possible, closely 
reflect those used by observers. We developed the following 
approach to overcome these difficulties:

1. We first calculated a perceptual distance matrix based on 
the similarity judgments while taking into account the 
reliability of judgements through the measure of per-
formance (AUC values). Each observer (n = 15) gave 
nine perceptual judgements in the form of a similarity 
score S(I → J) ranging from 0 to 100 between his own 
(I) movements and those of the fourteen other partici-
pants (J). We aggregated the nine perceptual judge-
ments for each participant to extract the median of their 

judgements. The perceptual similarity noted SPER(I, J) 
between each pair of participants was then expressed 
as the median similarity rating of the subject who per-
formed best in the self-other discrimination task and 
collected in a matrix: If AUC (I) > AUC (J) then SPER(I, 
J) = S(I → J), otherwise SPER(I, J) = S(J → I). Next, we 
transformed the perceptual similarity matrix SPER into 
a normalized perceptual distance matrix DPER. The dis-
tance matrix was obtained by first normalising SPER into 
the interval [0, 1] and then DPER = 1 − SPER. The diago-
nal of the distance matrix was set to zero. Note that the 
resulting perceptual distance matrix satisfied the axioms 
of a distance measure:

• Positive definiteness: DPER(I, I) = 0; DPER(I, J) ≥ 0
• Symmetry: DPER(I, J) = DPER(J, I)
• Triangle inequality: DPER(I, J) ≤ DPER(I, K) +  

DPER(J, K)

2. Second, we calculated a physical (trajectory) distance 
matrix. Specifically, we wanted to find a physical (trajec-
tory) distance matrix that best correlated with the per-
ceptual distance matrix. To this end, we explored com-
binations of several kinematic variables (position; 
velocity; acceleration; jerk), level of granularity (ΔT; 
pixels size) and different matrix distances measures 
(Frobenius distance; Manhattan L1 distance). Frobenius 
distance F is defined as: FI,J = 

√
trace

�
(I − J).(I − J)

�
�
 , 

where I and J represent two matrices (images) and J′ is 
the conjugate transpose of J, and the Manhattan L1 dis-
tance is defined as L1

I,J
=
∑n

i=1
�Ii − Ji�.

  To establish optimal levels of spatial and temporal 
granularity, we first computed normalized spatial densi-
ties of positions’ vector for the first 15 s of the record-
ings as well as its various derivatives (1st: velocity, 2nd: 
acceleration and 3rd: jerk). To do so, the seven markers 
were linked to form segments. We then created normal-
ized images (1960 × 490 mm) divided into pixels for 
which we counted how often segments passed into each 
of these pixels (number of occurrences) during the entire 
trial duration. Different size of pixels and time interval 
(ΔT) between two successive silhouettes were simulated. 
We found that a granularity of ΔT = 0.2 s and a pixel size 
of 16 mm2 were the best compromise between computa-
tion time and results accuracy. Next, all of the 27 images 
(9 trials × 3 sessions) of each participant were averaged. 
For each participant we computed mean images of spa-
tial density of position/velocity/acceleration/jerk reflect-
ing the position/velocity/acceleration/jerk explored by 
the participant during all of the improvisation perfor-
mance. Figure 2 shows an example of the mean images 
of spatial density of position/velocity/acceleration/jerk, 
colour gradient indicates the frequency of appearance of 
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the segments within each pixel, the red coloured pixels 
being the most visited places in space by the participant, 
while those in blue were the least visited.

  To integrate information contained in the densities of 
position, velocity, acceleration and jerk, we compared 
a weighted sum of the distance matrices between the 
different densities. Namely, for a given set of weights 
W = [w1, w2, w3, w4], the physical (trajectory) distance 
matrix was expressed as follows:

  DPHY(I, J) = w1.d1(I, J) + w2.d2(I, J) + w3.d3(I, J) +  
w4.d4(I, J), where d1(I, J), d2(I, J), d3(I, J), d4(I, J) are 
the distances (calculated using the Frobenius distance or 
Manhattan distance) between two (I and J) densities of 
position, velocity, acceleration, jerk, respectively. Using 
a set of 1000 weights W combinations and the type of 
distance (Frobenius or Manhattan distance) as variables, 
we calculated 2000 correlation coefficients between the 
physical (trajectory) distance matrix DPHY and the per-
ceptual distance matrix DPER. We found that highest 
correlation distance (Pearson’s r = 0.59, p < 0.001; see 
SI Appendix for the scatterplot) was achieved using the 
following weight combination w1 = 0.5; w2 = 0; w3 = 0; 
w4 = 0.5 and the Manhattan distance. In other words, 
in the postural task promoting exploration and expres-
siveness, the perceptual similarity was best captured by 
combination of the position (visited places in space) and 
jerk (smoothness of movement trajectories).

3. Third, we used multidimensional scaling (MDS), a pow-
erful mathematical procedure, for representing the per-
ceptual/physical similarities of participants’ signatures 
visually as 2D-maps (e.g., Giese, Thornton & Edel-
man, 2008; Pollick, Fidopiastis, et al., 2001; Pollick, 

Paterson, Bruderlin & Sanford, 2001; Słowiński et al., 
2016). Since MDS generates low-dimensional spaces 
with arbitrary scaling and axes’ orientations to compare 
two visual representations, it is necessary to first align 
them. Thus, the resulting perceptual and physical con-
figurations were assembled in a new MDS plot by fitting 
the physical space to the perceptual space using a Pro-
crustes transformation. Procrustes transformation allows 
to align the points of the physical space to the points of 
the perceptual space by applying a linear transformation 
(translation, reflection, rotation and scaling).

4. Finally, we performed a hierarchical clustering of both 
perceptual and physical distances. Hierarchical cluster-
ing analysis allowed us to objectively group participants 
with similar postural signatures in a data-driven man-
ner. To interpret and assess the quality of clustering, we 
applied silhouette analysis (see SI Appendix for more 
details). These analyses were motivated by two main 
reasons. First, finding similar groups of participants with 
both distance matrices would reinforce the validity of 
our method for correlating perceptual and physical simi-
larities. Second, grouping participants according to their 
level of similarity enable the comparison of their perfor-
mance, since subjects are somewhat placed in identical 
conditions in terms of task difficulty. Indeed, since we 
have hypothesised that similarity affects performance, it 
is likely that performance can be influenced by the struc-
ture, location and distribution of participants’ signatures 
in the perceptual/physical spaces. As a result, typical 
postural signatures are assumed to be subject to height-
ened competition during recognition with the presence 
of many neighbouring signatures. By contrast, atypical 

a b c d e

Fig. 2  a Silhouette between two successive positions, with a granularity of ΔT = 0.2 s and a 16 mm2 pixel. From b–e mean densities of position, 
velocity, acceleration and jerk, respectively, for one participant
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postural signatures with fewer neighbours are likely to 
be exposed to less competition and are, therefore, more 
distinctive and more recognizable.

Statistical analysis

To test that performance of the perceptive task differs sig-
nificantly from chance level set at 0.5, we performed a one-
sample t test taking the area under the ROC curve (AUC) 
as dependent variable. The effect size is reported using the 
Cohen’s d and interpreted according to Cohen’s guideline 
(1988), such that d = 0.2 corresponds to a small effect, d = 0.5 
to a medium effect and d = 0.8 to a large effect. A multiple 
linear regression analysis was also conducted to explore the 
extent to which the independent variables: (1) self-perceived 
similarity that corresponds to the mean similarity ratings of 
all self-trials and (2) other-perceived similarity that corre-
sponds to the mean similarity ratings of all other-trials; were 
related to the test performance (dependent variable: AUC). 
Finally, we performed a Pearson’s correlation between self-
attribution index and similarity score ratings.

Results

Overall performance

The individual performances in the perceptive task 
(ROC curves) as well as the average performance over 

all participants are shown in Fig.  3a. On average, par-
ticipants correctly identified their self-generated actions 
and those of others, since performance accuracy (mean 
AUC = 0.71 ± 0.11) was significantly above chance 
[t(14) = 7.87, 95% CI (0.65, 0.77), Cohen’s d = 2.03, 
p < 0.001]. However, one can observe substantial inter-
individual variations between the best performance 
(AUC = 0.94) and the poorest at chance (AUC = 0.53). In 
particular, we noticed that some participants were unable 
to recognize their self-generated actions and/or attribute to 
themselves the other-generated actions (see Fig. 4 and SI 
Appendix, Fig. SI9). The Pearson’s correlation between the 
self-attribution index and the similarity score ratings reveals 
a significant positive correlation (r = 0.86, p < 0.001; Fig. 
SI10), suggesting that participants based their decision 
as to whether the observed movements were theirs or not 
according to the level of perceived similarity with the actor 
(see Fig. 4 for individual correlations and SI Appendix, 
Fig. SI10). Furthermore, we found that some participants 
(e.g., P4 and P13) adopted a very high acceptance criterion, 
claiming authorship for almost all videos including those 
of others (see response bias in SI Appendix, Fig. SI5). By 
contrast, some participants adopted a very low acceptance 
criterion (e.g., P2, P3, P6 and P10) claiming the author-
ship of almost none of videos, including their own produc-
tions. Such strategies can affect positively or negatively the 
proportion of self’s trials that are correctly identified as 
such, making the proportion of correct self-trials an invalid 

a b

Fig. 3  a Individual (in gray) and average (red) ROC curves. Dashed 
diagonal line corresponds to the random performance. b 3D plots of 
the perceptive task performance (AUC), the self- and other-perceived 
similarity score, from which a linear regression model that best fits 

the data points is built. Self-perceived similarity and other-perceived 
similarity were found to significantly predict the perceptive task 
performance [R2  =  0.78, F(2, 12)  =  21.16, p  < 0.001] (colour figure 
online)
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measure of sensitivity as opposed to the “bias-free” ROC 
analyses employed here.

To test the extent to which the independent variables: 
(1) self-perceived similarity; (2) other-perceived similar-
ity; predicted the self-other discrimination performance 
(dependent variable: AUC), we conducted a multiple linear 
regression analysis. Self-perceived similarity was shown 
to significantly predict the test performance [β  =  0.84, 
t(12)  =  5.84; p  <  0.001], while the other-perceived similar-
ity had similar predictive power but had opposite direction 
of the effect [β  =  − 0.67, t(12)  =  − 4.67; p  < 0.001] [Whole 
model: R2  =  0.78, F(2, 12)  =  21.16, p  <  0.001; Fig. 3b]. 
Hence, the more observers subjectively evaluated that their 

self-generated actions were very similar to their own usual 
movements and that those of others were very different, the 
better the self-other discrimination performance (Fig. 3b).

Perceptual and physical spaces

It is possible that some movement styles, very distinctive, 
have been more favourable than others for recognition. To 
test this hypothesis and assess the similarities between par-
ticipant’s signatures, we constructed the perceptual (subjec-
tive) and physical (objective) spaces by applying multidi-
mensional scaling to perceptual judgements and physical 
trajectories. Figure 5 shows the resulting MDS plots. In 
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Fig. 4  Correlations between the self-attribution index (x-axis) and the 
similarity score rating (y-axis) for each participant (box). Coloured 
numbers indicate the position of the fourteen other actors as well as 
the observer himself/herself (in bold) in the 2D plots. A quick read-

ing from the right or the left of each box allows seeing the propor-
tion of self-attributed trials according to each actor in an ascending 
or descending order. Pearson’s r coefficient and statistical significance 
are shown in the lower right corner of each box
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these abstract spaces, the similarity/dissimilarity between 
participant’s motor signatures is represented by the distance 
between geometric point representations. Strikingly, we 
show that the physical space—constructed from distances 
between the weighted combinations of position and jerk den-
sities—resembles the configuration of the perceptual space 
after a Procrustes transformation step (Fig. 5c). This result 
is consistent with that of Giese et al. (2008), and supports 
the idea that the perceptual representations of biological 
motion is veridical and closely reflects physical movement 
trajectories.

Hierarchical clustering

Hierarchical clustering analysis provided further insights 
into the similarities between the postural signatures. In par-
ticular, we found that at a level of precision of three clusters, 
the two (perceptual and physical) distances’ matrices gave 
the same clusters of participants except for one element (par-
ticipant 12). The silhouette analysis reveals a good quality 
of the clustering (see SI Appendix for a detailed analysis).

Finally, comparing visually the performance across 
groups of participants with similar signatures (clusters), it 
can be observed that the variation in performance within 
groups is smaller than the variation between groups (SI 
Appendix, Fig. SI8), suggesting that individual differences 

in identity perception ability relies more on individual vari-
ations in kinematic patterns rather than on differences in 
visual processing.

Discussion

In the present study, we investigated whether and to what 
extent motor similarities between people have an impact on 
the ability to discriminate self/other-generated actions. We 
first recorded the idiosyncratic motion variability (i.e., indi-
vidual postural signatures) of fifteen individuals in a pos-
tural improvisation task and created from this a wide range 
of diverse set of point-light depictions. We then examined 
the self/other discrimination performance of the same fif-
teen individuals and sought to relate this performance to the 
metric properties of perceptual/physical representations of 
postural signatures. Our results show that identity perception 
ability varies substantially across individuals and is partly 
related to the perceptual/physical motor similarities between 
self and other PLD stimuli. In particular, we found that the 
movement patterns generated by people have a kind of “kin-
ematic fingerprints”, and that some of these motor traces are 
easier to decode than others, since they are more distinctive.

As a main finding of this study, we found that partici-
pants improvising postural movements can well recognize, 
on average, their own productions even after several weeks. 

a

b

c

Fig. 5  MDS plots. a visual perceptual space constructed by the 
first two dimensions of MDS and based on judgments of kinematic 
similarity. Phi symbols (Ψ) indicate the position of the participants’ 
postural signatures into the psychological space. b Physical space 
constructed by the first two dimensions of MDS and based on the 
physical trajectory distance. Dots indicate the position of the partici-

pants’ postural signatures into the physical space. Densities of posi-
tion for representative trials are also shown. c Resulting MDS map 
for perceptual and physical distances after Procrustes alignment. The 
three distinct groups of participants obtained by hierarchical cluster-
ing are represented in three different colours (opaque colours for the 
perceptual space and default colours for the physical space)
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This suggests that individual postural signatures are suf-
ficiently distinctive and persistent over time to be recog-
nizable. We should note, however, that large differences 
in performance levels were also found between those who 
excelled in recognizing their own past actions and who had 
random performance. More specifically, the similarities with 
other participants’ actions were notoriously error prone and 
led to many misidentifications. It seems that participants 
based their decision as to whether the observed movements 
were theirs or not according to the level of perceived simi-
larity with the actor, as evidenced by the strong correla-
tion between perceptual judgments and the self-attribution 
index. Accordingly, participants guessed themselves when 
the perceived similarity between produced and observed 
actions was high. When the perceived similarity between 
produced and observed actions was very low, participants 
guessed themselves less often. In contrast, when PLD mov-
ies were neither strongly similar nor very dissimilar, the self/
other discrimination was not as successful. Participants were 
generally less confident in their responses what was reflected 
in much longer response times and larger number of abrupt 
shifts between responses categories along the horizontal axis 
(see individual response times and x-flips shown in Figs. 
SI2 and SI3, SI Appendix). Our results are also consistent 
with the similarity principle inherent in the common cod-
ing theory (Prinz, 1997; Hommel et al., 2001): the more 
similar an observed action is to the way the observer would 
perform the very same action, the higher the activation of 
common codes; and provide further evidence in favour of 
the contribution of the motor system to identity perception 
(e.g., Casile & Giese, 2006; Knoblich & Sebanz, 2006; 
Loula et al., 2005; Su & Keller, 2018). For instance, Calvo-
Merino et al. (2005) found a greater activation of the mirror 
system when ballet dancers and capoeira dancers watched 
the type of dancing, they were experts in (i.e., that with 
which they had a great motor experience). Importantly, a 
greater activation was observed even though it was not their 
own dance movements. In this respect, our results highlight 
the problem of misattribution (e.g., Jeannerod, 2003; Schütz-
Bosbach & Prinz, 2007) when motion similarities (and the 
activation of common codes) between two individuals are 
sufficiently high. Surprisingly, some participants failed 
to identify their own past actions, but rather attributed to 
themselves the other-generated actions with signatures that 
were sometimes very different from their own. One reason 
why they failed in self-recognition may be the discrepancies 
between the motor representations acquired through action 
execution and the feature representations obtained during 
action observation. This potential explanation is supported 
by studies showing that we use mappings developed from 
previous experiences, such that visual perception sensitiv-
ity increases with the visual and/or motor experience (e.g., 
Bläsing & Sauzet, 2018; Casile & Giese, 2006; Loula et al., 

2005). In line with this perspective, it is likely that these 
observers need more experience to appreciate subtle differ-
ences between their own actions and those of others. Indeed, 
we noticed that all the participants concerned were assigned 
in two of the three clusters, those whose movement patterns 
were the most similar (i.e., with less distinctive signatures) 
and, therefore, harder to recognize. Another possibility of 
self-identification failure, which is also related to the previ-
ous one, may be due to motion variability. Whether intra-
individual (i.e., carrying out different actions; inter-trials 
variations) or inter-individual (dissimilarity from person to 
person), the variability can affect categorization and simi-
larity judgments (Rips, 1989). Once again, self-recognition 
performance may benefit from perceptual experience to cope 
with the real-world variability. Future researches should thus 
explore more broadly how the perceptual experience of self-
generated actions, other-generated actions and performance 
evolves over time.

As a second point of interest, we investigated how 
perceptual and physical representations of postural sig-
natures were related. To date, the relation between percep-
tual and physical representations has not been extensively 
explored in the biological motion perception literature (see 
Giese et al., 2008; Pollick, Fidopiastis, et al., 2001; Pol-
lick, Paterson, et al., 2001). However, relevant insights 
can be drawn from the literature on the perception of the 
faces and voices, given the several compelling similari-
ties proposed between processing of body motion, faces 
and voices (for reviews see Yovel & Belin, 2013; Yovel & 
O’Toole, 2016). In particular, it has been argued that faces 
and voices identities are encoded in multidimensional per-
ceptual spaces (“face-space” and “voice-space”, respec-
tively). The dimensions of these spaces are assumed to 
correspond to information that people use to discriminate 
faces/voices and the distance between identities represen-
tations to reflect the degree of similarity between faces/
voices. The origin of these spaces is supposed to represent 
the average of all faces/voices experienced by a person. 
Thus, the more typical faces/voices are, the closer they 
are to the origin of these spaces and the more distinctive 
the faces/voices are, the further away they are. Remark-
ably, this similarity-based framework accounts for a wide 
range of face and voice recognition phenomena, such as 
the face inversion effect, caricature effects and distinctive-
ness effects (e.g., Valentine, 1991; Latinus et al., 2013; 
Lee et al., 2000). In biological motion, several studies 
have uncovered very similar phenomena at a behavioural 
level (e.g., Hill & Pollick, 2000; Giese et al., 2008; Pol-
lick, Fidopiastis, et al., 2001; Sumi, 1984). For example, it 
has been evidenced that exaggerate physical properties of 
biological motion such as temporal (Hill & Pollick, 2000) 
or spatial (Pollick, Fidopiastis, et al., 2001) information 
made stimuli more discriminable, suggesting that physical 
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properties are psychologically important for recognition. 
Subsequently, Giese et al. (2008) demonstrated that visual 
perceptual representations of complex spatiotemporal pat-
terns of motion (actions) conveyed by the point-light dis-
plays faithfully reflect motion trajectories of the physical 
world. Our current results complement and expand these 
previous findings by showing that recognition is essen-
tially based on salient motion properties that are both sta-
ble over time and distinctive between individuals. Moreo-
ver, we show for the first time that observers are sensitive 
to the individual-specific patterns of movement (i.e., indi-
vidual motor signatures) and that the visual perception 
of these signatures is veridical in the sense that closely 
reflects the physical trajectories of postural movements. 
The strong correlation between perceptual judgments and 
the weighted combination of physical trajectories cues as 
well as the output of hierarchical clustering lead us to con-
clude that both position and jerk kinematic cues were the 
most salient information contained in biological movement 
patterns used by at least the most decisive participants in 
the definition of the perceptual matrix and the resulting 
clusters. This does not mean, however, that observers did 
not use the velocity and acceleration cues for recognition, 
but probably that these cues provide redundant informa-
tion with the position and jerk cues given that kinematic 
properties are highly correlated with each other (Pollick 
et al., 2002). In addition, it has been shown that human 
observers are generally less effective than computer algo-
rithms in performing such a task, indicating that people 
exploit only a portion of available information in point-
light biological motion (Pollick et al., 2002).

Finally, we believe that the study of the issue of simi-
larity on recognition is a good starting point for foster-
ing the dialogue between the two current parallel lines of 
research in psychology (visual perception) and biometrics 
(computer vision and pattern recognition), which would 
mutually benefit from each other for a deeper understand-
ing under what conditions and tasks are required for an 
effective recognition. Moreover, this study constitutes a 
first step in addressing the issue of similarity and the inter-
individual differences in a point-light identity recognition 
accuracy task. Further work should explore the similar-
ity effect in biological motion of other socially driven 
cues such as gender, actions, intentions or emotions. For 
instance, in the case of emotional signatures, motion pat-
terns associated with surprise and happiness, compared 
to those associated with sadness, are less distinctive and 
might be more likely to be confused (Coulson, 2004).
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