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Abstract
Main conclusion In this review, we give an overview of plant sequencing efforts and how this impacts plant functional 
genomics research.

Abstract Plant genome sequence information greatly facilitates the studies of plant biology, functional genomics, evolution 
of genomes and genes, domestication processes, phylogenetic relationships, among many others. More than two decades of 
sequencing efforts have boosted the number of available sequenced plant genomes. The first plant genome, of Arabidopsis, 
was published in the year 2000 and currently, 4604 plant genomes from 1482 plant species have been published. Various 
large sequence initiatives are running, which are planning to produce tens of thousands of sequenced plant genomes in the 
near future. In this review, we give an overview on the status of sequenced plant genomes and on the use of genome infor-
mation in different research areas.
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Introduction

The blueprint of living organisms sits in its DNA. It contains 
the instructions for an organism to grow and develop. In the 
last two decades, genome sequencing has greatly advanced. 
Currently, the NCBI database (https:// www. ncbi. nlm. nih. 
gov/) holds information on 30,530 eukaryotic genomes 
(representing 12,205 species), of which 5119 are complete 
or at chromosome level (accessed on 5 March 2024; Fig. 1). 
From these sequencing efforts, it became clear that the com-
plexity of an organism is not necessary in the number of its 
genes. For instance, the number of genes of human (Inter-
national Human Genome Sequencing Consortium 2001; 
Venter et al. 2001) or a roundworm (C. elegans Sequenc-
ing Consortium 1998) are not that far apart. A big part of 
the complexity is in how gene expression is regulated, and 
finally in how many proteins this can result. Genome infor-
mation drives the discovery of biological insights on how 

organisms are functioning and their evolutionary history, 
and as well for biotechnological innovations. In the field 
of agriculture, genome information helps modern breeding, 
facilitates climate adaptation and food security, among oth-
ers. Though it does not stop here, genome sequence efforts 
continue around the world. To highlight one large effort, the 
Earth BioGenome Project, which aims to sequence every 
living eukaryotic organism with a name on our planet, which 
is around 2 million species (Lewin et al. 2018; Ebenezer 
et al. 2022). A genomic tree of life is intended to aid in our 
understanding of how species change, adapt, and rely on 
one another across an ecosystem. Through these discoveries, 
long-standing problems in phylogenetics, evolution, ecology, 
conservation, agriculture, the bioindustry, and medicine will 
be resolved (Blaxter et al. 2022).

In this review, we give an overview of the status of 
(nuclear) plant genome sequencing efforts and how this has 
helped for studies on plant functional genomics.

The status of sequenced plant genomes

Information on plant genome sequences enormously facili-
tates studies on plant biology, genetics, development, evo-
lution, molecular biology, among many others. The first 
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sequenced plant genome, Arabidopsis thaliana, was pub-
lished in the year 2000 (Arabidopsis Genome Initiative 
2000). This model plant is widely used worldwide and 
with the genome sequence, it opened the plant field into the 
genomics era. For a historical overview of Arabidopsis, we 
refer to other reviews (Meyerowitz 2001; Provart et al. 2016, 
2021; Somssich 2019). Arabidopsis has a genome size of 
around 135 Mb, and based on the latest Araport11 re-annota-
tion, has 27,655 protein-coding loci with 48,359 transcripts 
(Cheng et al. 2017). Various dedicated websites house data 
for the community such as The Arabidopsis Information 
Resource (TAIR; Rhee et al. 2003), Araport (Cheng et al. 
2017; Pasha et al. 2020), ThaleMine (Krishnakumar et al. 
2017; Pasha et al. 2020), and Bio-Analytic Resource (BAR; 
Toufighi et al. 2005).

Nowadays, plant genome sequencing is a very active field 
(Michael and Jackson 2013; Chen et al. 2018; Kersey 2019; 
Marks et al. 2021; Kress et al. 2022; Sun et al. 2022). Since 
the publication of the Arabidopsis genome in December 
2000 (Arabidopsis Genome Initiative 2000) 4604 nuclear 
plant genomes have been sequenced, corresponding to 1482 
plant species, most of them being from angiosperms (90%) 
(Figs. 1 and 2). This genome data are based on information 
from the NCBI database (accessed on 5 March 2024; https:// 
www. ncbi. nlm. nih. gov/ genome/ browse# !/ overv iew/ plants), 
and from the website Published Plant Genomes that visual-
izes sequenced plant genomes over time (https:// www. plabi 
pd. de/; R. Schwacke, personal communication, 19 February 
2024). The second plant species to have a genome sequenced 
was rice, with two subspecies of rice (Oryza Sativa subsp. 
japonica and subsp. indica; Goff et al. 2002; Yu et al. 2002); 
in 2006 the first genome of a tree, from poplar (Populus 
trichocarpa; Tuskan et al. 2006); and in 2007 the genome 
of grape, the first genome of a fruit producing species (Vitis 

vinifera; Velasco et  al. 2007). In the second decade of 
sequencing, the number of genome reports per year went up 
exponentially (Fig. 1).

Just in the last five year, numbers of sequenced nuclear 
plant genomes increased impressively from around 576 
(reflecting 383 species) (Kersey 2019), 798 (reflecting 798 
species) (Marks et al. 2021), 1031 (reflecting 788 species) 
(Sun et al. 2022), 1139 (reflecting 812 species) (Kress et al. 
2022), to 4604 genome sequences (reflecting 1482 species) 
that have been reported (5 March 2024; Table S1). This 
has to do with improvements of sequence technologies and 
lower costs (Shendure et al. 2017; Michael and VanBuren 
2020; Henry 2022). One of the descriptions of the qual-
ity of genome assemblies is the value of the Contig N50, 
which indicates the length of the shortest contig in the set 
of contigs containing at least 50% of the assembly length. 
This value greatly improved over the years (Fig. 3a), which 
is low (< 1 kb or < 10 kb) when a short-read sequencing 
approach was used (e.g., Illumina), and nowadays, with 
the use of long-read sequencing approaches such as from 
Pacific Biosciences (PacBio) and Oxford Nanopore Tech-
nologies (ONT), the Contig N50 is hundreds of kb to several 
Mb, resulting in much higher quality genome assemblies 
(Michael and Jackson 2013; Belser et al. 2018; Kersey 2019; 
Michael and VanBuren 2020; Marks et al. 2021; Sharma 
et al 2021; Sun et al. 2022).

The estimated number of extant green plant species is 
around 450,000–500,000 (Corlett 2016; Lughadha et al. 
2016). The number of green plant species with sequenced 
genomes (1482) represents around 0.26–0.29% of plant spe-
cies, so only a fraction of them has been sequenced so far. 
Despite an uneven distribution, the reported genomes span 
around 500 million years of evolution and comprise the 
major clades of green plants (Viridiplantae) (Fig. 2). Nuclear 
plant genome size varies greatly among the sequenced spe-
cies, from 9 Mb to 31 Gb (Fig. 2). In contrast to more than 
3000-fold difference in genome size, the number of protein-
coding genes per genome varies much less, only in the range 
of a few-fold difference (Fig. 3b). Based on the 685 avail-
able annotated plant genomes depicted in Fig. 3b, the mean 
number of protein-coding genes is 34,071 (Table S1). Large 
genome sizes are attributed in part to polyploidy events com-
mon in plants, but mainly to the activity of transposable 
elements (Michael and Jackson 2013; Michael 2014; Kersey 
2019; Kress et al. 2022; Marks et al. 2021).

Furthermore, we can see that the model species and 
many agriculturally and economically important plant spe-
cies have been sequenced (Figs. 1 and 2). Without doubt, 
the number of sequenced genomes and phylogenetic dis-
tributions of them will soon increase and expand, because 
of many current genome initiatives. Projects affiliated to 
the Earth BioGenome Project (Lewin et al. 2018, 2022), 
is the Darwin Tree of Life Project that aims to sequence 

Fig. 1  Sequenced genomes of plant species. a The plant kingdom 
stands as the third-most sequenced domain of life, as evidenced by 
the cumulative number of sequenced species. b Boxplot of sequenced 
species across the main clades of the Plant Kingdom. c Graphical 
representation of the progression in plant genome sequencing since 
2000. The bars illustrate the distribution of plant genomes at both 
chromosomal and non-chromosomal levels. The green line tracks the 
annual sequencing rate of species, while the salmon shadowed area 
represents the cumulative count of sequences through March 2024. 
For the latter two, use values on the right y-axis. d Chronology of 
sequenced key plants of agriculturally and scientifically important 
plant species. In a, the data for animals, fungi, protists, and other 
domains of life were acquired from the NCBI database (https:// www. 
ncbi. nlm. nih. gov/). Sequenced plant species counts were obtained 
from https:// www. plabi pd. de/, with the information updated on 
19 February 2024. In b, species count data and genome sequenc-
ing details at both chromosomal and non-chromosomal levels were 
obtained from the NCBI database. Species counts were verified and 
updated using information from https:// www. plabi pd. de/. In (c), the 
chronology was constructed using data obtained from the NCBI data-
base and some of the images were generated using BioRender.com

◂
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all 70,000 species in Britain and Ireland (Darwin Tree of 
Life Project Consortium 2022). Another example is the 
10KP (10,000 Plants) Initiative, which aims to sequence 
genomes of 10,000 species representing every major 
clade of embryophytes (land plants), green algae (chlo-
rophytes and streptophytes), and protists (photosynthetic 
and heterotrophic) (Cheng et al. 2018). Other initiatives 
are the African BioGenome Project (AfricaBP) aiming to 
sequence genomes of 105,000 endemic species, including 
plants (Ebenezer et al. 2022), the African Orphan Crops 
Consortium (AOCC) aiming to sequence 101 African 
orphan crops/trees (Hendre et al. 2019), and the Genom-
ics for Australian Plants (GAP) consortium aiming to 
sequence representative Australian plant genomes across 

the plant tree of life (Genomics for Australian Plants Ini-
tiative 2018; McLay et al. 2022).

Mostly, when sequencing a genome, the genome of one 
individual species is sequenced, which will be used as the 
reference genome. However, this is unlikely to be the com-
plete picture. Genetic differences among individual species 
may exist. To overcome this, the term pan-genome was 
coined. The first report was based on the sequencing of eight 
bacterial strains and the observation that not every gene was 
present in each strain (Tettelin et al. 2005). It refers to the 
´whole´ genome within a species (Golicz et al. 2020; Bayer 
et al. 2020). A pan-genome can be made by sequencing dif-
ferent individuals, accessions, cultivars, or populations, and 
then by ´joining´ the information, the whole genetic diversity 

Fig. 2  Genome size and species count across plant clades. a Range of 
genome size within each clade of plant classification, with data points 
denoting the minimum and maximum genome sizes for each clade. b 
Bars illustrating the distribution of the number of species within each 

clade of plant classification. The plant classification used is based 
on the taxonomy provided by https:// www. plabi pd. de/, which was 
updated on 19 February 2024

https://www.plabipd.de/
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Fig. 3  Comparative analysis of genome size and protein-coding genes 
in annotated plant genomes, and assembly statistics of contig N50 
over time for sequenced plant species. a Distribution of assembly 
statistics: Contig N50 over time for the 1482 sequenced plant spe-
cies; data obtained from the NCBI Database (https:// www. ncbi. nlm. 
nih. gov/). The green points represent assemblies based on long-read 
sequencing methods, while the purple points represent assemblies 

based on short-read sequencing methods. b The graph illustrates the 
distribution of the genome size and the number of protein-coding 
genes (the pink dashed line indicates the mean number of genes per 
genome: 34,071) in the 685 available annotated plant genomes, utiliz-
ing taxonomic classifications from the NCBI database (https:// www. 
ncbi. nlm. nih. gov/). Points are colored by assembly level, and the fig-
ure represents a clade of the Plant Kingdom

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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will be captured, in principle (Lei et al. 2021; Li et al. 2022). 
In plants, the first pan-genome was made for wild soybean 
(Glycine soja), by sequencing and de novo assembly of 
seven phylogenetically and geographically representative 
accessions (Li et al. 2014). To date, around 30 plant pan-
genomes, mostly of crops, have been published (Li et al. 
2022). To create pan-genomes, long read sequencing is used. 
Normally, for re-sequencing efforts, short read sequencing is 
used, which allows the detection of single nucleotide poly-
morphisms (SNPs), but structural variants (SVs) are more 
difficult to identify (Golicz et al. 2020).

For comparative plant genomics, we refer readers to the 
useful website Phytozome (Goodstein et al. 2012).

How plant genomes facilitate plant 
functional genomics

Gene function discovery using mutant collections

With the availability of genome sequences, the identification 
of gene functions via mutant screens became much easier. 
To go from a phenotype to the probable casual mutation 
induced by ethyl methanesulfonate (EMS) mutagenesis 
using classical forward genetic screens involved long and 
laborious mapping strategies. Nowadays, mapping can be 
performed by sequencing the genomes of a population of 
backcrossed homozygous plants with the phenotype of inter-
est, which allows the rapid identification of the casual muta-
tion (Hartwig et al. 2012; Garcia et al. 2016).

In reverse genetic screens, starting with a gene of interest 
and determining the phenotype/function (Alonso and Ecker 
2006), for 20 years the Arabidopsis community has used 
insertional T-DNA mutant collections where sequence infor-
mation is available for most of the random T-DNA insertions 
in the genome, arguably, the most widely used is the SALK 
T-DNA collection (Alonso et al. 2003). Various other valu-
able sequenced collections of T-DNA, transposon insertion, 
or variations, are available for Arabidopsis (Samson et al. 
2002; Sessions et al. 2002; Rosso et al. 2003; Woody et al. 
2007), and for other model species such as rice (Wang et al. 
2013; Wei et al. 2013), maize (Lu et al. 2018), and petunia 
(Vandenbussche et al. 2008, 2016).

There are various other techniques available for gene 
function discovery where genome information is very 
useful. An example of a reverse genetics approach to find 
mutations is TILLING (Targeting Induced Local Lesions 
IN Genomes), which is a chemical random mutagenesis 
approach, followed by high-throughput screening of point 
mutations in targeted genomic regions. The screening part 
can be combined with high-throughput sequencing (Mccal-
lum et al. 2000; Henikoff et al. 2004; Tadele 2016). Another 
frequently used approach is activation tagging to identify 

gain-of-function mutants. For this, a mutant population is 
made by random genome insertions of T-DNAs or trans-
posons carrying an activation sequence, leading to the acti-
vation of nearby genes. Recovering the flanking sequence 
followed by the identification of the genome region leads 
to the discovery of the gene in question (Weigel et al. 2000; 
Marsch-Martinez et al. 2002; Tani et al. 2004).

Other reverse genetics approaches for gene function dis-
covery, involve making dedicated constructs targeting genes 
of interests, which can be used to target one or more genes. 
RNA interference (RNAi) (Saurabh et al. 2014; Muham-
mad et al. 2019) or the fusion of a transcriptional repres-
sion domain (EAR domain) (Hiratsu et al. 2003; Mitsuda 
et al. 2011) can be used to obtain loss-of-function mutants. 
Another approach is the use of artificial miRNAs (amiRNAs) 
to silence genes. An amiRNA can be designed to silence one 
gene or a family of redundant genes (Schwab et al. 2006; 
Ossowski et al. 2008). A last example of an approach, still 
relatively new but already very actively used, is using a 
CRISPR-Cas system (Wada et al. 2020; Zhu et al. 2020; 
Gaillochet et al. 2021). The used guide RNAs (gRNAs) are 
typically directed towards coding regions, but can also be 
directed towards promoters or non-coding regions. Further-
more, multiple gRNAs can be cloned in the same vector to 
target different genes (Najera et al. 2019) or promoters (Rod-
ríguez-Leal et al. 2017). Having the genome information, 
genome-wide screens can be made using pooled CRISPR 
libraries (Huang et al. 2022; Liu et al. 2023; Pan et al. 2023), 
and various reports have already been published such as in 
rice (Lu et al. 2017; Meng et al. 2017), tomato (Jacobs et al. 
2017), soybean (Bai et al. 2020), maize (Liu et al. 2020), and 
canola (He et al. 2023).

The use of CRISPR systems, for ´traditional´ genome 
editing or for gene activation/repression, may fill the gap of 
functional genomics in plant species, beyond the model spe-
cies currently used (Huang et al. 2022; Liu et al. 2023; Pan 
et al. 2023). With the use of pooled CRISPR libraries, mas-
sive plant transformation could be applied in different spe-
cies. Sharing of whole genome gRNA library data, pooled 
libraries, and even complete transformed CRISPR mutant 
populations in the form of seeds could make a usage boost 
to functional studies. As mentioned above, 4,604 nuclear 
plant genomes have been sequenced, corresponding to 1482 
plant species (Fig. 1), most functional genomics research is 
performed in a rough estimate of only 1–2% of plant species 
with genome information so far. The future holds interesting 
opportunities for the use of genome information.

OMICS technologies

In addition to genomics, there are now many other omics 
technologies available. All these technologies benefit greatly 
from genome information. Many efforts exist generating 



Planta (2024) 259:117 Page 7 of 12 117

plant transcriptomes from model species but also non-model 
species, even from species with no genome information yet. 
For the latter, mapping of the sequence reads is done against 
the genome of the evolutionary closest species or reads can 
be mapped (and gene expression quantified) against a de 
novo assembled transcriptome from the target organism. In 
general, transcriptome information also helps to improve 
genome annotations. Many databases exist to explore tran-
scriptome data such as BAR (Winter et al. 2007), Genevesti-
gator (Zimmermann et al. 2004), and Plant Public RNA-seq 
Database (Yu et al. 2022). Other databases contain data from 
large initiatives like the 1KP (1000 Plants), where transcrip-
tomes of 1124 species were sequenced to infer the phylog-
enomic relationships (Matasci et al. 2014; Leebens-Mack 
et al. 2019). Another initiative is the JGI Plant Gene Atlas, 
which contains almost 2100 RNA-Seq data sets collected 
from 18 plant species, with the aim to improve functional 
gene descriptions across the plant kingdom (Sreedasyam 
et al. 2023). Recently, a great number of specialized single 
cell and single nuclei transcriptome data sets are emerging 
(reviewed in: Seyfferth et al. 2021; Cervantes-Perez et al. 
2022; Denyer and Timmermans 2022; Nolan and Shahan 
2023; Zheng et al. 2023) and databases holding single cell 
transcriptome data (e.g., Ma et al. 2020; Wendrich et al. 
2020; Chen et al. 2021a; He et al. 2023).

Plant proteomics is also a large field and benefits from 
genome information, including transcriptome information, 
first to be able to predict all proteins and isoforms (Chen 
et al. 2021a, b; Mergner and Kuster 2022). Many proteomic 
studies, from small studies to very large studies, and even 
pan-plant proteomes have been reported in the literature 
(e.g., McWhite et al. 2020; Mergner et al. 2020; van Wijk 
et al. 2021, 2024).

An omics area that has a growing significance that can 
improve draft plant genomes, correct gene annotation, dis-
cover new translation initial sites, ORFs, and alternative 
splicing, and verify novel genes of the peptide/protein level 
is called proteogenomics (Nesvizhskii 2014; Song et al. 
2023). The usefulness of proteogenomics has been illus-
trated for instance for the model organism Arabidopsis (e.g., 
Castellana et al. 2008; Zhu et al. 2017; Willems et al. 2017, 
2022). Recent examples of proteogenomics in other species 
are for sweet cherry and pear (Xanthopoulou et al. 2021; 
Wang et al. 2023).

Another big omics technology is metabolomics. Metab-
olomics is a good tool for functional genomics (Schauer 
and Fernie 2006). It is a powerful technique to analyze 
the metabolite content in plants and is less restricted to 
genome information or model species. Though limitations 
for metabolomics in some (non-model) plants are the lack 
of high-quality metabolite databases, such that some mol-
ecules cannot easily be unambiguously identified. On the 
other hand, combining different types of omics data can lead 

to the discovery of gene functions and help in future plant 
improvements (Kumar et al. 2017; Patel et al. 2021; Shen 
et al. 2023).

Evolution and domestication

Genome information facilitates the study of phylogenetic 
relationships among species. Furthermore, the importance of 
genes or gene families in the evolution of land plants can be 
studied (Yu et al. 2018; Leebens-Mack et al. 2019; Soltis and 
Soltis 2021; Guo et al. 2023). Another example facilitated 
by genome information is the study of domestication. Hun-
dreds of plant species have been domesticated by humans by 
selecting for beneficial traits (Gepts 2004; Meyer and Purug-
ganan 2013). Through candidate gene studies, quantitative 
trait locus (QTL) mapping and cloning, genome-wide asso-
ciation studies (GWASs), and whole-genome resequencing 
studies, a significant number of domestication or domestica-
tion-related genes have been discovered and isolated (Meyer 
and Purugganan 2013; Kantar et al. 2017). More recently, 
reports on pan-genomes also facilitate the study of evolu-
tion and domestication, and the identification of key genes 
associated with important agronomic traits (Li et al. 2022).

Interestingly, de novo domestication by genome edit-
ing has been used (Bartlett et al. 2023). For instance, using 
CRISPR-Cas9, this has been done in the wild tomato species 
(Li et al. 2018; Zsögön et al. 2018), in the Solanaceae spe-
cies ´groundcherry´ (Lemmon et al. 2018), and in wild rice 
(Yu et al. 2021). Knowledge on domesticated genes was used 
to edit several of these genes at once, resulting directly in a 
´crop´ with desirable agricultural traits.

Conclusion and perspective

In recent years, the number of sequenced plant genomes has 
increased at an incredible speed. It is clear that this will 
only continue, and in the near future we will have tens of 
thousands of sequenced plant genomes. This wealth of infor-
mation will accelerate studies on plant biology, functional 
genomics, evolution of genomes and genes, domestication 
processes, phylogenetic relationships, among many others. 
In parallel, new and improved bioinformatics analysis meth-
ods will have to be developed.

The field of single cell genomics will also expand and 
will also come with technical challenges such as capturing 
more cells, capturing low-abundance cells, cell-type anno-
tation, new sequencing and analysis methods (Efroni and 
Birnbaum 2016; Conde and Kirst 2022; Cuperus 2022). 
Moreover, this will not only apply to transcriptomics, but 
in all omics fields we are going to see a rapid expansion, 
from single cell omics, single cell multi-omics, spatial 
genomics and other omics, new omics analysis methods, 
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and to inference of gene regulatory networks using single 
cell omics data, among others (Thibivilliers and Libault 
2021; Clark et  al. 2022; Yu et  al. 2023; Baysoy et  al. 
2023).

The genome evolution and phylogenomic research field 
will have an ever-growing amount of data available for 
analyses. Furthermore, there is a great potential for the use 
of functional genomics data for genome-editing of crops 
and for the de novo domestication for future crops using 
this same technology (Fernie and Yan 2019; Zhou et al. 
2020; Zaidi et al. 2020; Gao 2021; Kumar et al. 2022; Yu 
and Li 2022; Bartlett et al. 2023). Importantly, when it 
comes to crop yield, knowledge is required how to prop-
erly evaluate this (Khaipho-Burch et al. 2023).

Lastly, Artificial Intelligence (AI) is certainly going to 
play a role in the plant science fields discussed here. Pre-
dictive models or analysis methods are developed based 
on machine learning (ML) and deep learning (DL) (Wang 
et al. 2020; van Dijk et al. 2021; Xu et al. 2021; Holzinger 
et al. 2023). Besides ChatGPT as a tool to ask or write 
texts, among other tasks (OpenAI; https:// chat. openai. 
com/ chat), probably one of the best-known tools now in 
life sciences, is AlphaFold and its successor Alphafold2, 
a model that can predict almost all protein tertiary struc-
tures (Senior et al. 2020; Jumper et al. 2021). Other exam-
ples are the use of AI in image analysis and image-based 
phenotyping, having autonomous robots and/or drones 
for plant phenotyping, pest management, fertilizer man-
agement, or harvesting (Harfouche et al. 2023; Holzinger 
et al. 2023; Murphy et al. 2024). Furthermore, AI can 
be applied in bioinformatic analysis, to improve genome 
annotations, predict with high accuracy specific motifs in 
regulatory regions, gene function prediction, or predict 
the import nucleotide region or gene(s) in EMS screens 
or QTL analysis, etc. These are just a few examples of the 
many possibilities of the use of AI now and in the near 
future.

In conclusion, plant genomics will undoubtedly remain a 
cornerstone, actively contributing to the ongoing advance-
ment of plant science and its practical applications.
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