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Abstract
Main conclusion  Plant Biomarkers are objective indicators of a plant’s cellular state in response to abiotic and biotic 
stress factors. They can be explored in crop breeding and engineering to produce stress-tolerant crop species.

Abstract  Global food production safely and sustainably remains a top priority to feed the ever-growing human population, 
expected to reach 10 billion by 2050. However, abiotic and biotic stress factors negatively impact food production systems, 
causing between 70 and 100% reduction in crop yield. Understanding the plant stress responses is critical for developing 
novel crops that can adapt better to various adverse environmental conditions. Using plant biomarkers as measurable indi-
cators of a plant’s cellular response to external stimuli could serve as early warning signals to detect stresses before severe 
damage occurs. Plant biomarkers have received considerable attention in the last decade as pre-stress indicators for various 
economically important food crops. This review discusses some biomarkers associated with abiotic and biotic stress condi-
tions and highlights their importance in developing stress-resilient crops. In addition, we highlighted some factors influenc-
ing the expression of biomarkers in crop plants under stress. The information presented in this review would educate plant 
researchers, breeders, and agronomists on the significance of plant biomarkers in stress biology research, which is essential 
for improving plant growth and yield toward sustainable food production.

Keywords  Abscisic acid · Aquaporin · Dehydrin · Heat shock protein · Antioxidants · sRNA

Introduction

Food is essential to our daily lives and well-being because 
it provides energy to power all metabolic processes and 
nutrients for proper growth and disease resistance (Holder 
2019). Food security refers to the condition in which peo-
ple always have social, economic, and physical access to 

safe, nutritious, and sufficient food to meet their dietary 
requirements for a healthy life (Sadati et al. 2021). Ensur-
ing adequate food security for the global human population, 
projected to expand to 10 billion by 2050, a 34% increase 
over the current population size, is a paramount global con-
cern and imperative (Boretti and Rosa 2019).

One of the foremost strategies to attain global food secu-
rity entails a substantial boost in food crop production. A 
recent study conducted by Galieni et al. (2021) underscores 
the urgency of this matter, revealing that, given the cur-
rent population growth rate, food production must surge 
by approximately 70% to align with existing food demand. 
Between 2000 and 2019, the total primary crop produc-
tion recorded a 54% increase, reaching 9.4 billion tonnes 
(FAO 2022). However, this positive trend does not extend 
uniformly to developing countries. In stark contrast, food 
production per capita in Africa has experienced a decline 
of about 5–13% over the past few decades, with approxi-
mately 73 million people suffering from severe food inse-
curity (Mohamed et al. 2021; Bjornlund et al. 2020). The 
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principal causes of global food insecurity are abiotic and 
biotic stress factors.

Abiotic factors such as drought, salinity, heavy metal 
stress, flooding, and extreme temperatures significantly 
impact crop production and contribute to food insecurity in 
developed and developing countries (Summy et al. 2020). 
These stress factors endanger approximately 90% of ara-
ble lands, leading to a 70% reduction in major food crops 
(Waqas et al. 2019). For instance, drought was the primary 
cause of grain production shortages in the twenty-first cen-
tury, with approximately one-third of global drought inci-
dents occurring in Sub-Saharan Africa. Ethiopia and Kenya, 
in particular, endured some of the most severe drought 
periods in the past four decades (Kogan et al. 2019; Ofori 
et al. 2021). Furthermore, global temperature will rise by 
2–4.9 °C by 2100, and approximately 5 million sites will 
experience heavy metal contamination at concentrations 
above regulatory limits (Raftery et  al. 2017; Gonzalez 
Henao and Ghneim-Herrera 2021).

Biotic stress factors affect crop production and food secu-
rity worldwide (Kaur et al. 2021). These factors, including 
bacteria, viruses, fungi, nematodes, weeds, and insects, are 
a huge constraint, destroying about one-third of agricultural 
produce valued at 750 billion US dollars annually (Mester-
házy et al. 2020). According to the Food and Agriculture 
Organization (FAO) of the United Nations (UN), plant dis-
eases alone incur global damages of 220 billion USD, while 
uncontrolled weeds could cause a 100% loss in crop yield 
annually in both developing and developed nations (He and 
Krainer 2020; Chauhan 2020). Biotic stress factors have his-
torically played a role in some of the most severe famines. 
For example, in the United States, Puccinia graminis tritici 
fungi caused an epidemic that resulted in the loss of mil-
lions of bushels of wheat (Prasad et al. 2023). Additionally, 
the cassava mosaic disease epidemic in India, Sri Lanka, 
and Kenya has resulted in a yearly loss of approximately 25 
million tons of cassava, which can lead to famine in subse-
quent years, especially in countries where it is a staple crop. 
These multifaceted challenges pose a significant threat to 
food security on a global scale.

Developing innovative methods and technologies to con-
trol or enhance plants' resistance to stress factors has become 
critical in improving crop growth and yield (Hareesh et al. 
2023). An integral component of advancing these methodol-
ogies is gaining a profound understanding of plant response 
patterns to external influences (Galieni et al. 2021). Plants 
have a dynamic homeostasis system, enabling them to main-
tain a stable internal state, even amidst unpredictable exter-
nal conditions. This equilibrium is crucial for their survival 
and optimal functionality (Torday 2015).

Plants synthesize biomarkers in response to stress to 
regulate cellular homeostasis. These biomarkers represent 
specific molecules or compounds that serve as measurable 

and quantifiable indicators of a plant's reaction to external 
stimuli (Steinfath et al. 2010). A diverse array of substances, 
including phytohormones, enzymes, proteins, and nucleic 
acids, constitute plant biomarkers, serving a pivotal role in 
monitoring and responding to changes in a plant's environ-
ment. Furthermore, they function as precursors, enabling 
the detection of potential stress well before it manifests as 
physical symptoms (Alharbi 2020).

Understanding plant physiology and developing strate-
gies to improve crop resilience and productivity in changing 
environmental conditions. Studying plant biomarkers is an 
essential aspect of achieving this goal (Zhou et al. 2022). 
This review presents an overview of the typical cellular 
biomarkers expressed by plants in response to abiotic and 
biotic stress factors. It also discusses methods of identify-
ing these biomarkers, their importance in crop engineering, 
and factors influencing their expression. The information 
provided in this review would enable agronomists and plant 
biotechnologists to develop rapid intervention mechanisms 
to improve crop resilience against both abiotic and biotic 
stress factors, thus contributing to global food security.

Plant biomarkers

Biomarkers have played a role in modern science for over 
half a century, but their significance has seen a noticeable 
increase since the twenty-first century. This surge can be 
attributed to new technological advancements that have 
made it possible to generate and validate biomarkers (Rapley 
and Whitehouse 2015). Biomarkers are indicators of the cel-
lular state of an organism in response to environmental and 
biological factors (Paniagua-Michel and Olmos-Soto 2016). 
They are quantifiable and reproducible, and their concentra-
tions differ significantly from those found in normal, unaf-
fected organisms (Bodaghi et al. 2023). Plants, for instance, 
synthesize biomarkers in response to abiotic and biotic stress 
factors. These biomarkers function as early warning signals 
in plants, allowing the detection of stressors before they 
cause severe damage, often manifested as physical symp-
toms (Ernst 1999).

There are numerous laboratory-based techniques avail-
able for detecting and analyzing biomarkers in plant tis-
sues. These methods involve examining either the bio-
marker itself or the genes that encode it (Pérez-Clemente 
et al. 2013). Examples of these techniques include West-
ern blotting, MALDI-TOF, SDS-PAGE, 2D-GE, northern 
blotting, enzyme-linked immunosorbent assay (ELISA), 
LC–MS, and polymerase chain reaction (PCR) (Yang et al. 
2021). In recent years, omic technologies have provided 
a more holistic understanding and aided in identifying 
plant biomarkers indicative of stress conditions. These 
include techniques such as genomics to identify significant 
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stress-associated genes, proteomics to study variations in 
protein abundance relative to induced stress, metabolomics 
to study variations in cellular metabolites in response to 
stress, and transcriptomics to analyze gene expression 
patterns (Roychowdhury et al. 2023). Furthermore, the 
advancement of next-generation sequence approaches 
such as microarrays, RNA sequencing, and single-mole-
cule real-time sequencing have provided high-throughput, 
sensitive and rapid methods of generating data from omic 
techniques (Saeed et al. 2022; Udawat 2023).

While plant biomarkers may not exhibit the same level 
of specificity as those in mammalian systems, they still 
play a significant role in detecting and mitigating plant 
stress factors (Steinfath et al. 2010). Given the increasing 
impact of abiotic and biotic stressors on plants, there is a 
growing global interest in using biomarkers at cellular and 
molecular levels to detect stress early, monitor changes 
in plant metabolism in response to stress, and prevent 
irreversible damage (Fernandez et al. 2016; Paes de Melo 
et al. 2022). This review will explore plant biomarkers 
with differential expression patterns under stress condi-
tions. These biomarkers include abscisic acid, aquaporin, 

dehydrin, transcription factors, heat shock proteins, anti-
oxidant enzymes, and sRNA.

Abscisic acid as a hormonal biomarker 
in plant stress responses

Abscisic acid (ABA) is a sesquiterpenoid with 15 carbon 
atoms synthesized from β-carotene via either the carotenoid 
pathway or the indirect pathway (mevalonic acid-independ-
ent pathway), as demonstrated in Fig. 1 (Hewage et al. 2020; 
Chen et al. 2020).

ABA plays a crucial role in the growth and development 
of plants, acting as an essential phytohormone (Chen et al. 
2020). It is especially important in regulating several bio-
chemical, molecular, and physiological processes in crop 
plants that are exposed to harsh abiotic stress conditions such 
as drought, salinity, extreme temperature, UV—radiation, 
and heavy metal stress (Vishwakarma et al. 2017). ABA is 
a key factor in synchronizing multiple processes that confer 
stress tolerance, such as root cell elongation, stomata clo-
sure, activating transcriptional and post-transcriptional stress 
defense responses, inducing the expression of stress-related 

Fig. 1   The biosynthesis of Abscisic acid via the direct and indirect 
pathway. G-3-P—glyceraldehyde-3-phosphate; DXS—Deoxyoxy-
lulose-5-phosphate synthase; MEP-2-C-methyl-d-erythriotl-4-phos-
phate; IPP—Isopentenyldiphosphate; FPS—Farnesyl diphosphate 
synthase; FPP—Farnesyl pyrophosphate; GGPS—geranylgeranyl 
pyrophosphate synthase; GGPP—Geranylgeranyl pyrophosphate; 

PSY—Phytoene Synthase; ZDS—phytoene desaturase; Z—ISO-z-
carotene desaturase; LCYB—lycopene cyclase; BCH—β-carotenoid 
hydroxylase; ZEP—Zeaxanthin epoxidase; NXS—Neoxanthin syn-
thase; NCED—9-cis-epoxycarotenoid dioxygenase; SDR—Short 
chain dehydrogenase; A.A.O—Abscisic acid oxidase
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genes, increasing hydraulic conductivity, and metabolic 
alterations (Muhammad Aslam et al. 2022). Numerous stud-
ies have found that an increase in cellular ABA concentra-
tions is linked to adverse environmental conditions (Wang 
et al. 2021; Hu et al. 2022b; Yang et al. 2023b). For instance, 
under salt stress, rice plants accumulate ABA, which affects 
the growth and development of the root meristem (Huang 
et al. 2021). Similar examples of changes in the cellular con-
centration of ABA in crop plants under various abiotic stress 
conditions and their mode of action are reported in Table 1.

In contrast to abiotic stress, the accumulation of ABA 
during biotic stress can either increase plant tolerance or 
susceptibility (Gietler et al. 2020). The impact of ABA on 
plants is also influenced by pathogen type and biotic stress 
conditions (Bharath et al. 2021; Rasool 2022). High lev-
els of cellular ABA can suppress the immune response of 
crop plants by repressing salicylic acid activity, making 
them more susceptible to biotrophic pathogens, such as 
Magnaporthe oryzae (in barley) and Botrytis cinerea (in 
tomato), which infect living host cells (Ulferts et al. 2015; 
Sivakumaran et al. 2016). On the other hand, the accumula-
tion of ABA in crop plants under biotic stress causes sto-
mata closure and increases callose deposits, which protects 
them from pathogen invasion (Hewage et al. 2020). Table 2 
highlights additional examples of changes in cellular ABA 
concentration in response to biotic stress, including their 
mechanism of action.

Aquaporin as a biochemical marker in plant 
stress responses

Aquaporins (AQP) are transmembrane proteins that range 
in molecular weights from 23 to 31 kDa (Kapilan et al. 
2018). They are found in various parts of plants, such as 
roots, leaves, seeds, flowers, and fruits, under normal physi-
ological and stressful conditions (Hoai et al. 2020; Li et al. 
2022)). Given the sedentary nature of plants, their numerous 
intracellular compartments, and the lack of a specialized 
circulatory system, there is a critical need for coordinated 
water regulation to adapt to multiple abiotic stresses, includ-
ing salinity, drought, temperature, nutrient limitation, and 
heavy-metal toxicity (Banerjee and Roychoudhury 2020).

AQP serves as a channel for transporting and maintain-
ing cellular water, ion, and neutral solutes, which explains 
their vital role in regulating some physiological and meta-
bolic processes, such as root/leaf hydraulic conductivity, cell 
osmoregulation, transpiration, stomatal closure, cell regen-
eration, and cell elongation in plants (Zupin et al. 2017). 
Given the importance of AQP in plant cells, they are either 
upregulated or downregulated in response to stress. This 
modification of AQP abundance under different stressors 
helps to regulate osmotic balance (Kapilan et al. 2018).

AQP are typically classified into five subfamilies, namely 
tonoplast intrinsic protein (TIP), plasma membrane intrin-
sic proteins (PIP), small basic intrinsic proteins (SIP), X 
intrinsic proteins (XIP), and nodulin 26-like intrinsic pro-
teins (NIP) (Zargar et al. 2017). These families of proteins 
perform specific roles within the cell during normal physi-
ological conditions. The SIPs and some NIPs mediate the 
transportation of solvents within the endoplasmic reticulum, 
and the TIPs and NIPs mainly participate in the movement 
of minerals and organic micro-compounds due to their lower 
permeability to water molecules (Afzal et al. 2016). Con-
versely, the PIPs and TIPs mainly play a part in reactions 
during drought, cold, and salinity stress (Maurel et al. 2015).

Notably, plants’ resistance to different stressors is directly 
proportional to the amount, distribution, and efficiency of 
aquaporins within the cells (Patel and Mishra 2021). For 
example, a study by (Lian et al. 2006), showed that 20% 
polyethene glycol (PEG)-induced water stress enhanced the 
accumulation of root and leaf plasma membrane intrinsic 
proteins in two rice cultivars, lowland rice (Oryza sativa 
L. cv. Xiushui 63) and upland rice (Oryza sativa L. cv. 
Zhonghan 3). Under drought stress, there was a consistent 
increase in the expression of the aquaporin gene (PIP1;5) 
in the leaves and roots of the more drought-tolerant pearl 
millet (Pennisetum glaucum (L.) R. Br) (Iwuala et al. 2020). 
Further examples of aquaporin expression under different 
abiotic stress conditions and their mode of action are shown 
in Table 3.

Dehydrin as a biochemical marker in plant 
stress responses

Dehydrins (dehydration-induced proteins) are a type of 
protein that are highly hydrophilic and thermostable, with 
molecular weights ranging from 22 to 60 kDa (Arumingtyas 
and Savitri 2013). These proteins belong to group 2 within 
the late embryogenesis abundant (LEA) family and are the 
most extensively studied of the seven groups of LEA pro-
teins due to their crucial role in increasing plant tolerance 
to abiotic stress (Mertens et al. 2018).

During times of abiotic stress, plant organs accumulate 
dehydrins within their nucleus, mitochondria, cytoplasm, 
and membranes (Tiwari and Chakrabarty 2021). Due to 
their hydrophilic and thermostable properties, these proteins 
are able to maintain structural flexibility, even binding to 
membrane proteins during water deficit to prevent protein 
inactivation and coagulation (Liu et al. 2017). Furthermore, 
dehydrins’ highly disordered and unstructured nature plays 
a crucial role in increasing tolerance to abiotic stress by pre-
serving cellular integrity through the formation of hydrogen 
bonds within the cell membrane via coupled folding (Baner-
jee and Roychoudhury 2016).
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According to (Kalemba et al. 2015), dehydrin accumu-
lation in various cellular compartments, organelles, and 
membranes in beech (Fagus sylvatica L.) seeds during 
development and storage prevents cellular damage caused 
by dehydration. Table 4 shows other examples of dehydrin 
expression in different crop plants under various abiotic 
stress conditions.

Dehydrins are grouped structurally into five sub-classes, 
namely SKn, Kn, YnKn, KnSYn, and YnSKn, based on the 
presence of conserved sequences (lysine-rich K-segment, 
unique to all Dehydrins; serine-rich S-segment; and tyros-
ine-rich Y-segment (Sun et al. 2021b). These conserved 
regions play essential roles in protecting plants from the 
adverse effects of osmotic stress. For example, the K-seg-
ment binds to cell membrane proteins, protecting them from 
electrolyte leakage and lipid oxidation. The S-segment is 
responsible for phosphorylation by the SNF1-related pro-
tein kinase, which influences the translocation of dehydrins 
from the cytosol to the nucleus and binding to calcium ions. 
However, the precise function of the Y-segment remains 
unknown (Murray and Graether 2022). Stival and colleagues 
reported the expression of dehydrin genes in Picea glauca 
in response to drought. They discovered that dehydrins with 
N1 K2 and N1 AESK2 sequences were the most receptive to 
the absence of water (Stival Sena et al. 2018).

Transcription Factors as molecular 
biomarkers in plant stress responses

As stated by Kabir et al. (2021), transcription factors (TFs) 
are multifunctional proteins that regulate various plant reac-
tions to stress. They bind to transcription-factor binding 
sites in the promoter region of a DNA sequence, which then 
triggers a series of downstream reactions that result in the 
expression of target genes and the subsequent synthesis of 
functional proteins relative to stress (Wu et al. 2015). Stress 
signals perceived by cell wall and membrane receptors are 
transmitted to transcription factors through intracellular 
compounds such as reactive oxygen species (ROS), Ca2+, 
phosphatases and protein kinases. These TFs then regulate 
or stimulate the expression of responsive genes by binding 
to their respective cis-element (Shahzad et al. 2021).

Numerous families of transcription factors highly regu-
late plant defense gene expression in response to abiotic and 
biotic stress factors. These families include basic leucine 
zipper (bZIP), AP2/ERF, WRKY, NAC (NAM: no apical 
meristem, ATAF, CUC: cup-shaped cotyledon), drought-
response elements binding proteins (DREB) and myeloblas-
toma (MYB) (Javed et al. 2020; Hrmova and Hussain 2021). 
Each of these transcription factor families comprises over 
100 and can act as positive or negative regulators to enhance 
tolerance to the respective stress factor (Hu et al. 2022c).

Several research have reported changes in the expres-
sion of TF in crop plants in relation to abiotic stress. For 
example, (Xiang et al. 2008) reported an increased expres-
sion of a member of the bZIP transcription factor fam-
ily (OsbZIP23) in drought-resistant upland rice genotype 
IRAT109 (Japonica) exposed to drought and salinity stress, 
as revealed through Northern-blot analysis. (Rahman et al. 
2016) reported that the overexpression of finger millet 
(Eleusine coracana L.) transcription factor (NAC 67) in 
rice increased the tolerance of the resulting transgenic rice 
to drought stress by increasing the relative water content. 
Similarly, (Wei et al. 2019) demonstrated that overexpress-
ing the GmWRKY54 transcription factor in soybeans con-
ferred drought tolerance by activating target genes in the 
Ca2+ and abscisic acid signalling pathway. Other examples 
of TF expression under different abiotic stress conditions 
and their mode of action are shown in Table 5.

TFs are also crucial in the plants’ adaptation mechanism 
to biotic stress. For example, during a pathogenic attack, 
TF promotes the activation of pathogenesis-related protein 
genes and hypersensitive response, thereby increasing the 
plants’ resilience to the pathogen (Campos et al. 2022). 
(Kaushal et al. 2021) also reported the upregulation of NAC, 
bHLH, and MYB transcription factors in banana cultivars 
resistant to Fusarium stress. Similarly, López et al. (2021) 
observed an increased resistance of a Columbia tomato cul-
tivar to Fusarium oxysporum f. sp. lycopersici (Fol) infec-
tion due to the upregulation of WRKY transcription factor. 
Table 6 highlights more examples of TF expression under 
biotic stress.

Heat shock proteins as a biochemical 
biomarker in plant stress responses

Heat shock proteins (HSP), commonly known as stress 
proteins, are expressed by all living organisms, including 
plants and are widely distributed in cellular compartments 
and organelles such as the nucleus, endoplasmic reticulum, 
cytoplasm, and chloroplast (ul Haq et al. 2019; Singh et al. 
2019). These proteins can be classified into five families 
based on their sequence homology and molecular weight: 
small Hsps (sHsp), Hsp60, Hsp70, Hsp90, and Hsp100 (Li 
and Liu 2019). Under normal physiological conditions, HSP 
constitutes between 5 and 10% of the total concentration of 
cellular proteins, where they play a highly significant role in 
regulating various growth and developmental processes such 
as controlling the cell cycle, assembling multi-protein units 
transporting into and out of subcellular compartments, and 
controlling protein degradation (Park and Seo 2015). How-
ever, their expression significantly increases under abiotic 
and biotic stress, a crucial adaptation to crop plants' stress 
tolerance (Hu et al. 2022a).
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Initially identified as proteins upregulated in plant cells 
under heat stress, it is now widely recognized that their 
expression also increases in response to other abiotic stress, 
such as heavy metal stress, drought, cold and UV radiation 
(Jacob et al. 2017). These stress factors induce changes in 
the physiological, cellular and metabolic function of the cell, 
leading to the aggregation, misfolding and dysfunction of 
native and non-native proteins (Mishra et al. 2018). HSPs 
function as molecular chaperones and perform several pro-
tective roles that safeguard the cell from the harmful effects 
of stress. For example, they buffer and bind to the hydro-
phobic regions of unfolded polypeptides during translation, 
preventing aggregation and amino-terminal misfolding and 
ensuring proper folding of the polypeptide chain (Roy et al. 
2019). Additionally, they assist in stabilizing protein struc-
ture, maintaining normal conformation, and regulating cel-
lular homeostasis (Khan et al. 2021). Using SDS-PAGE, 
isoelectric focusing (IEF), western blot, and dot blot tech-
niques, Polenta et al. (2020) discovered an increased expres-
sion of HSP in tomatoes in response to extreme heat and 
cold conditions. Their findings highlight the importance and 
application of HSP as a plant stress biomarker (Polenta et al. 
2020). Table 7 highlights some examples of HSP expression 
and their mechanism of conferring tolerance to plants under 
different abiotic stress conditions.

As observed in abiotic stress, HSPs are also integral 
components of the adaptive strategies employed by plants 
to mitigate the adverse effects of biotic stress. They enhance 
tolerance to biotic stress by regulating the stability and accu-
mulation of various stress-responsive proteins, including 
pathogenesis-related (PR) proteins and antioxidant enzymes, 
thus detoxifying reactive oxygen species and preserving 
membrane stability. Numerous studies have documented 
the differential expression of heat shock proteins (HSP) in 
response to biotic stress. In a study conducted by Li et al. 
(2021), it was observed that the increased expression of 
HSP24 improved the resistance of grape berries (Vitis vin-
ifera Cv ‘Kyoho’) against Botrytis cinerea infection. The 
researchers reported that this was due to the physical interac-
tion of HSP24 with pathogenesis-related (PR) proteins, lead-
ing to the activation of the salicylic acid defense pathway 
against the fungi. Table 8 shows similar examples of HSP 
expression under different biotic stress conditions, including 
their mode of action.

Antioxidant enzymes as biochemical 
markers in plant stress responses

Enzymatic antioxidants are essential in promoting plant 
growth and development by counteracting the deteriorating 
effects of oxidative stress. They break down and eliminate 

free radicals produced in plant cells during biotic and abi-
otic stress (Saisanthosh et al. 2018). These antioxidant 
enzymes include superoxide dismutase (SOD), catalase 
(CAT), peroxidase (POX), ascorbate peroxidase (APX), 
glutathione peroxidase (GuPx), and glutathione reductase 
(GR). SOD catalyzes the conversion of superoxide radicals 
to O2 and H2O2, CAT converts two molecules of H2O2 into 
water and O2, and POX scavenges H2O2 within extracel-
lular spaces. In addition, APX utilizes ascorbic acid to 
reduce H2O2 to water, GPX catalyzes the breakdown of 
H2O2 and GR catalyzes the conversion of oxidized glu-
tathione (dimeric GSSG) to reduced glutathione (mono-
meric GSH) (Rajput et al. 2021; Kapoor et al. 2020).

Abiotic stress triggers physiological and metabolic 
changes such as stomatal closure, reduced CO2 availabil-
ity, and disruption of photosynthetic enzymes and pho-
tosystems (Sachdev et al. 2021). These stress-induced 
changes causes the accumulation of free radicals and reac-
tive oxygen species such as singlet oxygen, superoxide ion, 
and hydrogen peroxide in various plant tissues, leading to 
oxidative damage and cell death (Dumanović et al. 2021). 
In response to increased ROS production, plants upregu-
late the synthesis of antioxidant enzymes to scavenge and 
maintain cellular ROS homeostasis, thereby mitigating 
the adverse effects of abiotic stress (Huang et al. 2019). 
Numerous studies have shown that under various abiotic 
stressors, plants upregulate antioxidant enzymes. Table 9 
highlights a few of these.

Biotic stressors, such as pathogenic infections and 
wounding, trigger specific plant defence responses. This 
response involves generating elevated levels of reactive 
oxygen species (ROS), also known as oxidative burst, to 
prevent pathogen invasion and proliferation and facilitate 
death (Ali et al. 2018). ROS speeds up cell regeneration 
and wound healing by preventing pathogen invasion at the 
injury site (Polaka et al. 2022). Furthermore, ROS acts 
as a signalling molecule and regulates several signalling 
pathways involving cell wall modification, changes in gene 
expression and hypersensitive response (HR), further pro-
tecting plants from biotic stress (Lehmann et al. 2015).

Nevertheless, excess production of ROS beyond a spe-
cific concentration threshold disrupts cellular homeosta-
sis, resulting in protein peroxidation, enzyme inhibition, 
breakdown of cellular components, DNA fragmentation, 
activation of apoptosis, and cell death (Wang et al. 2019b). 
Plants deploy antioxidant enzymes as the foremost defense 
line to counteract these detrimental effects. These enzymes 
play a crucial role in protecting plants from the harmful 
consequences of ROS generated by biotic stress factors 
(Sahu et al. 2022). Table 10 highlights examples of enzy-
matic antioxidants expressed in response to biotic stress 
factors and their mechanism of action.
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Small RNA as a molecular biomarker in plant 
stress responses

Plant Small RNAs (sRNA) constitute a category of non-
coding ribonucleic acid molecules spanning from 21 to 24 
nucleotides in length (Morgado and Johannes 2019). They 
are ubiquitously distributed across diverse cell types and 
tissues, actively participating in various biological pro-
cesses, including plant reproduction, growth, and response 
to biotic and abiotic stressors (Zhan and Meyers 2023; 
González Plaza 2020). Plant small RNAs (sRNAs) can 
be classified into several categories based on their bio-
genesis, including microRNAs (miRNAs), piwi interact-
ing RNAs (piRNAs), small interfering RNAs (siRNAs), 
small nuclear RNAs (snRNAs), and small nucleolar RNAs 
(snoRNAs) (Brant and Budak 2018). However, miRNAs 
and siRNAs are the most widely studied, primarily due 
to their pivotal roles in enhancing plant resilience against 
abiotic and biotic stress factors (Chen et al. 2018).

miRNAs and siRNAs are both generated from double-
stranded RNAs (dsRNAs) in a series of downstream reac-
tions involving RNA polymerase and Dicer-like (DCL) 
proteins (Mahto et al. 2020). However, while DCL1 trims 
miRNA, siRNA is generated from multiple pathways 
involving diverse exogenous and endogenous dsRNAs pre-
cursors by DCL2-4 proteins. The generated miRNAs and 
siRNAs are then incorporated into Argonaute (AGO) pro-
teins to form the RNA-induced silencing complex (RISC). 
This complex regulates target genes at the transcription 
and post-transcriptional levels (Tang et al. 2021).

The mechanism of action of sRNA at target sites 
involves transcriptional and post-transcriptional gene 
silencing through DNA methylation, RNA slicing, his-
tone modification, and translational repression (Tang et al. 
2022; Patel et al. 2020). Additionally, they exhibit diverse 
regulatory patterns in response to varying stress condi-
tions, with upregulation observed in positive regulators 
and downregulation in negative stress regulators (Sun et al. 
2021a). While specific sRNAs are conserved, overseeing 
shared traits across plant species, others are specific to 
particular species. Both species-specific and conserved 
sRNAs play a pivotal role in plant stress responses and can 
be used as plant biomarkers (Jyothsna and Alagu 2022).

sRNA acts as a modulator in response to diverse abiotic 
stress conditions. They regulate the upregulation or down-
regulation of target genes in stress-associated pathways 
at both the transcriptional and post-transcriptional levels 
(Mondal et al. 2023). For instance, miRNA contributes to 
enhanced drought tolerance by regulating the expression of 
drought-responsive genes, transcription factors, and other 
biomolecules, including proline, dehydrin, and LEA pro-
teins (Saroha et al. 2017). Furthermore, miRNA regulates 
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salinity stress tolerance by modulating ion homeostasis 
and hormone signalling pathways (Banerjee et al. 2017). 
More examples of some sRNA identified in various crop 
plants under abiotic stress, their identification procedures, 
and their mode of action are highlighted in Table 11.

In addition, small RNA (sRNA) enhances plant tolerance 
to biotic stress by targeting genes involved in regulating mul-
tiple plant immune responses, including pathogen-associated 
molecular pattern(PAMP)- triggered immunity (PTI) and 
effector-triggered immunity (ETI) (Brant and Budak 2018). 

Both PTI and ETI work synergistically to induce various 
defense mechanisms, such as the accumulation of salicylic 
acid (SA), callose deposition on the cell wall, hypersensi-
tive response (HR), generation of reactive oxygen species, 
expression of pathogenesis-related (PR) genes, and cell 
death at the infection site (Tang et al. 2021). For example, 
In barley (Hordeum vulgare L.), miRNA was upregulated 
by the infection of Blumeria graminis f. sp. hordei, a fun-
gus that causes powdery mildew disease. Further experi-
ments suggest that increased miRNA expression confers 

Table 11   sRNA as a molecular biomarker under biotic stress

Stress Plant Analytical Technique Type of sRNA Mechanisms/process References

Cold Solanum lycopersicum 
L.

qRT-PCR miR162 miRNA162 activated 
the ABA signalling 
pathway via CL1 
cleavage, subsequently 
enhancing cold toler-
ance by regulating 
stomatal conductance 
and photosynthesis

Li et al. (2023)

Cold Citrus limon cv. Eureka qRT-PCR miR396b Upregulation of miR396 
enhances cold toler-
ance by repressing 
the synthesis of 
1-aminocyclopropane-
1-carboxylic acid 
oxidase (ACO), the 
rate-limiting enzyme 
in ethylene synthe-
sis, thus regulating 
ethylene-polyamine 
homeostasis

Zhang et al. (2016)

Heavy metal 
stress (chro-
mium)

Zea mays L. sRNA-seq and qRT-PCR miRNA Downregulation of 
maize miRNA 
improved stress 
tolerance by trigger-
ing the expression 
of stress-resistance 
genes, including ABC 
transporter G family 
member 29, transcrip-
tion factors (TFs), 
Cytochrome P450, and 
superoxide dismutase

Adhikari et al. (2023)

Drought and heat Arachis hypogaea L. sRNA-seq and sRNA-
blot

tasiRNA and miRNA Accumulation of snRNA 
in plant tissue leads 
to the upregulation of 
stress-resilience genes, 
which increases toler-
ance to drought and 
heat stress

Mittal et al. (2023)

Salinity Oryza sativa L. sRNA-seq and Northern 
blot

miRNA Upregulation of miRNA 
enhanced drought 
tolerance by inducing 
the activity of some 
TF such as NAC and 
AP2/EREBP and 
L-ascorbate oxidase

Parmar et al. (2020)
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tolerance by activating a cascade of reactions, leading to 
disease resistance and cell death signalling (Liu et al. 2014). 
Table 12 highlights examples of some sRNA identified in 
various crop plants in response to biotic stress, their identi-
fication procedures, and their mode of action.

Structure–activity relationship 
of biomarkers

Understanding how biomolecules are structured is essential 
in determining their role in plants under various stress condi-
tions. This is referred to as structure–activity relationships 
(SAR), which explores the relationship between a molecule's 
biological activity and its three-dimensional (3D) structure. 
Understanding the structure and c functional groups of a 
plant stress biomarker aids in predicting physiological and 
biochemical function (Šamec et al. 2021). For example, 
aquaporin is a transmembrane protein with unique char-
acteristics that allow it to transport water in plants during 
osmotic stress (Wang et al. 2020). Aquaporin comprises 6 
segments of alpha-helical hydrophobic protein domains and 
several NPA (asparagine-proline-alanine). The presence of 
hydrophobic segments and the formation of hydrogen bonds 
between water molecules and polypeptide residues enables 
rapid water transport within plant tissues (Adeoye et al. 
2021). Similar examples showcasing the structure–activity 
relationship of various biomarkers can be found in Table 13.

Recent trends in the application of plant 
stress biomarkers

Application of plant biomarkers in crop engineering

To achieve sustainable agriculture and produce enough 
food for the world’s growing population, effective strate-
gies for dealing with extreme conditions such as tempera-
ture extremes, pathogen attacks, herbivores, drought, salin-
ity, and heavy metal stress are required (López-Arredondo 
et al. 2015). To achieve this, it is important to understand the 
cellular, epigenetic, and molecular mechanisms that orches-
trate plant response to various biotic and abiotic stressors. 
This will lay the groundwork for engineering crops with 
faster growth rates, higher yield, and productivity (Jimé-
nez Bremont et al. 2013). Modern crop science research has 
been transformed by the understanding of omic technologies 
(metabolomics, genomics, proteomics, and transcriptomics), 
which allow for more robust studies on the primary metabo-
lites, proteins, genes, and molecular networking pathways 
associated with plant responses to various abiotic and biotic 
stresses (Yuan et al. 2008). The findings of these studies 
have aided in the identification of biomarkers that confer 

resilience to an adverse stress factor, as well as in the intro-
duction of these desired characteristics into model crops 
and various economically important crops such as barley, 
maize, wheat, and rice, among others (Yang et al. 2021). 
These biomarkers are critical in developing new crop vari-
eties (transgenic crops) that are more resistant to adverse 
environmental conditions (Rodziewicz et al. 2014). Plant 
biomarkers are widely used in genetic crop engineering to 
create transgenic crops with higher yields under adverse 
abiotic and biotic conditions (Leetanasaksakul et al. 2022; 
Bakhsh and Hussain 2015). Transgenic crops have proven 
to be a complementary and effective alternative in modern 
agriculture, increasing yield by 22%, reducing pesticide use 
by 37%, and increasing profit by 68%. These crops are grown 
on approximately 180 million hectares worldwide (James 
2014).

Researchers have discovered that overexpressing the bar-
ley dehydrin gene (HVA1) in wheat can lead to the develop-
ment of transgenic wheat that is better adapted to salinity 
and drought stress. The transgenic wheat plants displayed 
improved membrane stability and reduced electrolyte leak-
age, according to research by (Habib et al. 2022). The NAC 
transcription factor has been identified as a critical TF that 
enhances the resilience of cowpeas (Vigna unguiculata 
L. Walp.) to a range of environmental stresses, including 
drought, heat, cold, and salinity. By overexpressing two 
native cowpea NAC genes (VuNAC1 and VuNAC2), sig-
nificant improvements in tolerance to these stressors were 
achieved. The resulting transgenic plants displayed enhanced 
antioxidant activity, membrane integrity, water use effi-
ciency, and Na + /K + balance. These improvements culmi-
nated in an estimated threefold increase in growth and yield, 
(Srivastava et al. 2023).

Application of plant biomarkers in crop breeding

When faced with challenging environmental or biologi-
cal circumstances, plants may demonstrate alterations 
that involve either the activation or suppression of spe-
cific biomarkers, including transcription factors, enzymes, 
osmolytes, hormones, and small RNA (Isah 2019). These 
biomolecules are known to prevent the destruction of cel-
lular components and restore homeostasis, which is critical 
for plant growth and development under stress conditions 
(Ben Rejeb et al. 2014). Figure 2 illustrates some biomark-
ers expressed by plants under stress conditions. Comparing 
the expression of these biomarkers provides information 
about the tolerance level of the plants and is also helpful for 
studying and analyzing different plant genotypes, species, 
and cultivars (Chaudhary et al. 2020). The knowledge of 
plant biomarkers has been used in crop breeding to identify 
phenotypes or cultivars that are more resilient or susceptible 
to different abiotic and biotic stress factors and has aided in 
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selecting lines with better traits (Fahimirad and Ghorban-
pour 2019; Dikobe et al. 2023). For instance, the molecular 
and physiological adaptations of different Andean potato 
genotypes (Tuberosum and Andigena) to drought were 
assessed by Vasquez-Robinet et al. (2008). The Andigena 
landraces accumulated more transcription factors, heat shock 
proteins, and antioxidant genes after 17 days of imposed 
drought, making them better adapted to drought than the 
Tuberosum genotype. The expressed biomarkers signifi-
cantly classified the genotypes based on their tolerance and 
sensitivity level (Vasquez-Robinet et al. 2008). Similarly, 
Sathish et al. (2022) investigated the oxidative stress and 
antioxidant enzyme levels of 12 maize genotypes exposed to 
8 days of severe drought stress. The cultivars responded dif-
ferently to the imposed stress with varying concentrations of 
MDA and antioxidant enzymes. Based on the data obtained, 
three genotypes were classified as drought tolerant and oth-
ers as drought sensitive (Sathish et al. 2022).

Factors influencing the expression of plant 
biomarkers in crop plants under stress

Plant biomarkers are influenced by several factors including 
tissue or organ specificity, circadian readings, developmental 
stage, species, and cultivars, which cause differential expres-
sion patterns in crops exposed to the same stress conditions 
(Fernandez et al. 2016).

Under drought stress, two aquaporin proteins, PIPs and 
TIPs, were differentially expressed in Brassica napus plant 
tissues. PIPs and TIPs were downregulated in the root but 
upregulated in the leaves. Reduced AOP expression in the 
roots may be associated with the need to prevent water loss 
from the root due to water deficit. In contrast, increased leaf 
AQP expression enhances water transportation to regulate 
normal metabolic functions within the plant (Sonah et al. 
2017). Similarly, Yu et al. (2019) observed variations in 
the expression of HSP in the leaves and roots of cassava 
plants exposed to drought stress. The leaves showed greater 
levels of upregulated HSP genes compared to the roots. 
Transcription factors are other biomarkers with variable 
expression patterns in different plant tissues. Using qRT-
PCR, the expression profile of a specific wheat transcription 
factor, MYB4, in response to salinity stress, was investi-
gated. The findings revealed increased expression levels in 
the shoots, whereas a simultaneous reduction in expression 
was observed in the roots (Sukumaran et al. 2023). Further-
more, the exposure of pepper plants (Capsicum annuum L.) 
to pathogenic infection resulted in variations in the expres-
sion profile of antioxidant enzymes in both the roots and 
leaves (Zheng et al. 2004).

Data from several research studies has shown that plant 
biomarkers are differentially expressed at different stages 
of plant growth when exposed to the same stress condition. 
Castañeda-Saucedo et al. (2014) reported differences in 
dehydrin accumulation at the seed filling and pod formation 

Table 13   Relationship between a biomarker’s biological activity and its three-dimensional (3D) structure

Biomarker Structure–activity relationship References

Abscisic acid The presence of two double bonds conjugated to the carboxylic acid at the 
2-cis and 4-trans positions significantly impacts its role in regulating stress 
tolerance and several developmental processes in plants

Lin et al. (2005), Cutler et al. (2010)

Dehydrin The presence of a distinctive lysine-rich conserved region known as the 
K-segment can form an amphipathic helix and bind to macromolecules to 
prevent stress-induced damage

The presence of numerous charged and polar amino such as Ser, Gln, Pro, 
Lys, Glu, Ala, and Gly confers Antioxidant and metal chelating properties

Smith and Graether (2022), Rorat (2006)

Transcription factor A DNA-binding domain aids the transcription factors in binding specifically 
to the cis-acting element in the promoter region of stress-induced genes

An activation domain triggers downstream reactions that lead to the activation 
or repression of the gene

Kimotho et al. (2019)

Superoxide dismutase Metal ions (Cu, Zn, Mn, and Fe) between the two sub-units act as cofactors 
in SOD, enhancing its catalytic activity of scavenging toxic metabolites by 
donating electrons to ROS

Stephenie et al. (2020)

Ascorbate peroxidase The enzyme contains amino acid residues that boost its activity, such as 
lysine, cysteine, and arginine, which form hydrogen bonds with ascorbate/
substrate and histamine, which aids the cleavage of the oxygen–oxygen bond 
in hydrogen peroxide

Iron in the heme prosthetic group increases the enzyme’s catalytic activity

Dąbrowska et al. (2007)

Catalase The active site comprises a heme group with three amino acid residues: 
tyrosine at the proximal end, histidine, and asparagine at the distal end, all 
of which are crucial for its catalytic activity

Karakus (2020)
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stages of common beans (Phaseolus vulgaris L.) subjected 
to drought stress. In a similar experiment, Samarah and col-
leagues observed a more significant dehydrin accumulation 
in soybean seeds (Glycine max L.) at the maturity stage 
compared to the developmental stage (Samarah et al. 2006). 
Furthermore, high-throughput techniques, such as gene 
profiling and RNA sequencing, were employed to examine 
the expression of the transcription factor (bZIP) in wheat 
(Triticum aestium L.) plants exposed to heat stress. The 
investigation revealed variations in expression across vari-
ous developmental stages, with the highest expression level 
observed at day five post-anthesis (Agarwal et al. 2019). Ge 
and colleagues studied the expression of aquaporin at differ-
ent stages of germination in Brassica napus plants subjected 
to cold, salinity and drought stress. The findings revealed an 
up-regulation of the AQP genes at the germination and early 
seedling stage but downregulated at the maturity stage (Ge 
et al. 2014).

The time of the day or circadian changes have also 
been reported to influence the expression of biomarkers 

in plants under stress conditions. For instance, the expres-
sion of Aquaporin (PIP) was upregulated at dawn and 
downregulated at dusk in different plants, which may be 
due to an increase in the rate of transpiration during the 
day (Hachez et al. 2012; Heinen et al. 2014; Ding et al. 
2020). In a recent study conducted by Lu et al. (2021), it 
was discovered that while cold stress induces the activ-
ity of transcription factors (OsDREB1B and OsDREB1C) 
throughout the day, peak levels were observed during day-
time as opposed to nighttime. Similarly, in peach plants 
(Prunus persica L.), cold stress leads to a more significant 
induction in the activity of dehydrins (DHN 1 and 3) in the 
morning (Artlip et al. 2013). In addition, transcriptomic 
analysis revealed that heat stress response genes such 
as HSP, antioxidant enzymes and specific TFs are more 
induced by heat stress in the morning and early afternoon 
than at other times of the day (Bonnot et al. 2021; Blair 
et al. 2019; Lai et al. 2012). Abscisic acid is another plant 
stress hormone controlled by circadian changes, with peak 

Fig. 2   Schematic representation of plant response pattern to stress and expression of biomarkers (SOD—superoxide dismutase; CAT—catalase; 
APX—ascorbate peroxidase, POX—peroxidase; GPX—glutathione peroxidase and GR—glutathione reductase; HSP—heat shock proteins



	 Planta (2024) 259:6060  Page 22 of 29

levels observed at specific times during the day in different 
crop plants (Hotta et al. 2013; Khan et al. 2010).

Cultivar or plant species is another factor influencing the 
expression of biomarkers subjected to the same stress con-
ditions. Several examples of this have been documented in 
literature. Under salinity stress, two rice cultivars (Cotaxtla 
and Tres Ríos) exhibited different NAC transcription factor 
expression patterns (García-Morales et al. 2014). Variations 
in the expression profile of dehydrin between two grape spe-
cies (V. vinifera and V. yeshanensis) in response to drought 
were also reported by Yang et al. (2012). While there was 
an upregulation of dehydrin genes in the V. yeshanensis 
species between 1 and 2 days post-drought imposition, a 
response was only observed in the other species between 2 
and 3 days post-drought treatment. The results of the field 
survey conducted by Oliveria and colleagues revealed that 
differential expression of antioxidant enzymes was observed 
among ten different cultivars of cowpea (Vigna unguiculata 
L.) under nematode infestation (Meloidogyne incognita) 
(Oliveira et al. 2012). In addition, transcriptome analysis 
has revealed variations in the expression of the transcription 
factors (bHLH family, AP2-ERF, MYB and WRKY) in the 
cultivars of potato, tomato and spinach when subjected to 
pathogen attack (Bayoumi et al. 2021; Kandel et al. 2020; 
Upadhyay et al. 2016).

Conclusion

Abiotic and biotic stressors pose severe challenges to global 
food security, rendering current crop yield insufficient to 
meet future global food demand. These stressors have been 
documented as significant contributors to a substantial 
decline in crop yields, affecting developed and developing 
nations. Therefore, we need to focus on developing inno-
vative technologies and methods to produce stress-tolerant, 
widely-adapted, and high-yielding crops under various stress 
conditions. One way to achieve this is by understanding 
plant response patterns to external factors. When exposed 
to an environmental or biological stress factor, some biomol-
ecules are up or downregulated in plants. Such biomolecules 
can function as effective plant biomarkers to monitor plant 
stress response. In this review, we discussed common bio-
markers expressed by plants during abiotic and biotic stress 
conditions and the relationship between their biological 
activity and three-dimensional (3D) structures. Plant stress 
biomarkers have a wide range of applications in crop breed-
ing and crop engineering in producing stress-resilient crops 
with higher yields under adverse conditions. In addition, 
they can be used for identifying plant cultivars, species, and 
genotypes with the desired or improved traits. Considering 
the potential of plant stress biomarkers, more research on 
the mechanism underlining plant responses to various stress 

factors and intensive development of analytical platforms 
and databases are encouraged to standardize plant stress 
biomarkers for use in breeding novel stress-resistant crop 
varieties with better yield.
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