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Abstract
Main conclusion Understanding surface defenses, a relatively unexplored area in rice can provide valuable insight 
into constitutive and induced defenses against herbivores.

Abstract Plants have evolved a multi-layered defense system against the wide range of pests that constantly attack them. 
Physical defenses comprised of trichomes, wax, silica, callose, and lignin, and are considered as the first line of defense 
against herbivory that can directly affect herbivores by restricting or deterring them. Most studies on physical defenses against 
insect herbivores have been focused on dicots compared to monocots, although monocots include one of the most important 
crops, rice, which half of the global population is dependent on as their staple food. In rice, Silica is an important element 
stimulating plant growth, although Silica has also been found to impart resistance against herbivores. However, other physical 
defenses in rice including wax, trichomes, callose, and lignin are less explored. A detailed exploration of the morphological 
structures and functional consequences of physical defense structures in rice can assist in incorporating these resistance traits 
in plant breeding and genetic improvement programs, and thereby potentially reduce the use of chemicals in the field. This 
mini review addresses these points with a closer look at current literature and prospects on rice physical defenses.
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Abbreviations
HIPVs  Herbivore-induced plant volatiles
Si  Silicon
BPH  Brown plant hopper
JA  Jasmonic acid
EW  Epicuticular wax

Introduction

Rice, Oryza sativa L. (Family: Gramineae) is the major 
staple food crop cultivated and consumed by more than 
half of the global population (Sharif et al. 2014). Rice is 
the third most important crop after sugarcane and maize, 
in terms of production and is cultivated in more than 100 
countries with an annual production of nearly 510 million 

tons of milled rice across 165 million hectares, with sig-
nificant contributions from China, India, Indonesia, Bang-
ladesh, and Vietnam. Major rice exporters include India, 
Thailand, Vietnam, and Pakistan, and are mainly imported 
to the Sub-Saharan Africa region accounting for 31% of the 
overall global imports (USDA 2022). According to FAO 
(2018), the five major importers of rice are China, Nigeria, 
the Islamic Republic of Iran, Saudi Arabia, and the Philip-
pines—expected to be one-third of the global rice imports by 
2027. Clearly, rice production is critical for food security on 
planet Earth. However, like most cultivated crops, rice also 
suffers from multiple stressors under different production 
systems across the world.

Stress in plants can be defined as the external conditions 
that negatively impact a plant's growth, development, or 
yield (Verma et al. 2014) and can be categorized as abiotic or 
biotic stress. Abiotic stress is caused by the environment and 
can be either physical or chemical, whereas biotic stress is 
caused by living organisms, such as viruses, bacteria, fungi, 
nematodes, insects (Table 1), and weeds. To avoid the selec-
tive pressure imposed by these stresses, plants have devel-
oped incredible defense mechanisms. Plant defenses can be 
either direct or indirect (Karban and Baldwin 1997; Howe 
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and Jander 2008). Direct defenses are types of defenses 
that exhibit a pernicious effect on herbivores affecting their 
mobility, feeding, growth, and development (Kessler and 
Baldwin 2001). On the other hand, indirect defense is the 
attraction of natural enemies toward the plants by the vola-
tiles released during the attack i.e., herbivore-induced plant 
volatiles (HIPV) (Kessler and Baldwin 2002; Arimura et al. 
2005; Howe and Jander 2008Kariyat et al. 2012) or through 
extra floral nectaries (Rosumek et al.2009; Heil 2015) that 
is found to be increased/ induced by insect herbivory and 
initiate more parasitism and predation (Jones et al. 2017). 
Although plant defenses and insect counter defenses have 
been meticulously examined, most of these studies have 
ignored the first line of defense—plant surface defenses and 
focused more on the chemical defenses (Qi et al. 2018; Lu 
et al. 2018; Shi et al. 2019; Kariyat et al. 2017). In dicots, 

extensive research has been conducted to understand their 
defense systems against herbivorous attacks, particularly 
in model plants such as Arabidopsis (Arabidopsis thaliana 
(L.) Heynh.) and tomato (Lycopersicon esculentum (Mill.) 
(Wu and Baldwin 2010; Stam et al. 2013; Wang and Wu 
2013), and in a wide range of wild and domesticated, model, 
and non-model species (Philipe and Bohlmann 2007; Xing 
et al. 2017; Feng et al. 2021; Johnson et al. 2021; Lefebvre 
et al. 2022; Kaur and Kariyat 2023). However, monocots, 
an important group that includes most of the staple food 
crops including rice, have been less studied, in physical and 
structural defenses. Here, we review and summarize the pre-
vious studies on physical defenses, their mode of action, and 
then specifically evaluate these defenses in rice, and suggest 
potential areas for future research.

Table 1  Major pests of rice and their taxonomic status

Scientific name Common name Order Family References

Recilia dorsalis Zigzag leafhoppers Hemiptera Cicadellidae Wilson and Claridge (1991); Chowdhury et al 
(2011)

Nilaparvata lugens Brown Plant hopper Delphacidae Sogawa, (1982); Heinrichs and Mochida (1984); 
Backus et al. (2005)

Cicadella viridis Green leaf hopper Cicadellidae Chu and Teng (1950)
Scotinophara coaractata Rice black bug Pentatomidae Corbett and Yusope (1924); Barrion et al. (1982)
Brevennia rehi Mealy bug Pseudococcidae Williams et al. (1981); Mishra et al. (2019)
Oebalus pugnax Rice stink bug Pentatomidae Swanson and Newsom (1962); Bowling (1979), 

Way (2003); Patel et al. (2006), Awuni et al. 
(2015)

Hysteroneura setariae Root aphid Aphididae Akinlosotu (1977); Nasruddin (2013)
Pelopidas mathias Rice skipper Lepidoptera Hesperiidae Teotia and Nand (1966); Litsinger et al. (1994a, 

b)
Scirpophaga incertulas Yellow Stem borer Pyraustidae Catling et al. (1987); Bandong and Litsinger 

(2005)
Spodoptera frugiperda Fall Army worm Noctuidae Pashley et al. (1987); Ashley et al. (1989); 

Nagoshi et al. (2021)
Cnaphalocrocis medinalis Rice leaf folder Crambidae Rajamma and Das (1969); Maragesan and Chell-

ish (1987); Khan et al. (1989); Kraker et al. 
(1999); Alvi et al.(2003)

Melanitis ismene Green horned caterpillar Sphingidae Sajjan and Singh (1972); Chander (1998)
Nymphula depunctalis Rice case worm Pyralidae Heinrichs and Viajante (1987); Litsinger et al. 

(1994a, b);
Baliothrips biformis Rice thrips Thysanoptera Thripidae Nugaliyadde and Heinrichs (1984); Velusamy 

(1990)
Gryllus spp. Field cricket Orthoptera Gryllidae Pathak and Khan (1994)
Caelifera spp. Grasshopper Acrididae, Tettigoniidae Anne and Hussain, (2016); Mitku et al (2021)
Lissorhoptrus oryzophilus Rice water weevil Coleoptera Curculionidae Zou et al. (2004); Aghaee and Godfrey (2014); 

Mulcahy et al (2022)
Dicladispa armigera Rice hispa Chrysomelidae Sen and Chakravorty (1970); Nath and Dutta 

(1997)
Hydrellia spp. Rice whorl maggot Diptera Ephydridae Viajante and Heinrichs (1986); Shepard et al 

(1990); Mangal (2000);
Orseolia oryzae Rice gall midge Cecidomyiidae Heinrichs and Pathak (1980); Kumar et al. 

(2009)
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Physical defenses and their role 
against insect herbivores

Physical or structural barriers, which are often regarded 
as the first line of protection against herbivory, are direct 
defenses that include cuticle, wax, spines, trichomes, 
and thickening or lignification of the cell wall. These are 
structural modifications in plants that negatively impact 
herbivores and work in a distinct way to contribute to the 
integrated defense phenotype of plants. Interestingly, most 
of these defenses have been evolved against abiotic stress-
ors, later diversified to be a major defense against biotic 
stressors (Kaur and Kariyat 2020). Among the structural 
barriers, the cuticle is the outermost layer composed of 
lipophilic compounds, laid over the epidermis protecting 
the plants from both biotic and abiotic stresses (Hanley 
et al. 2007; Agrawal et al. 2009). One of the most vital 
components of the cuticle is wax, the outermost protec-
tive barrier, and those dispersed on the surface of lipo-
philic polymer are called epicuticular wax (EW) (Wójcicka 
2015). Wax can alter the feeding, movement, and forag-
ing behavior of insect pests, predators, and parasitoids 
(Eigenbrode 2004), and the effects are species specific. 
For instance, in crucifers, the presence of long-chain alco-
hols and amyrins in the leaves reduced the infestation of 
the destructive diamondback moth, Plutella xylostella L. 
(Eigenbrode and Pillai 1998). Similarly, Watts and Kariyat 
(2022) studied the effects of epicuticular wax on tobacco 
hornworm, Manduca sexta by comparing two different 
species of Solanum (Solanum glaucescens Zuccarini and 
Solanum macrocarpon Linnaeus), the former with the 
highest wax and least trichomes, and latter with no wax 
and highest trichome density. They found epicuticular wax 
in S. glaucescens can act as a powerful barrier against M. 
sexta leading to the reduction in mass gain and increased 
mortality even when the species has the least trichomes. 
However, the role varies depending on the pests as in pea, 
Pisum sativum L., where fewer wax blossoms resulted in 
a reduction in aphid infestation but more severe weevil 
damage. (White and Eigenbrode 2000). Spines are another 
surface defense structure that are sharp, needle-like modi-
fications of petioles, midrib, or spicules that disrupt the 
feeding, mobility, dispersal, and mating behavior of her-
bivores (Hanley et al. 2007; Portman et al. 2015; Kariyat 
et al. 2017). In Solanaceae, Manduca sexta preferred to 
defoliate plants with fewer spines, and opted quickly for 
leaves with no spines that are removed for the experiments 
compared to leaves with intact spines, confirming the role 
of spines in defense (Kariyat et al. 2017). Similarly in 
2023, Johnson et al. investigated the effects of epicuticu-
lar wax of, Aloe barbadensis against M. sexta and S. fru-
giperda and found the surface waxes and volatiles emitted 

from the wax when added on artificial diet prevented them 
from feeding, also concluding the effects of wax affecting 
the growth and development of insect herbivores.

When compared to other surface barriers, trichomes are 
important, have undergone extensive research, and play a vital 
role in plant–biotic interactions (Kariyat et al. 2013, 2017). 
Trichomes are unicellular or multicellular hair-like appendages 
that advance outward (Werker 2000). They originate from the 
epidermal cells of vegetative and reproductive plant structures 
(Oksanen 2018) and have a negative impact on herbivores by 
preventing or impeding their movement or by delivering toxins 
that affect their growth and development (Agren and Schem-
ske 1993; Kaur and Kariyat 2020). In addition to protecting 
against herbivores, they also provide defense against abiotic 
stresses such as UV radiation, water loss, and extreme tem-
peratures (Ehleringer 1982; Li et al. 2018; Oksanen 2018). 
They can be divided broadly into glandular and non-glandular 
types (Werker 2000). Non-glandular trichomes are unicellular, 
tough, and sharp, blocking the entry or causing physical injury 
to insects (Dalin et al. 2008) and vary in their density, length, 
and orientation in different plant species (Cho et al. 2017; 
Kariyat et al. 2017, 2019; Watts and Kariyat 2021) whereas 
glandular trichomes are multicellular structures that trigger the 
genes that protect against insect herbivores by releasing toxic 
substances (Peiffer et al. 2009).

Lignification or cell wall thickening is another defense 
mechanism plants adopt in response to herbivory. Lignin is 
one of the most important phenolic acids and is the second 
most abundant polymer after cellulose, synthesized by phe-
nylpropanoid pathway. Lignin is present in the cell wall of 
plants, imparting resistance to biotic and abiotic stresses in 
addition to structural support. Lignin is responsible for the 
toughness of tissue that can resist herbivore damage (Raupp 
1985), -the tougher the tissue, the more the lignin is. In maize, 
lignin reduced the palatability to chewing insects by regulating 
the lignification process (Santiago et al. 2013) and by the effect 
of phenoloxidase enzymes that are involved in the lignin bio-
synthesis process. Phenoloxidase enzymes has also an impor-
tant role in the production of toxic byproducts such as reactive 
oxygen species, peroxides, and quinones that are detrimental 
to herbivores (Felton et al. 1989; Gandhi et al. 2021). In gen-
eral, the physical defenses in the plants have a great potential 
to tolerate herbivory and unveiling the role of each defense in 
depth can be used to modify and breed plants by regulating 
host plant resistance to reduce the attack from insect pests.

Physical defenses in rice

Epicuticular wax

In rice, epicuticular wax (EW) has been found to play an 
important role in the defense against herbivores. Brown 
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plant hopper (BPH), Nilaparvata lugens (Stal), a major 
sucking pest, has been found to alter its preference for the 
host by the presence of hydrocarbons and carbonyl groups 
in the wax. Woodhead and Pudgham (1988) investigated 
the non-preference of BPH on to the stem of variety IR46 
compared to other varieties and their tendency to move from 
stem to the leaves of the variety, even though they prefer 
stems, thus concluding the role of wax as a structural barrier. 
The importance of EWs in the reduction of infestations of 
two important pests of rice, rice water weevil, Lissorhop-
trus oryzophilus (Kushal), and fall armyworm, Spodoptera 
frugiperda (J.E. Smith) was explored using mutants with 
reduced epicuticular wax in comparison with wild-type 
plants. When the female weevils were given a choice for 
oviposition, the number of larvae emerging from the mutants 
was higher than the ones that emerged from a wild type that 
has the normal wax amount. In addition, the weight gained 
by the fall army worm larvae were found to be higher in 
mutants compared to wild-type plants confirming the role 
of wax in defense against herbivores (Bernaola et al. 2021).

Shi et al. (2023) recently showed that there are 19 wax 
compounds in rice leaves and sheaths that include acids, 
alkanes, aldehydes, and alcohols such as hexacosanoic acid, 
triacontanal, octacosanal, pentacosane, 1-tetracosanol to 
name a few. In addition, they also found a strong relationship 
between soil nitrogen and the age of rice plants, with the wax 
composition and content. Researchers concluded that as the 
plants age, wax content increases and can thereby suppress 
pest attacks as part of physical defense. In addition, nitrogen 
has an important role in determining the wax composition 
as the content of acid and alkanes in wax were found to 
increase under reduced nitrogen levels, suggesting the nega-
tive effect of nitrogen on wax content. However, more in-
depth research will be required to ascertain what aspects of 
rice EWs may be influencing the behavior of herbivores, and 
more importantly, whether rice EW quality and quantity can 
be altered by herbivory, and herbivore feeding types. More 
recently, a study of sorghum against sugarcane aphids found 
that wax components such as α-amyrin and isoarborinone 
were found to increase in 10-day sorghum plants after aphid 
infestation (Cardona et al. 2023).

Trichomes

Trichomes in rice have been found to differ in terms of 
density, length, degree of hardness, growth direction, and 
form type (Xiao et al. 2017), and can also vary among vari-
eties. In rice, it is commonly observed that the trichome 
density and their distribution are not uniform. However, a 
higher trichome density is found on leaves and glumes, com-
pared to other plant parts. Among leaves, there are three 
different types of trichomes commonly observed—micro, 
macro, and glandular hairs. Macro hairs are observed in 

silica cells; whereas, micro and glandular hairs are found 
on stomatal cells or beside the motor cells (Li et al. 2010). 
Khetnon et al. (2022) showed that rice can have four types 
of non-glandular trichomes: prickle, macro, micro and papil-
lae trichomes (Fig. 1). Characterizing its distribution over 
different varieties, Viz and Pacada (2022) investigated the 
trichome profiling of the traditional rice varieties and found 
variations among them and found a specific pattern in their 
density and dispersion and concluded, trichomes were dens-
est (4.56–5.46/mm2) and mostly dispersed (49.09–50.53%) 
in the apical zone of the leaf surface, and least dense 
(2.62–2.83/mm2) and rarely distributed (16.44–18.81%) in 
the basal zone. This discovered pattern of diminishing tri-
chome density and distribution on the adaxial leaf blade sur-
face from the apical zone to the base zone can be potentially 
used for developing varieties that might help defense against 
rice stem borers through enhanced structural defenses. There 
is also variation in the orientation of trichomes, wherein they 
are either erect or recumbent (Viz and Pacada 2022) Consid-
ering the two types, more erect hairs can potentially act as 
a better barrier against pests like stem borers (yellow stem 
borer and white stem borer) to deter oviposition (as observed 
in other species (Levin 1973; Hawthorne et al. 1992; Juvik 
et al. 1994; Resende et al. 2006; Murungi et al. 2016), and 
thus, decrease infestation, although empirical evidence is 
currently lacking.

In Punithavalli et al. (2013) examined the function of 
rice trichomes against the rice leaf folder, C. medinalis, 
and demonstrated their significance in preventing larval 
migration and the challenge of the larvae for creating folds 
for feeding within. Sandhu and Sarao (2021) reported that 
the population of nymphs and adults of BPH were much 
lower in genotypes with longer and denser trichomes than 
in susceptible genotypes such as TN1. However, Khetnon 
et al. (2022) claimed that the physical defense by trichomes 
was not effective against BPH because trichomes were not 
tough enough to prevent colonization by the second and 
third instars. According to Karban et al. (2002), the removal 
of silicified non-glandular trichomes in rice increased the 
frequency of damage to leaf sections including the basal 
region, which was not preferred by the herbivores in the 
presence of unidirectional structures. Researchers concluded 
that unidirectional structures such as trichomes are involved 
in directing the herbivore movement and, hence, can be 
adopted in plant breeding programs against insect pests. 
In addition, Andama et al. (2020) demonstrated the vital 
role of trichomes in imparting defense against insect pests 
indiscriminately affecting both generalists as well as special-
ists. Nerica, a new interspecific hybrid rice variety used in 
Africa was found to be more infested when compared to the 
local Japanese variety, Nipponbare even when the former 
has a strong volatile profile. In connection with this, they 
found the presence of non-silicified glandular trichomes 
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in Nipponbare compared to Nerica, and the larvae fed on 
Nipponbare showed a higher mortality rate. Larvae fed on 
Nipponbare on dissection were observed with prevalent 
punctures and holes in the midgut as well as found strong 
undigested trichomes from the frass stressing out the pivotal 
role of trichomes in defending the herbivory (Andama et al. 
2020) as previously observed in other systems (Kariyat et al. 
2017).

Callose deposition

Callose, a β-(1,3)-D-glucan polymer, plays an important 
role against phloem-feeding insects and pathogens in the 
plants by depositing callose at the site of the attack to 
slow down their feeding and spread (Miles 1999). Callose 
is usually present in sieve plates of phloem, pollen grains, 
pollen tubes, and pollen mother cells in plants (Stone and 
Clarke 1992). During feeding by phloem-feeding insects, 
plants up-regulate genes encoding callose synthase and 
β-(1,3)-D-glucanases, activating callose synthase genes 

that initiate the callose synthesis and deposition of callose 
on the sieve plates of plants (Will and van Bel 2006; Kem-
pema et al. 2007; Louis et al. 2012; Mondal et al. 2018; 
Varsani et al. 2019). The callose deposited on the sieve 
plates obstructs the sieve tubes and prevents the insect's 
penetration and feeding. However, β-(1,3)-D-glucanase 
can degrade the callose permitting phloem feeders to con-
tinue feeding significantly more in susceptible plants com-
pared to resistant plants resulting in heavy damage to the 
susceptible rice plants (Hao et al. 2008). Callose deposi-
tion is also induced by the stress hormone, Abscisic acid 
(ABA) where Liu (2017a), explained the exogenous appli-
cation of ABA can reduce the activity of the hydrolyzing 
enzymes and thus callose synthesis is unaffected. Here, the 
ABA showed a positive impact on rice by increasing its 
resistance to BPH, reducing its fecundity, and eventually 
acting as a barrier against the piercing and sucking insect 
pests; however, the exact mechanism behind this remains 
unresolved.

Fig. 1  Schematic representation of the physical defense structures 
in rice and the effects against the major feeding guilds: chewing and 
sucking herbivores. Wax, trichomes, silica, and callose can be con-
sidered as the physical defense mechanisms evolved by plants in 
response to insect herbivory. Among these, epicuticular wax and tri-
chomes can be considered as surface defense structures, and wax is 
known as the first line of defense acting as a vigorous barrier against 
rice insect pests regardless of feeding guilds. Wax in rice restricts the 
free movement of insect pests resulting in the reduction of mass gain 

and increased mortality. Trichomes on the other hand penetrate the 
midgut impeding their feeding. Different types of trichomes are seen 
in rice such as macro trichomes, micro trichomes, prickle, papillae 
[non-glandular trichomes], and glandular trichomes. Silica is impor-
tant in the normal growth and development of rice and has a vital role 
in defense causing mandibular wear and reducing the longevity and 
fertility in insect pests. Deposition of callose is another defense mech-
anism by rice on sucking herbivores such as Brown Plant Hopper, by 
obstructing the sieve tubes, interfering the stylet penetration



 Planta (2024) 259:110110 Page 6 of 13

Lignin

Lignin is present in the cell wall of plants and in rice, 
lignin content varies from 10 to 14% (Wijayanti et al. 2019) 
depending upon the varieties and has an important role in 
preventing herbivory. Lignin accumulation in cell wall helps 
in imparting resistance to BPH (Jannoey et al. 2015; Guo 
et al. 2018; He et al. 2020) and according to Zheng et al. 
(2020), in addition to the callose deposition in response to 
BPH attack, lignin helps in providing mechanical rigidity 
to the rice sheaths, making it difficult for them to penetrate 
their stylets. This was in line with the findings of Wijay-
anti et al. (2019) who reported that having higher lignin and 
cellulose content tends to resist BPH attack. According to 
Zhang et al. (2022), regulated genes related to BPH attack 
are engaged in the synthesis of lignin and flavonoids, which 
demonstrates the post herbivory induction of lignin and its 
function as a physical barrier against important sucking 
pests in rice. Although the majority of research on lignin 
production is related to sucking pests, there have been few 
studies on chewing insect pests in rice, such as leaf roll-
ers. Tianpei et al. (2015) showed that treating rice with an 
insect-specific peptide LqhIT2 was found to increase the 
accumulation of lignin resulting in imparting resistance to 
leaf roller. In addition, fertilization also has a strong impact 
on the lignin accumulation in rice, especially nitrogen fer-
tilizers. A study conducted by Zheng et al. (2021), reported 
that low nitrate content (with a concentration of 0.3 mM 
 KNO3) can increase the lignin concentration as well as other 
defense compounds such as flavonoids, phenolic acids, and 
saccharides, which have also been implicated in imparting 
resistance against insect pests—especially flavonoids (Kari-
yat et al. 2019; Tayal et al. 2020; Singh et al. 2021). Clearly, 
lignin helps in acting as a passive barrier as well as initiating 
other defenses in plants, in this case, against the striped stem 
borer, C. suppressalis. Collectively, these studies show the 
importance of lignin as an important component of physical 
defenses in rice.

Silicon

Silicon (Si) is the most abundant element in the earth's crust 
and has a crucial role in providing resistance against insect 
pests including chewing (florivores and borers) and sucking 
herbivores (phloem and xylem feeders). Si has direct effects 
on reducing the herbivore performance and indirect effects 
on the attraction of natural enemies by delaying the overall 
herbivore establishment (Reynolds et al. 2009). There are 
different forms of silica cells, such as butterfly-shaped in rice 
and maize, and oval-shaped in wheat (Alhousari and Greger 
2018), and their cell differentiation is mediated by the phy-
tohormone, jasmonic acid (JA). Si increases plant resist-
ance by depositing silica, especially in opaline phytoliths. 

Phytoliths are the minute amorphous silica structures that 
are formed by the precipitation and polymerization of silica 
within and between plant cells (Piperno 2006). This helps 
in increasing the hardness and abrasiveness of plant tissues 
followed by reducing the digestibility (Kaufman et al. 1985; 
Salim and Saxena 1992; Panda and Khush 1995; Ma et al. 
2001; Massey et al. 2006; Massey and Hartley2008), and 
causing mandibular wear in herbivores (Djamin and Pathak 
1967; Dravé and Laugé 1978; Ramachandran and Khan 
1991) and the degree of wear has a positive relation with the 
silicon concentration (Massey and Hartley 2008). Molting of 
mandibles occurs in each instar and, hence, mandibular wear 
cannot be only considered for the negative impacts in herbi-
vores; moreover, destructive effects on silica on the digestive 
tract will add the impact as the digestive tract never molts 
reducing the nitrogen absorption leading to drastic reduction 
in the relative growth rate (Massey and Hartley 2008) and 
survival rate of caterpillars (Han et al. 2016).

Rice can normally absorb 300–700 kg/ha Si (Snyder 
et al. 1986) during different growth stages and hence has 
an important role in imparting resistance against herbivory 
(Mitani et al. 2005) (Table 2). The genetic evidence of the 
role of Si in imparting resistance was proved by Nakata et al. 
(2008), where the damage by the lepidopteran pests, rice 
leaf folder, C. medinalis, and rice green caterpillar, Naranga 
aenescens was more pronounced in Si-impaired low sili-
con rice 1 (lsil) mutant than the wild-type plants. Quite a 
few studies have demonstrated the role of Si in reducing the 
infestation of chewing herbivores of rice: rice stem borer 
Chilo suppressalis (Sasamoto 1958; Djamin and Pathak 
1967; Drav´e and Laug´e 1978) and leaf folder larvae, C. 
medinalis (Hanifa et al. 1974; Ramachandran and Khan 
1991). Studies have also shown that the presence of Si can 
increase the penetration time of insects to plants as in Asiatic 
rice borer, C.suppressalis (Hou and Han 2010). Subbarao 
and Perraju (1976) reported a significant reduction in insect 
infestation along with increased Si plant uptake with the 
soil drench of potassium silicate  (K2SiO3) in rice against S. 
incertulas. In addition, Si can trigger the plants to produce, 
escalate or alter HIPVs (Herbivore Induced Plant Volatiles) 
that can either repel insect pests or attract natural enemies 
(Kvedaras et al. 2010). Liu et al. (2017b) reported a sig-
nificant increase in the attraction of parasitoids, Trathala 
flavo-orbitalis and Microplitis sp. to Si-treated plants after 
the infestation of rice leaf folder. There was a variation in the 
HIPVs produced such as hexanal 2-ethyl, α-bergamotene, 
-β-sesquiophellandrene and cedrol, in infested Si-treated 
plants compared to non-treated plants, and the signaling 
pathway responsible for inducing resistance is JA. Simi-
larly, Lu et al. (2015) reported the improved resistance of 
Si-treated plants against rice water weevil which is mediated 
by JA signaling. In short, Silica has a crucial role in rice in 
determining the degree of resistance toward defoliators.



Planta (2024) 259:110 Page 7 of 13 110

In addition to defoliators, Silica also has a strong negative 
impact on piercing and sucking pests in rice. In phloem feed-
ers such as BPH, Yang et al. (2017a) reported a significant 
decrease in the infestation in Si-treated rice. Here, Si deposi-
tion prolonged the time in the stylet pathway, thereby shorten-
ing the duration of phloem puncture and ingestion. Si deposi-
tion increased the hardiness and toughness of plant tissues, 
making BPH difficult to penetrate the tissues by the elongation 
of non-probing and stylet pathway activities. Another reason 
for this is the increased deposition of callose that obstructs the 
mass flow of the phloem, blocking the phloem sap leakage 
(Hao et al. 2008). Si also plays a role in the biochemical and 
physiological changes in plants by decelerating the increase 
in malondialdehyde (MDA) concentrations that attenuate the 
stress from BPH attack. In addition, Si can reduce the palat-
ability of plant tissues through the activities of polyphenol 
oxidase and peroxidase phenylalanine ammonia lyase that 
catalyze the oxidation of phenols to quinones (Yang et al. 
2017a). Hence, these studies conclusively demonstrate that 
silicate supplements can stimulate a variety of plant defense 
mechanisms against both chewing and phloem-feeding insect 
invaders by modifying plant secondary metabolites and anti-
oxidant defense mechanisms.

Genes involved in surface defenses in rice

In rice, there are three important genes that are identi-
fied to be involved in trichome formation. GLABROUS 
RICE 1 (GLR1, otherwise known as WUSCHEL-LIKE 

HOMEOBOX 3B [OsWOX3B], DEGENERATIVE PALEA 
[DEP], and NUDA—a gene encoded by a WUSCHEL 
(WUS)-like homeodomain protein that assists in trichome 
formation. Another is HAIRY LEAF 6 (HL6) which inter-
acts with OsWOX3B, encoding APETALA2/ETHYLENE 
RESPONSE FACTOR-type transcription factor initiating 
the trichome elongation and formation. SQUAMOSA PRO-
MOTER BINDING PROTEIN-LIKE10 (OsSPL10), is the 
recently identified gene also found to be responsible for 
trichome production. Sun et al (2017), reported that HL6 
interacts with OsWOX3B to form a protein complex that 
increases the binding of HL6 with an auxin-related gene, 
OsYUCCA5 leading to the development of trichomes. In a 
recent study, Li et al. (2021) confirmed the role of OsSPL10, 
by disrupting the gene by genome editing which resulted 
in the reduction of trichome density and length. Another 
defense is callose synthesis which is controlled by 2 UDP-
glucose pyrophosphorylase (UGPase) genes ((UGP1 and 
UGP2) and 10 glucan synthase-like (GSL) genes (Chen 
et al. 2006; Shi et al. 2015)) in rice. Ke et al. (2019) using 
a mutant pex1 (Leucine-rich repeat extensin-like protein), 
found a higher lignin content and increased expression of 
lignin biosynthesis genes in this mutant compared to the 
wild types. This is because the mutant was formed by the 
ectopic expression of a leucine-rich repeat extension-like 
gene, OsPEX1 and they observed the reduced lignin con-
tent in OsPEX1 suppressed plants confirming the role of 
OsPEX1 gene in lignin biosynthesis. According to Kawasaki 
et al. (2006), OsRac1, belonging to GTPases is the enzyme 
responsible for regulating the lignin deposition in the cells 

Table 2  Si-mediated plant defense against rice pests

Insect species Resistance mechanism Reference

Rice leaf folder
Cnaphalocrocis medinalis

Extended larval development and reduced 
weight gain in third instars, larval survival, 
pupation rate, and pupal weight, reduced 
ovipositional preference, induced defense by 
HIPV production

Javvaji et al. (2021), Han et al. (2015, 2016, 
2017)

Priming defense-related enzymes Ye et al. (2013)
Asiatic rice borer
Chilo suppressalis

Decreased and prolonged borer penetration, 
reduction in weight gain, and stem damage

Hou and Han (2010)

Yellow stem borer, Scirpophaga incertulas Decrease in weight, Mandibular wear, rupture 
of the peritrophic membrane

Jeer et al. (2016)

Sugarcane borer,
Diatraea saccharalis

Reduced boring and relative growth rate Sidhu et al. (2013)

Brown planthopper
Nilaparvata lugens

Modulation of callose deposition Hao et al. (2008), Yang et al. (2018)

Antibiotic and xenobiotic effects targeting insect 
physiological functions

He et al. (2015), Hou et al. (2017)

Impair sucking behavior by prolonging the 
stylet pathway, reduced feeding preference and 
overall population growth rate

Yang et al. (2017b)

White backed plant hopper, Sogatella furcifera Reduces adult longevity and female fertility Salim and Saxena (1992), Yang et al. (2014)
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as a defense reaction and this is through the regulation of 
NADPH oxidase and the activities of cinnamoyl-CoA reduc-
tase 1 (OsCCR1) that is an effector of OsRac1. Similarly, 
another protein, named GLPs (Germin-like proteins), is also 
responsible for altering the lignin synthesis genes and helps 
regulate the lignin accumulation in the cell walls (Shanguan 
et al. 2023). Needless to say, more comprehensive studies 
incorporating genomics and transcriptomics are needed to 
elucidate the genetic and molecular networks involved in the 
physical defense mechanisms in rice.

Conclusion and future perspectives

As discussed in this mini review, plant structural traits such 
as trichomes, epicuticular wax, silicon, callose deposition, 
and lignin have crucial roles in reducing insect herbivory in 
rice. However, these structural traits are not explored and not 
well understood, especially in the context of rice-herbivore 
interactions, when compared to their dicot counterparts. 
Insect herbivory and pesticide resistance development are 
serious concerns, and are due to the indiscriminate use of 
chemicals and pesticide residue that affects the quantity and 
quality of rice, pre and post harvesting. In addition to resist-
ance against insect pests, surface defenses such as trichomes 
have a crucial role in protecting plants from changing cli-
matic conditions such as extreme temperatures, water stress, 
and UV irradiation (Hu et al. 2013; Lan et al. 2019). There 
is a critical need in elucidating the role of each physical bar-
rier in terms of type, structure, mode of action in controlling 
the invading pests, which has consequences for determin-
ing pest control strategies and the development of resistant 
traits—thus reducing the build-up of chemicals in the field. 
Just in the case of trichomes, the morphological diversity at 
genus and species levels in dicots have been found to have 
functional consequences (Watts et al. 2023) and clearly with 
current advances in microscopy and imaging techniques, this 
can be better resolved. The need for more rice and rice-based 
products is a global concern and hence, rice production 
can be improved by exploring the mechanisms underlying 
plant–herbivore interactions and unveiling how rice plants 
can use their own defense mechanism to cope up this con-
stant and continuous biotic stress. Research on genetic and 
molecular mechanisms of physical defenses and identify-
ing the genes responsible for the defense mechanisms can 
be utilized in plant breeding programs to improve the yield 
minimizing the environmental impacts, thereby managing 
pests in a sustainable way.
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