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Abstract
Main conclusion SMAX/SMXL family genes were successfully identified and characterized in the chickpea and lentil 
and gene expression data revealed several genes associated with the modulation of plant branching and powerful 
targets for use in transgenesis and genome editing.

Abstract Strigolactones (SL) play essential roles in plant growth, rooting, development, and branching, and are associated 
with plant resilience to abiotic and biotic stress conditions. Likewise, karrikins (KAR) are “plant smoke-derived molecules” 
that act in a hormonal signaling pathway similar to SL playing an important role in seed germination and hairy root elonga-
tion. The SMAX/SMXL family genes are part of these two signaling pathways, in addition to some of these members acting in 
a still little known SL- and KAR-independent signaling pathway. To date, the identification and functional characterization 
of the SMAX/SMXL family genes has not been performed in the chickpea and lentil. In this study, nine SMAX/SMXL genes 
were systematically identified and characterized in the chickpea and lentil, and their expression profiles were explored under 
different unstressless or different stress conditions. After a comprehensive in silico characterization of the genes, promoters, 
proteins, and protein-protein interaction network, the expression profile for each gene was determined using a meta-analysis 
from the RNAseq datasets and complemented with real-time PCR analysis. The expression profiles of the SMAX/SMXL fam-
ily genes were very dynamic in different chickpea and lentil organs, with some genes assuming a tissue-specific expression 
pattern. In addition, these genes were significantly modulated by different stress conditions, indicating that SMAX/SMXL 
genes, although working in three distinct signaling pathways, can act to modulate plant resilience. Most CaSMAX/SMXL and 
partner genes such as CaTiE1 and CaLAP1, have a positive correlation with the plant branching level, while most LcSMAX/
SMXL genes were less correlated with the plant branching level. The SMXL6, SMXL7, SMXL8, TiE1, LAP1, BES1, and BRC1 
genes were highlighted as powerful targets for use in transgenesis and genome editing aiming to develop chickpea and lentil 
cultivars with improved architecture. Therefore, this study presented a detailed characterization of the SMAX/SMXL genes 
in the chickpea and lentil, and provided new insights for further studies focused on each SMAX/SMXL gene.

Keywords Abiotic stress · Biotechnological assets · Branching · BRC1 · Karrikins · Legumes · Plant architecture · 
Strigolactones · Transcription factor

Abbreviations
SMAX1  SUPPRESSOR OF MAX2 1
SMXL  Suppressor of MAX2 1-Like

TiE1  TCP interactor containing EAR motif protein 1
LAP1  LIKE-APETALA1
BES1  BRI1-EMS-SUPPRESSOR 1

Introduction

Strigolactones (SL) are phytohormones that play essential 
roles in plant growth, rooting, development, and branching, 
and act to improve plant resilience (Yang et al. 2020; Li 
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et al. 2022; Zhang et al. 2022). For the SL biosynthesis, all-
trans-β-carotene are metabolized by the DWARF27 (D27) 
enzyme to produce 9′-cis-β-carotenoid, and the next steps 
of this pathway have the involvement of carotenoid cleavage 
dioxygenase (CCD) enzymes for synthesis of 9′-cis-β-10′-
carotenal, carlactone, and 5-deoxylstrigol (Lopez-Obando 
et al. 2015; Wang et al. 2015; Bennett et al. 2016; Wallner 
et al. 2017; Sun et al. 2022). In the SL-dependent signal-
ing pathway, the DWARF14 (D14) protein acts as an SL 
receptor, which binds and changes its molecular structure 
(Yao et al. 2016). D14 and SL complexes bind to D53/Sup-
pressor of MAX2 1-Like (SMXL; formally named in Arabi-
dopsis thaliana as AtSMXL6, AtSMXL7, and AtSMXL8) 
proteins in the nucleus, then recruit  SCFMAX2 (SCF MORE 
AXILLARY GROWTH 2) protein to form D14-SL-SCF-
MAX2-D53/SMXLs complex (Bennett et al. 2016). SL pro-
motes D53/SMXL ubiquitination, while the 26S proteasome 
specifically recognizes D53/SMXL proteins and directs to 
degradation, unlocking SL-dependent signal transduction 
and releasing BRANCHED 1 (BRC1) transcription factor 
(Zhou et al. 2013; Wang et al. 2015; Bennett et al. 2016). In 
this way, since D53/SMXL proteins are not degraded, SL-
dependent signal transduction is inhibited while branching 
and tillering are promoted (Zhou et al. 2013; Zhang et al. 
2022). Thus, D53/SMXL proteins are the final target pro-
teins of this signaling pathway. Therefore, SL and D53/
SMXL play a critical role in BRC1-mediated regulation of 
shoot branching and plant elongation (Zhao et al. 2015).

Likewise, karrikins (KAR) are butenolide molecules 
derived from plant smoke that act in a signaling pathway 
similar to the SL pathway (Bennett et al. 2016; Yang et al. 
2019). In the KAR-dependent signaling pathway, KAR-
RIKIN-INSUSCEPTIBLE2 (KAI2) protein acts as a KAR 
receptor (Villaécija-Aguilar et al. 2019). Subsequently, the 
KAR-KAI2 complex interacts with  SCFMAX2 and SUP-
PRESSOR OF MAX2 1 (AtSMAX1/SMXL1), thus trig-
gering ubiquitylation and targeting the AtSMAX1/SMXL1 
and AtSMXL2 proteins for degradation (Carbonnel et al. 
2020; Wang et al. 2020). Consequently, KAR-responsive 
genes, such as ACC synthase 7, which catalyzes ethylene 
biosynthesis, are transcriptionally up-regulated (Carbon-
nel et al. 2020). So, the KAR-dependent signaling path-
way regulates seed germination and hairy root elongation 
(Wallner et al. 2017; Villaécija-Aguilar et al. 2019; Car-
bonnel et al. 2020). In addition, AtSMXL2 protein is also 
supposed to act in both SL- and KAR-dependent signal-
ing pathways (Wang et al. 2020). Meanwhile, AtSMXL3, 
AtSMXL4, and AtSMXL5 proteins act in a yet unknown 
SL- and KAR-independent signaling pathway regulating 
phloem formation (Wallner et al. 2017). Given these pre-
vious studies, the biological importance of the SL- and 
KAR-dependent or -independent signaling pathways for 
plant development and resilience was determined in model 

plants. However, to date, little information about SMAX/
SMXL family genes and their expression profile was gener-
ated from chickpea and lentil.

Chickpea (Cicer arietinum L.) and lentil (Lens culinaris 
Medik) are crops of outstanding importance for human food 
worldwide (Landi et al. 2021). The chickpea is a self-polli-
nated diploid, dicotyledonous, with a 738 Mb genome size 
organized in eight chromosomes (2n = 16) and up to 28,200 
annotated genes (Varshney et al. 2013). In contrast, lentil 
is a self-pollinated diploid, dicotyledonous, with a 3.69 Gb 
genome size organized in seven chromosomes (2n = 14) 
and 58,243 annotated genes (Ramsay et al. 2023). Several 
germplasm banks with a high number of accessions, lines, 
and cultivars with high phenotypic variability are avail-
able for these two legumes. In particular, several cultivars 
of chickpea and lentil have a high number of branches and 
the absence of a typical dominant stem (Singh et al. 2019b; 
Silva-Perez et al. 2022). These intrinsic features related to 
plant architecture make it difficult to manage the chickpea 
and lentil crops in the field. For example, making mecha-
nized harvesting more difficult and increasing lodging and 
susceptibility to pathogens (Tripathi et al. 2022). So, under-
standing the molecular mechanisms that orchestrate plant 
branching is essential for the development of chickpea and 
lentil cultivars with an improved architecture (Koul et al. 
2022).

In this study, were systematically identified and char-
acterized nine SMAX/SMXL family genes in the chickpea 
and lentil. The orthologous genes in the chickpea and len-
til were identified using as reference AtSMAX/SMXL genes 
from A. thaliana. Subsequently, evolutionary relationships, 
features of sequences, the basic structure of genes, chromo-
somal localization of genes, cis-regulatory elements in pro-
moter sequences, conserved motifs and domains in protein 
sequences, protein–protein interaction network, and three-
dimensional (3D) structures of the SMAX/SMXL proteins 
were successfully performed and their biological implica-
tions were discussed. Expression profiles of the SMAX/SMXL 
genes in different organs of chickpea and lentil unstressed 
plants and under abiotic and biotic stress conditions were 
performed using a meta-analysis approach from RNAseq 
datasets. Finally, expression profiles of all identified SMAX/
SMXL genes in the chickpea and lentil contrasting cultivars, 
such as little branched and highly branched cultivars, were 
determined in axillary and apical buds using real-time PCR 
assays. These collective data describe the sequence features 
and expression profile of each SMAX/SMXL gene and reveal 
the key players involved in the branching of chickpea and 
lentil. Therefore, our results provide a solid basis for further 
functional studies in the chickpea and lentil focused on each 
SMAX/SMXL gene. Furthermore, these data provide power-
ful genes for use in both transgenesis and genome editing to 
improve the architecture of these leguminous crops.
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Materials and methods

Chickpea and lentil sequences and features

Chickpea genome sequences and features were retrieved of the 
CGIAR v1 assembly and Cicer arietinum v1 annotation data-
set (Varshney et al. 2013) from the Phytozome v13 database 
(Goodstein et al. 2012). Meanwhile, lentil genome sequences 
and features were retrieved of the Lcu.2RBY assembly and 
Lens culinaris CDC Redberry genome v2 annotation dataset 
(Ramsay et al. 2023) from the Pulse Crop database (Humann 
et al. 2019). In addition, additional features were retrieved of 
the USask assembly and Lens culinaris v1 dataset from the 
Phytozome database. The A. thaliana genome sequences were 
retrieved from the TAIR10 dataset (Cheng et al. 2017).

Sequences analysis

Protein subcellular localization was predicted using LOCAL-
IZER software (Sperschneider et al. 2017). Conserved domains 
in gene and protein sequences were identified using the PFAM 
database (El-Gebali et al. 2019), CD database (Marchler-Bauer 
et al. 2015), and InterPro Scan (Blum et al. 2021). Sequences 
were aligned using MUSCLE software (Edgar 2004) and 
curated by the Gblocks model, while evolutionary analyses 
were performed with Phylogeny.fr web service using maxi-
mum likelihood estimation (MLE) method with aLRT SH-like 
branch support and GTR (for nucleotide sequences) and WAG 
(for amino acid sequences) substitution models (Dereeper et al. 
2008). SMAX/SMXL gene structures were displayed by the 
Gene Structure Display web server (Hu et al. 2014), while 
an unrooted evolutionary tree was inferred by the Neighbor-
Joining (NJ) method (Saitou and Nei 1987) with 5000 boot-
strap replicates using MEGA11 software (Tamura et al. 2021). 
The chromosomal localization of the SMAX/SMXL genes on 
chickpea and lentil genomes was generated using the Map-
Gene2Chrom program (Jiangtao et al. 2015). Sequences of 
2000 nucleotides upstream of the start codon were retrieved 
from the Phytozome database and submitted in the PlantCARE 
program to predict the cis-regulatory elements (Lescot et al. 
2002). The conserved motifs in protein sequences were iden-
tified with the MEME Suite web server (Bailey et al. 2015). 
Protein–protein interaction network among SMAX/SMXL 
with partner proteins was predicted by the STRING database 
using the Cicer arietinum NCBI:txid3827 dataset as a refer-
ence (Szklarczyk et al. 2020).

Protein 3D structures

SMAX/SMXL protein sequences were processed by the 
FASTA program from the EMBL-EBI webpage (https:// 
www. ebi. ac. uk/ Tools/ sss/ fasta/) for search proteins that most 

resemble (best score) with our query sequences. This tool 
performed a local heuristic search by sequence similarity 
from a protein or nucleotide databases for a query protein 
of the same type (Madeira et al. 2019, 2022). EMBL-EBI 
webpage produced the folded protein structure in HTML 
color-coded by the predicted local distance difference test 
(plDDT) and generated a PAE plot. The results refer to the 
“best model fit”, which represents 3D structures according 
to the plDDT, using a scale that goes from 0 to 100%. This 
parameter indicates an estimate of how the predicted struc-
ture agrees with an experimentally determined structure 
(Tunyasuvunakool et al. 2021). For pair-to-pair comparison, 
3D structures were processed by the MODELLER v10.4 
program (Webb and Sali 2016). The previous selection was 
based on root mean square deviation (RMSD) set to a maxi-
mum limit of 10 Angstroms (Å).

Meta‑analysis from RNAseq datasets

For tissue-specific expression in the chickpea, RNAseq data-
sets used in the meta-analysis were generated as reported by 
Jain et al. (2022) from Cicer arietinum cultivar ICC 4958 
growth under room and field conditions. Thirty-two tissue 
samples representing different organs and developmental 
stages in at least three independent biological replicates were 
collected and analyzed. The expression level of each gene 
was FPKM normalized. In addition, for lentil tissue-specific 
expression, RNAseq datasets used in the meta-analysis were 
generated from Lens culinaris cultivar Cassab grown in a 
glasshouse at 22 °C with a 16 h photoperiod as described by 
Sudheesh et al. (2016). Different tissue samples were har-
vested from four-week-old plants using three biological rep-
licates. Tissue-specific RNAseq datasets were normalized by 
log-transformed counts using the 75th percentile method. On 
the other hand, the RNAseq datasets used for meta-analysis 
from chickpea plants under abiotic and biotic stress were: 
(i) root tissue under drought stress experiment I and shoot 
tissue under drought stress (Mashaki et al. 2018); (ii) root 
tissue under salinity stress experiment I and root tissue under 
drought stress experiment II (Garg et al. 2016); (iii) before-
flowering root tissue under heat stress, before-flowering leaf 
tissue under heat stress, after-flowering root tissue under 
heat stress, and after-flowering leaf tissue under heat stress 
(Kudapa et al. 2023); (iv) flower tissue under salinity stress 
(Kaashyap et al. 2022); (v) root tissue under salinity stress 
experiment II and shoot tissue under salinity stress (Kumar 
et  al. 2021b); and (vi) root tissue under drought stress 
experiment III (Kumar et al. 2019). In contrast, RNAseq 
datasets used from lentil were: (i) seedling tissue infected 
by ascochyta blight from resistant cultivar and seedling tis-
sue infected by ascochyta blight disease from susceptible 
cultivar (Khorramdelazad et al. 2018); (ii) seedling tissue 
under heat stress from tolerant cultivar and seedling tissue 

https://www.ebi.ac.uk/Tools/sss/fasta/
https://www.ebi.ac.uk/Tools/sss/fasta/
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under heat stress from susceptible cultivar (Singh et al. 
2019a); (iii) seedling tissue under heat stress (Sohrabi et al. 
2022); (iv) seedling tissue infected by dry root rot disease 
(Mishra et al. 2021); (v) root tissue under alkalinity stress 

from tolerant cultivar and root tissue under alkalinity stress 
from susceptible cultivar (Singh et al. 2022a); (vi) root and 
leaf tissues under drought stress (Morgil et al. 2019); (vii) 
leaf tissue under drought stress from tolerant cultivar, leaf 
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tissue under drought stress from susceptible cultivar, leaf 
tissue under heat stress experiment I from tolerant cultivar, 
leaf tissue under heat stress experiment I from susceptible 
cultivar, leaf tissue under salinity stress from tolerant culti-
var, leaf tissue under salinity stress from susceptible cultivar, 
leaf tissue under alkalinity stress from tolerant cultivar, and 
leaf tissue under alkalinity stress from susceptible cultivar 
(Singh et al. 2022b); (viii) root tissue under salinity stress 
from tolerant cultivar, shoot tissue under salinity stress from 
tolerant cultivar, root tissue under salinity stress from sus-
ceptible cultivar, and shoot tissue under salinity stress from 
susceptible cultivar (Singh et al. 2021); and (ix) leaf tissue 
under heat stress experiment II from tolerant cultivar and 
leaf tissue under heat stress experiment II from susceptible 
cultivar (Kumar et al. 2021a). Heatmaps were generated by 
the SRplot web server (https:// www. bioin forma tics. com. 
cn/ srplot) using log2 fold change values (stress treatment/
control treatment).

Contrasting cultivars and plant materials

The chickpea cultivars Blanco lechoso and FLIP07-318C, 
and lentil cultivars Castellana and Campisi were previously 
selected among several other cultivars under greenhouse 
conditions as being the most contrasting in terms of plant 
branching (data not shown). The phenotypic analysis to 
define these contrasting cultivars was carried out determin-
ing the number of branches per plant at certain times after 
seed germination. In order to characterize the branching of 
these four selected cultivars, at least 15 plants (three repli-
cates with five plants each) of each cultivar were evaluated, 
and branches were counted at 25- (stage I) and 40-day-old 
(stage I) plants. For this, seeds were superficially sterilized 
with 1.5% sodium hypochlorite solution, washed abundantly 
with distilled water, soaked for 5 min in distilled water, and 
germinated in Petri dishes containing humid filter paper for 

three days at room temperature. Germinated seeds with a 
1–2 cm radicle were transferred to pots containing commer-
cial substrate and kept in a greenhouse at room temperature.

RNA and gene expression

Axillary and apical buds were collected from 20-day-old 
plants. Total RNA was isolated with GenUP™ Total RNA 
kit (Biotechrabbit, Volmerstraße, Berlin, Germany) and 
RNA integrity was checked in agarose electrophoresis. 
RNA samples were treated with RNase-free RQ1 DNase I 
(Promega) and used for cDNA synthesis using oligo-(dT)20 
primer and SuperScript III RT mix (Life Technologies, 
Carlsbad, CA, USA). The cDNA samples were diluted 1:10 
(v:v) and real-time PCR assays were performed in Quant-
Studio 7 Flex Real-Time PCR system (Applied Biosys-
tems, Waltham, MA, USA). The PCR mix consisted of 3 
µL cDNA, 0.1 µM gene-specific primers (Suppl. Table S1), 
and SYBR Green PCR Master mix (Applied Biosystems). 
Relative expression was calculated with the 2^-∆Ct for-
mula using CaCAC  (Reddy et al. 2016) and LcTUB (Sinha 
et al. 2019) as reference genes for normalization (Suppl. 
Table S1). The CaG6PD, CaTIP41, LcRPL2, and LcRBC1 
reference genes were also tested with a reduced number of 
samples, but CaCAC  and LcTUB were considered more sta-
ble in our samples. Three biological replicates for each treat-
ment and ten plants for each biological replicate were used. 
All cDNA samples were carried out in technical triplicate 
reactions. Target-specific amplification was confirmed by the 
occurrence of a single peak in the melting curve. Expression 
data were statistically evaluated using the SASM-Agri soft-
ware (Canteri et al. 2001) while heatmaps were generated 
by the SRplot web server.

Results

Basic features of the SMAX/SMXL family members 
identified in the chickpea and lentil

To identify the candidates SMAX/SMXL family genes in 
the chickpea and lentil genomes were used as reference the 
coding (CDS) and amino acid sequences of the orthologous 
AtSMAX/SMXL genes previously identified in A. thaliana. 
The biological importance of the AtSMAX/SMXL proteins 
in the SL- and KAR-dependent or SL- and KAR-independ-
ent signaling pathways for A. thaliana was previously pro-
posed by Soundappan et al. (2015), Carbonnel et al. (2020), 
Villaécija-Aguilar et al. (2019), and Wallner et al. (2017), 
and used in this study as information support for chickpea 
and lentil (Fig. 1a). The in silico analyses allowed identify 
nine genes in the chickpea (CaSMAX1/SMXL1 to CaSMXL9) 
and other nine genes in the lentil (LcSMAX1/SMXL1 to 

Fig. 1  Identification and characterization of the SMAX/SMXL fam-
ily genes in the chickpea and lentil using previously characterized 
A. thaliana genes as reference. a Overview of involvement of the 
AtSMXL2, AtSMXL6, AtSMXL7, and AtSMXL8 proteins in the 
strigolactones (SL) signaling pathway of Arabidopsis. Role of the 
AtSMAX1/SMXL1 and AtSMXL2 proteins in the karrikin (KAR) 
signaling pathway of Arabidopsis. Role of the AtSMXL3, AtSMXL4, 
and AtSMXL5 proteins in the SL- and KAR-independent signaling 
pathway of Arabidopsis, a module not yet well characterized. AtTiE1, 
AtLAP1, AtBES1, and AtBRC1 proteins are also involved in the 
regulation of Arabidopsis branching. These three signaling pathways 
mediated by SMAX/SMXL proteins were previously proposed by 
Soundappan et al. (2015), Carbonnel et al. (2020), Villaécija-Aguilar 
et al. (2019), and Wallner et al. (2017). b and c Identification of the 
SMAX/SMXL genes in chickpea and lentil genomes using as reference 
SMAX/SMXL orthologous genes of Arabidopsis. Unrooted evolution-
ary trees were generated from nucleotide and amino acid sequences 
using the MLE method. d Basic structure of the SMAX/SMXL genes. 
The unrooted evolutionary tree was inferred using the NJ method

◂

https://www.bioinformatics.com.cn/srplot
https://www.bioinformatics.com.cn/srplot
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LcSMXL9) genomes (Tables 1 and 2). Phylogenetic rela-
tionships from nucleotide and amino acid sequences were 
used to define the orthologous and their corresponding 
genes in the chickpea and lentil (Fig. 1b and c). In particu-
lar, CaSMAX/SMXL proteins showed predicted subcellular 
localization at chloroplast or nucleus, predominantly with 
PF02861, PF07724, IPR023150, IPR027417, IPR004176, 
IPR003959, and KOG1051 as main domains of the PFAM, 
InterPro, and KOG, respectively. The CaSMAX/SMXL cod-
ing sequences ranged between 1866 to 3252 nucleotides in 
length, and deduced protein sequences ranged from 622 to 
1084 amino acids in length. In addition, molecular weight 
(Mw) ranged between 70.4 to 120.4 kDa, and isoelectric 
point (pI) ranged from 5.8 to 8.2 (Table 1). In contrast, 
LcSMAX/SMXL proteins showed predicted subcellular 
localization in the chloroplast, mitochondria, and nucleus, 
predominantly with PF02861, PF07724, IPR023150, 
IPR027417, IPR004176, IPR003959, and KOG1051 as main 
domains of the PFAM, InterPro, and KOG, respectively. The 
LcSMAX/SMXL coding sequences ranged from 1716 to 3246 
nucleotides in length, and deduced protein sequences ranged 
from 572 to 1082 amino acids in length. In addition, molecu-
lar weight ranged from 64 to 120.5 kDa, while isoelectric 
point ranged from 5.7 to 7.5 (Table 2). The detailed features 
concerning the SMAX/SMXL chickpea and lentil genes, such 
as gene identifiers, orthologous gene in Arabidopsis, subcel-
lular localization, conserved domains in protein sequences, 
chromosomal localizations of these genes, coding and amino 
acid sequences length, protein molecular weight, and iso-
electric point are systematically listed in Tables 1 and 2. 
Therefore, these data showed that the SMAX/SMXL family 
genes of chickpea and lentil have several conserved features 
among them, indicating that they can act redundantly in 
some functions, while other features are specific to some 
members, also suggesting role specificity for these members.

Phylogenetic relationships among the SMAX/SMXL 
family genes identified in different species

The evolutionary relationship among SMAX/SMXL fam-
ily genes of chickpea and lentil in relation to orthologous 
genes in A. thaliana and Malus domestica were determined 
from unrooted phylogenetic trees constructed using 18 
candidates SMAX/SMXL gene sequences identified in the 
chickpea and lentil, eight SMXL gene sequences identified 
in Arabidopsis, and ten SMXL gene sequences identified in 
M. domestica (Fig. 1a and b; Suppl. Fig. S1). Evolution-
ary relationships allowed identify the orthologous genes 
between chickpea, lentil, and A. thaliana, as well as par-
alogous genes within the same legume species (Fig. 1a 
and b). Three major groups were identified with at least 
92% bootstrap support, with SMXL6, SMXL7, and SMXL8 
genes of chickpea and lentil separately grouped in group 

I clustered with AtSMXL6 to AtSMXL8. Meanwhile, the 
SMAX1/SMXL1 genes were grouped in group II clustered 
with AtSMAX1 and AtSMXL2. Finally, the SMXL2, 
SMXL3, SMXL4, SMXL5, and SMXL9 genes of chickpea 
and lentil were separately grouped in group III clustered 
with AtSMXL3 to AtSMXL5 (Fig. 1a and b). This same 
organization in three main groups was maintained when 
including in the phylogenetic analysis the SMAX/SMXL 
sequences of M. domestica (Suppl. Fig. S1). Therefore, the 
phylogenetic relationship analysis showed that the SMAX/
SMXL family genes of different plant species clustered 
forming three groups closely corresponding to their bio-
logical role in the three signaling pathways (SL-, KAR-
dependent, and SL- and KAR-independent).

Structure and chromosomal localization 
of the SMAX/SMXL genes

The structural organization of the SMAX/SMXL fam-
ily genes based on 5′-UTR, introns, exons, and 3′-UTR 
sequences was successfully determined (Fig. 1d). The 
number of introns/exons was very similar between 
these genes, ranging from three to four exons in each 
gene sequence for both chickpea and lentil. In addi-
tion, the length of the exon sequences was also similar 
between them, while the length of intron sequences was 
more variable, especially the SMXL3 and SMXL9 genes 
which included two short introns compared to SMXL6 
and SMXL7 which showed two larger introns. The chro-
mosomal localization of the SMAX/SMXL genes was 
also successfully determined in the chickpea (Fig. 2a) 
and lentil (Fig.  2b). The mapping data indicated that 
CaSMAX/SMXL genes were located on five out of eight 
chromosomes, one on chromosome 1 (CaSMXL4), one 
on chromosome 2 (CaSMXL7), three on chromosome 4 
(CaSMXL2, CaSMXL3, and CaSMXL9), two on chromo-
some 5 (CaSMXL6 and CaSMXL8), and two on chromo-
some 7 (CaSMAX1/SMXL1 and CaSMXL5) (Fig. 2a). For 
lentil genes, the mapping data indicated that LcSMAX/
SMXL genes were located on five out of seven chromo-
somes, three on chromosome 1 (LcSMXL2, LcSMXL3, and 
LcSMXL9), one on chromosome 2 (LcSMXL4), two on 
chromosome 3 (LcSMXL6 and LcSMXL8), one on chromo-
some 5 (LcSMXL7), and two on chromosome 7 (LcSMAX1/
SMXL1 and LcSMXL5) (Fig. 2b). Based on this evidence, 
a similar distribution of these genes was observed between 
chickpea and lentil. In addition, these data may hypoth-
esize two segmental duplication events (chromosome four 
and seven of chickpea and chromosome one and seven of 
lentil) for both plant species studied here, which eventually 
allowed an expansion of this SMAX/SMXL family.
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Fig. 2  Localizations of the SMAX/SMXL genes on chromosomes 
of a chickpea and b lentil. Positions are based on megabases (Mb). 
c Cis-regulatory elements in promoter sequences (2000 nucleotides 
upstream of the start codon) of the SMAX/SMXL genes. Number of 

each cis-regulatory element is shown in the heatmap. ABA abscisic 
acid, MeJA methyl jasmonate, MYB MYB transcription factor binding 
domain, MYC MYC transcription factor binding domain, SA salicylic 
acid
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Cis‑regulatory elements in SMAX/SMXL promoter 
sequences

Fourteen main cis-regulatory elements present in each pro-
moter sequence for each of the 18 SMAX/SMXL genes were 
successfully identified (Fig. 2c). The four most prevalent 
cis-regulatory elements in these promoter sequences were 
light-responsive that ranged from three (LcSMXL9) to 17 
(LcSMXL6, LcSMXL7, and LcSMXL8), MYB-related ranged 
from two (LcSMXL6) to 12 (LcSMAX1/SMXL1), ethylene-
responsive ranged from one (LcSMXL7) to nine (CaSMAX1/
SMXL1), and MYC-related ranged from zero (LcSMXL8) to 
eight (CaSMXL6). In particular, for promoter sequences of 
SMXL9 genes, three cis-regulatory elements associated with 
meristem-specific expression were identified, implying that 
these genes may develop an important role in the early stage 
of plant tissue development. Similarly, promoter sequences 
of CaSMAX1/SMXL1 and LcSMXL2 genes showed twelve 
and eight ABA-responsive cis-regulatory elements, respec-
tively. In addition, several SMAX/SMXL genes showed cis-
regulatory elements responsive to gibberellin, auxin, sali-
cylic acid, and methyl jasmonate indicating that they can 
be modulated by other hormones (Fig. 2c). Furthermore, 
although these genes showed close evolutionary conserva-
tion (Fig. 1b and c), a considerable difference in the type and 
number of cis-regulatory elements were observed (Fig. 2c), 
indicating a possible variable transcriptional modulation 
among each gene of this family and also between chickpea 
and lentil. Therefore, these data suggested that SMAX/SMXL 
family genes may have their expression modulated by differ-
ent hormones or influenced by abiotic and biotic stress con-
ditions, and activated primarily in a tissue or plant stage-spe-
cific manner. Thus, these data suggested that SMAX/SMXL 
family genes of chickpea and lentil can play an important 
role in the modulation of plant growth and development and 
can be modulated by different abiotic and biotic stresses.

Conserved motifs and protein–protein interaction 
network of the SMAX/SMXL proteins

SMAX/SMXL protein sequences of chickpea and lentil were 
in silico evaluated to identify the top ten conserved motifs 
(Fig. 3a). The number and organization of these motifs were 
conserved among each gene in chickpea and lentil, and with 
considerable similarity to the orthologous in A. thaliana. 
In particular, some motifs or their position in the protein 
sequence were specific for certain SMAX/SMXL proteins, 
indicating that some of these proteins can assume particular 
characteristics to perform their biological function. Subse-
quently, a meta-analysis of the protein–protein interaction 
network was conducted with the STRING database for both 
chickpea and lentil (Fig. 3b). These data clearly showed that 
all SMAX/SMXL family members are highly interconnected 

in a major group composed of 14 proteins. Particularly in 
this group, D14L/KAI2, F-box MAX2, and heat shock pro-
tein 70 (HSP70, also named hypoxia up-regulated 1 protein, 
HYOU1) were shown to be central hub proteins together 
with SMAX/SMXL proteins of both chickpea and lentil. 
The fourth element of this major group, F-box SKIP25-
like, showed to be directly related to the SMAX1/SMXL1 
proteins and interconnected with D14L/KAI2 and F-box 
MAX2, potentially both acting in the core of the KAR-
dependent signaling pathway. Therefore, these data showed 
that SMAX/SMXL proteins of chickpea and lentil can play 
quite conserved functions and, although they act in three dif-
ferent signaling pathways, they form protein–protein interac-
tion networks with the same major hub proteins. The HSP70 
was shown to be the main hub protein that interconnects 
with all SMAX/SMXL proteins.

3D structure of the SMAX/SMXL proteins

The 3D structures of the SMAX/SMXL proteins from chick-
pea and lentil were modeled and compared to each other 
to verify potential structural similarity. Consistently, all 18 
SMAX/SMXL proteins characterized in this study had their 
3D structure successfully determined (Fig. 4a–r). In addi-
tion, structural comparisons between SMAX/SMXL proteins 
from chickpea and lentil were performed and when similar-
ity was greater than 66% they were considered for further 
analysis. The pair-to-pair structure comparison revealed 37 
comparisons with a large overlapping region with > 66% 
homology of residues when using RMSD values maximum 
of 10 Å (Suppl. Table S2). These data showed that some 
SMAX/SMXL proteins from chickpea and lentil have con-
siderable structural similarities and differences from each 
other, both between plant species or among proteins of the 
same plant species. Therefore, the SMAX/SMXL family has 
highly conserved proteins within the same species, as well 
as conserved proteins between different plant species, sug-
gesting high conservation of the SL- and KAR-dependent or 
-independent signaling pathways in the chickpea and lentil.

Dynamic expression of the SMAX/SMXL genes 
in different organs and under stress conditions

The expression profile of each of these SMAX/SMXL genes 
in different organs and in chickpea and lentil plants under 
different abiotic to biotic stress conditions was performed 
using a meta-analysis approach from RNAseq datasets. In 
untressed chickpea plants, it was observed that all SMAX/
SMXL genes had their lowest expression level in the hairy 
root, endosperm, nodule, 30 days after pollination-seed, and 
androecium while the higher expression level observed was 
in the gynoecium (CaSMXL7 and CaSMXL4), pedicel and 
pod shell (CaSMXL8 and CaSMXL9, respectively), shoot 
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Fig. 3  Conserved motifs and 
protein–protein interaction 
network among SMAX/SMXL 
with partner proteins. a Top 10 
conserved motifs in SMAX/
SMXL protein sequences 
of chickpea and lentil. The 
unrooted evolutionary tree 
was generated from amino 
acid sequences using the MLE 
method. b Protein–protein 
interaction network predicted 
by the STRING database using 
Cicer arietinum dataset as refer-
ence. HSP70: Ca_07617 and 
Lcu.2RBY.3g044220.1; D14L/
KAI2: Ca_09326, Ca_02196, 
Lcu.2RBY.5g006180.1, 
and Lcu.2RBY.L022510.1; 
F-box MAX2: Ca_19880 and 
Lcu.2RBY.4g047720.1; F-box 
SKIP25-like: Ca_10634 and 
Lcu.2RBY.5g013390.1. Known 
interactions are shown in light 
blue line: from curated data-
bases, and pink line: experi-
mentally determined. Predicted 
interactions are shown in dark 
green line: gene neighborhood, 
red line: gene fusions, and dark 
yellow: gene co-occurrence. 
Other protein–protein associa-
tions are shown in light green 
line: text-mining, black line: 
co-expression, and light blue 
line: protein homology
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apical meristem (CaSMXL3 and CaSMXL5), and in dif-
ferent flowers stages (CaSMAX1/SMXL1 and CaSMXL6) 
(Fig. 5a). In contrast, the highest expression level in lentil 
tissues observed was in immature seed and pod (LcSMXL3 
and LcSMXL9), root (LcSMXL2, LcSMXL4, LcSMXL5, 
LcSMXL6, and LcSMXL8), stem (LcSMXL7), and flower and 
immature pod (LcSMAX1/SMXL1) (Fig. 5b).

Meanwhile, the meta-analysis also addressed the expres-
sion profiles of the CaSMAX/SMXL genes in chickpea 
plants under drought, salinity, and heat stress conditions 
(Fig. 5c–e). Overall, all CaSMAX/SMXL genes had their 
expression modulated by these different stress conditions. 
In particular, under drought conditions, all genes had their 
highest expression level in shoots, while CaSMXL6 and 
CaSMXL9 genes were also significantly more up-regulated 
in roots (Fig. 5c). In comparison, under salinity stress con-
ditions, the CaSMAX/SMXL genes were up-regulated in 
the flower, root, and shoot, with some genes preferentially 
more up-regulated in certain tissues (Fig. 5d). Meanwhile, 
when under heat stress conditions, all CaSMAX/SMXL genes 
had their expression up-regulated in before-flowering and 
after-flowering leaves, except for CaSMAX1/SMXL1 and 
CaSMXL3 genes (Fig. 5e). Likewise, the meta-analysis also 
addressed the LcSMAX/SMXL gene expression level in len-
til plants under drought, salinity, heat, alkalinity, and biotic 
stress conditions (Fig. 5f–h; Suppl. Fig. S2a and b). In addi-
tion, this analysis also included LcSMAX/SMXL gene expres-
sion in contrasting lentil cultivars (tolerant, resistant, and 
susceptible). Similar to that observed in the chickpea, the 
LcSMAX/SMXL genes were significantly up-regulated in len-
til plants under different abiotic and biotic stress conditions 
and showed a positive correlation with plant tolerance level 
to both stress conditions. In particular, under drought, salin-
ity, and alkalinity stress conditions, the greater up-regulation 
of the LcSMAX/SMXL genes observed was in roots of toler-
ant cultivars compared to the leaves of these same cultivars. 
Interestingly, LcSMAX/SMXL genes are also significantly 
up-regulated by biotic stress and mostly correlated positively 
with plant resistance level (Suppl. Fig. S2b). Therefore, 
these collective data showed that both SMAX/SMXL genes 
of chickpea and lentil were dynamically modulated by dif-
ferent abiotic and biotic stress conditions, with some of these 
genes taking a more tissue-specific expression, and with a 
positive correlation with plant tolerance or resistance level.

Expression of the SMAX/SMXL genes in contrasting 
cultivars in terms of branching

First, a screening was carried out with several cultivars of 
chickpea and lentil to identify the two most contrasting 
cultivars: little branched and highly branched. After pheno-
typic analysis based on the number of branches per plant, 
were selected the chickpea cultivars Blanco lechoso and 

FLIP07-318C, and lentil cultivars Castellana and Campisi 
as being little branched and highly branched, respectively 
(Table 3; Fig. 6a and b). During this phenotypic analysis 
carried out in the greenhouse, axillary and apical buds were 
sampled for further molecular analysis. Subsequently, the 
expression profiles of the SMAX/SMXL genes were per-
formed by real-time PCR. In addition, BRC1 (transcription 
factor involved in plant branching for acting in the SL-
dependent signaling pathway), TiE1 (TCP interactor contain-
ing EAR motif protein 1), LAP1 (LIKE-APETALA1), and 
BES1 (BRI1-EMS-SUPPRESSOR 1) genes, which encode 
proteins that are negative regulators of BRC1 protein, were 
also evaluated. For the chickpea, the highest expression 
level of these genes was observed in axillary buds of the 
highly branched cultivar (FLIP07-318C), except for CaBES1 
and CaSMXL5 genes that showed higher expression in api-
cal buds (Fig. 6c). These preliminary data showed that the 
expression profile of these genes in chickpea cultivars has a 
positive correlation with plant branching level. In the lentil, 
the expression profiles of these genes showed a lower corre-
lation with plant branching level (Fig. 6d). In particular, the 
LcSMXL3, LcSMXL4, LcSMXL8, LcSMXL9, and LcLAP1 
genes showed higher expression levels in apical buds of the 
highly branched cultivar (Campisi), while the other genes 
were more expressed in axillary buds of the little branched 
cultivar (Castellana). These data showed that each gene or 
group of SMAX/SMXL genes, despite having several con-
served features, has a slightly different expression profile 
between chickpea and lentil cultivars. This expression pro-
file was also dynamic at the tissue level (axillary and apical 
buds), collaborating with the dynamics of the three signaling 
pathways in which these genes are involved.

Overall, the real-time PCR data showed that CaSMAX1/
SMXL1 (Fig. 7a), CaSMXL3 (Fig. 7c), CaSMXL4 (Fig. 7d), 
CaSMXL5 (Fig.  7e), CaSMXL6 (Fig.  7f), CaSMXL7 
(Fig. 7g), CaSMXL8 (Fig. 7h), CaSMXL9 (Fig. 7i), CaTiE1 
(Fig. 7k), and CaLAP1 (Fig. 7l) genes were more expressed 
with statistical significance in the highly branched cultivar, 
therefore, with a positive correlation with plant branching 
level. Meanwhile, CaSMXL2 and CaBES1 genes showed no 
significant difference in expression level between different 
tissues and contrasting cultivars (Fig. 7b and m). In contrast, 
the CaBRC1 gene showed lower expression with statistical 
significance in apical buds of the highly branched cultivar, 
a negative correlation with plant branching level (Fig. 7j). 
Meanwhile, the real-time PCR data from lentil showed that 
LcSMAX1/SMXL1 (Fig. 7n), LcSMXL2 (Fig. 7o), LcSMXL4 
(Fig. 7q), LcSMXL5 (Fig. 7r), LcSMXL6 (Fig. 7s), LcSMXL8 
(Fig. 7u), LcLAP1 (Fig. 7a1), and LcBES1 (Fig. 7a2) genes 
were more expressed in a tissue-specific manner, with no 
clear correlation with plant branching level. In contrast, the 
expression profiles of LcSMXL7 (Fig. 7t), LcBRC1 (Fig. 7y), 
and LcTiE1 (Fig. 7z) genes showed a negative correlation 
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with plant branching level, while LcSMXL3 (Fig. 7p) and 
LcSMXL9 (Fig. 7x) genes showed a positive correlation 
with plant branching level. Therefore, these expression 
data revealed that most CaSMAX/SMXL and partner genes 
are positively correlated with branching level, except the 
CaBRC1 gene with a negative correlation. In comparison, 
the gene expression profiles in the lentil were mostly tissue-
dependent, but LcSMXL3 and LcSMXL9 genes were posi-
tively correlated with the branching level. Furthermore, 
these collective data, in addition to providing new regulatory 
information for each gene, provide powerful targets such 
as SMXL6, SMXL7, SMXL8, TiE1, LAP1, BES1, and BRC1 
genes for eventual use in transgenesis and genome editing 
for the development of chickpea and lentil cultivars with 
improved architecture.

Discussion

The increasing climate changes, eminent geopolitical con-
flicts, growth of the global population, and high demand for 
healthy food are major factors that are challenging agricul-
ture around the world (Arif et al. 2021). Chickpea and lentil 
are important crops for the food security of several European 
and Asian countries (Landi et al. 2021; Karalija et al. 2022). 
The plant breeding of these legumes to improve agronomic 
traits associated with abiotic and biotic stress tolerance, seed 
yield, nutritional features, and plant architecture are impor-
tant requirements to produce more at a lower cost (Basso 
et al. 2020, 2023; Asati et al. 2022). Particularly related to 
the architecture of chickpea and lentil plants, significant 
efforts are still needed to develop superior cultivars bet-
ter adapted to mechanized planting and harvesting systems 
(Yang et al. 2021). Fortunately, for both chickpea and lentil 
there are currently available a huge amount of accessions, 
genotypes, and cultivars in germplasm banks worldwide 
that can be explored to develop these more adapted cultivars 
(Piergiovanni 2022; Basso et al. 2023). Although knowledge 
of the genetic basis associated with different agronomical 
traits has been explored in recent years, little is known about 
the molecular mechanism involved in plant branching and 

architecture of these two legume crops. The SL, together 
with other hormones, is one of the main regulators of the 
plant branching mechanism (Yang et al. 2020; Li et al. 2022; 
Zhang et al. 2022). In particular, the biological role of SL 
and KAR hormones in plant development and resilience to 
abiotic stresses has not yet been explored in detail in the 
chickpea and lentil. Therefore, improving knowledge about 
the SL and KAR signaling pathways can help to understand 
and develop biotechnological strategies related to plant 
architecture (Yang et al. 2019). In especial, SMAX/SMXL 
family genes are important players that act in the SL- and 
KAR-dependent and -independent signaling pathways (Wall-
ner et al. 2017; Carbonnel et al. 2020; Wang et al. 2020; Li 
et al. 2022). Overall, SMAX/SMXL family genes are organ-
ized into three major functional groups, which correspond 
to the involvement of these members in the three signaling 
pathways described above. These three pathways act mainly 
on (i) shoot branching and elongation, (ii) seed germination 
and root elongation, and (iii) phloem formation (Soundap-
pan et al. 2015; Wallner et al. 2017; Villaécija-Aguilar et al. 
2019). These functional roles of the SMAX/SMXL proteins 
have been consistently studied in Arabidopsis. However, to 
date, SMAX/SMXL family genes have not yet been studied 
and explored in the chickpea and lentil.

In this study, were identified and characterized nine 
SMAX/SMXL family genes in the chickpea and lentil, and 
further analyses were performed focusing on the involve-
ment of these genes in plant branching. The eight SMAX/
SMXL family genes of Arabidopsis were used as a refer-
ence to successfully find the orthologous genes in chick-
pea and lentil genomes. In silico analyses from gene and 
protein sequences revealed that these members are highly 
conserved in the chickpea and lentil but also with some 
particular features. In addition, were observed the presence 
of the Clp-N and P-loop NTPase domains in all SMAX/
SMXL proteins of chickpea and lentil, which are related to 
the nuclear localization and ubiquitination of these proteins, 
respectively (Liang et al. 2016; Khosla et al. 2020). These 
features indicated that the SMAX/SMXL genes of chickpea 
and lentil may range from redundant to very specific func-
tions, similar to those observed with SMAX/SMXL family 
members of Arabidopsis (Carbonnel et al. 2020; Wang et al. 
2020). Phylogenetic relationship data showed the organiza-
tion of the SMAX/SMXL genes of chickpea and lentil into 
three major groups closely related to their putative biologi-
cal function, as well as also observed with SMAX/SMXL 
genes of Arabidopsis (Soundappan et al. 2015). Similarly, 
other recent studies have also identified and characterized 
SMAX/SMXL family genes in different plant species, such as 
M. domestica (Li et al. 2018), soybean (Zhang et al. 2022), 
cotton (Jia et al. 2022), and Populus trichocarpa (Sun et al. 
2023). In particular, in these studies were identified a vari-
able number of SMAX/SMXL genes but not very different 

Fig. 5  Expression profiles of the SMAX/SMXL genes in differ-
ent organs of chickpea and lentil, and plants under different abiotic 
and biotic stress conditions determined from a meta-analysis using 
RNAseq datasets. SMAX/SMXL gene expression levels in different 
organs of a chickpea and b lentil. Gene expression in chickpea plants 
under c drought, d salinity, e heat stress conditions. Gene expression 
in lentil plants under f drought, g salinity, and h heat stress condi-
tions. Expression values in different organs of chickpea correspond to 
FPKM-normalized counts for each gene, while expression values in 
different organs of lentil correspond to log-transformed counts using 
the 75th percentile method. Expression values in plants under stress 
conditions correspond to Log2(fold-change) contrasting “treatment 
versus control”. The scale bar indicates the expression profile

◂
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from those observed in the chickpea and lentil, except for the 
soybean with 31 members (Zhang et al. 2022). This higher 
number of SMAX/SMXL members in the soybean can be 
explained by the highly duplicated genome (Schmutz et al. 
2010). Also, another important feature observed was the 
high conservation of these members in different plant spe-
cies, thus suggesting the high importance of this protein 
family in green plants. Also, these data support the biologi-
cal importance of SL- and KAR-dependent or -independent 
signaling pathways mediated by the SMAX/SMXL genes for 
seed germination, plant development, branching, and resil-
ience. Our data also showed that segmental duplication can 
have occurred in the chickpea and lentil for some of these 
genes since some of them were highly associated with the 
same chromosome and relatively closely located. In the soy-
bean, there was no tandem duplication event of the SMAX/
SMXL genes, but 27 segmental duplication events related to 
31 SMAX/SMXL genes were detected (Zhang et al. 2022). In 
M. domestica, duplication events of the SMAX/SMXL genes 
were also suggested as responsible for the expansion of this 
family (Li et al. 2018).

The promoter sequences of the SMAX/SMXL genes 
showed a considerable number of cis-regulatory elements 
associated mainly with responses to light, hormones, and 
defense response, while some were associated with tissue-
specific expression in the chickpea and lentil. These data 
suggested that the expression profile of the SMAX/SMXL 
genes can be dynamically influenced in the chickpea and 
lentil by the plant development stage, in a tissue-specific 
manner, and under abiotic and biotic stress conditions. In 
the soybean, despite the number of GmSMAX/SMXL genes 
being approximately three times greater, the number and 
widespread distribution of these cis-regulatory elements 
were similar to those observed in the chickpea and lentil 
(Zhang et al. 2022). In the P. trichocarpa, light-responsive 
and environmental stress-related cis-regulatory elements 
were also the most abundant in their promoter sequences 
(Sun et al. 2023). Subsequently, the protein–protein inter-
action network of the SMAX/SMXL proteins of chickpea 
and lentil was evidenced, composed of a major group of 14 
proteins, which includes five partner proteins. In particular, 

an HSP70/HYOU1 protein was identified as a major hub to 
be interconnected with all SMAX/SMXL proteins of chick-
pea and lentil. The HSP70/HYOU1 proved to be highly 
conserved in several plant species, which contain a cl17037 
domain (nucleotide-binding domain of the sugar kinase/
HSP70/actin superfamily). The Arabidopsis HSP70/HYOU1 
protein is considered a chaperone complex protein of the 
endoplasmic reticulum involved in the cellular response to 
hypoxia and negative regulation of hypoxia-induced intrinsic 
apoptotic signaling pathway (Behnke et al. 2015). However, 
the functional relationship between HSP70/HYOU1 proteins 
and the SL- and KAR-dependent signaling pathway has not 
yet been elucidated. In addition, SMAX1/SMXL1 proteins 
besides showing their interaction network with D14L/
KAI2, HSP70/HYOU1, and F-box MAX2, also showed an 
interaction network with a F-box SKIP25-like, and a KAR-
related protein involved in protein ubiquitination (Nelson 
et al. 2010; Sepulveda et al. 2022). Therefore, these data 
confirmed the high relationship and conservation of func-
tions between the SMAX/SMXL proteins of chickpea and 
lentil. In agreement, the 3D structure data of the SMAX/
SMXL proteins revealed that these members have similar 
structures in the chickpea and lentil, but the small differ-
ences in the structure and composition can be important to 
play the different roles in SL and KAR signaling pathways. 
This similar pattern of high structural conservation among 
SMAX/SMXL proteins was also observed in P. trichocarpa 
(Sun et al. 2023).

In order to explore the expression pattern of these genes 
in different tissues of unstressed and stressed chickpea and 
lentil plants, was performed meta-analysis from RNAseq 
datasets. The meta-analysis data showed that SMAX/SMXL 
family genes are highly expressed at very dynamic levels in 
all plant tissues, indicating that they may play a remarkable 
role in plant growth and development. A similar tissue-spe-
cific expression pattern was observed with the SMAX/SMXL 
family genes of M. domestica and P. trichocarpa (Li et al. 
2018; Sun et al. 2023). Likewise, the expression profiles of 
these SMAX/SMXL genes were also dynamic and signifi-
cantly modulated in chickpea and lentil plants under differ-
ent abiotic and biotic stress conditions. Similar results of 

Table 3  Number of branches in the chickpea and lentil cultivars kept under greenhouse conditions

Different letters indicate significant statistical differences according to Tukey’s test at a 95% significance level

Crop Cultivar Number of 
branches
stage I (n = 3 × 5 
plants)

Tukey test Number of 
branches
stage I (n = 3 × 5 
plants)

Tukey test Dominant 
branch

Trait

Chickpea Blanco lechoso 2.44 a 5.65 a Yes Little branched
FLIP07-318C 3.67 b 9.36 b No Highly branched

Lentil Castellana 2.54 a 4.79 a Yes Little branched
Campisi 5.86 c 9.86 b No Highly branched
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SMAX/SMXL gene expression were observed in M. domes-
tica under polyethylene glycol, abscisic acid, salinity, and 
cold stress treatments (Li et al. 2018). In the cotton, most 
SMAX/SMXL family genes were significantly up-regulated 
or down-regulated by at least one cold, heat, drought, or 

salinity stress condition (Jia et al. 2022). In addition, the 
expression profile of SMAX/SMXL family genes was also 
evaluated by real-time PCR in contrasting cultivars of chick-
pea and lentil in terms of branching. Especially regarding 
SMAX1/SMXL1, SMXL6, SMXL7, and SMXL8 genes of 
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chickpea, which are directly involved in the SL signaling 
pathway and act in the plant branching, showed a positive 
correlation with the plant branching level. Meanwhile, these 
same genes of lentil had an expression not clearly corre-
lated with plant branching level. In contrast, the BRC1 genes 
showed a negative correlation with plant branching levels of 
both chickpea and lentil cultivars. Previous studies showed 
that a higher expression level of BRC1 genes is associated 
with reduced plant branching (Aguilar-Martínez et al. 2007). 
The expression profiles of the TiE1, BES1, and LAP1 genes 
also revealed, at least in the chickpea, a positive correla-
tion with plant branching level. In particular, these three 
proteins act as inhibitors of BRC1 protein accumulation, 
directly impacting plant branching (Diao et al. 2019; Hu 
et al. 2020; Maurya et al. 2020a). In this way, the SMXL6, 
SMXL7, SMXL8, TiE1, LAP1, and BES1 genes are powerful 
targets for use in genome editing aiming a gene knockout 
and, consequently, developing chickpea and lentil cultivars 
with an improved architecture. In this context, the triple 
knockdown of the AtSMXL6, AtSMXL7, and AtSMXL8 genes 
in Arabidopsis resulted in improved drought tolerance and 
reduced plant branching (Yang et al. 2020). Similarly, the 
knockdown of the AtTiE1 gene in Arabidopsis also resulted 
in reduced plant branching (Diao et al. 2019). In the same 
sense, due to the fact that LAP1 and BES1 proteins inhibit 
BRC1, the knockout of these two genes can also result in a 
phenotype of reduced plant branching (Hu et al. 2020; Mau-
rya et al. 2020a). Similarly, BRC1 genes of chickpea and len-
til are powerful targets for use in transgenesis aiming a gene 
overexpression and, consequently, developing chickpea and 
lentil cultivars with an improved architecture. The knock-
down of the AtBRC1 gene in Arabidopsis resulted in plants 
with highly branched, suggesting that overexpression of 
BRC1 genes in the chickpea and lentil can result in reduced 
plant branching (Aguilar-Martínez et al. 2007; Maurya et al. 
2020b). Therefore, these collective data provided new evi-
dence to be exploited for the regulation of SMAX/SMXL and 
partner genes by transgenesis or genome editing, as well as 

by traditional plant breeding, to achieve genetic improve-
ments associated with plant architecture (Basso et al. 2019).

Conclusion

In this study, a comprehensive identification and characteri-
zation of the SMAX/SMXL genes from chickpea and lentil 
at the level of gene, protein, promotor sequence, and gene 
expression was systematically provided. Gene expression 
data revealed the expression profiles of all these genes in dif-
ferent organs of plants unstressed and plants under different 
stress conditions (abiotic or biotic), as well as in contrast-
ing cultivars in terms of branching. These results showed 
that SMAX/SMXL genes are dynamically modulated both in 
the chickpea and lentil, with a positive correlation with the 
branching level of chickpea cultivars and a tissue-specific 
expression manner for the lentil. These collective data also 
highlighted the involvement of SMAX/SMXL genes in SL- 
and KAR-dependent and -independent signaling pathways. 
In addition, revealed some genes which can be interesting 
targets for the development of biotechnological tools based 
on transgenesis or genome editing to reduce plant branching 
and improve plant architecture. Furthermore, this study will 
help to understand better the biological role of SMAX/SMXL 
genes in branching and resilience to stresses of chickpea 
and lentil.
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Fig. 7  Expression profile of the SMAX/SMXL genes measured 
by real-time PCR in axillary and apical buds of chickpea culti-
vars Blanco lechoso and FLIP07-318C and lentil cultivars Castel-
lana and Campisi. Expression profiles of chickpea a CaSMAX1/
SMXL1, b CaSMXL2, c CaSMXL3, d CaSMXL4, e CaSMXL5, f 
CaSMXL6, g CaSMXL7, h CaSMXL8, i CaSMXL9, j CaBRC1, k 
CaTiE1, l CaLAP1, and m CaBES1, and lentil n LcSMAX1/SMXL1, 
o LcSMXL1, p LcSMXL2, q LcSMXL3, r LcSMXL4, s LcSMXL5, t 
LcSMXL6, u LcSMXL7, v LcSMXL8, x LcSMXL9, y CaBRC1, z 
CaTiE1, a1 CaLAP1, and a2 CaBES1 genes. Gene expression val-
ues were calculated with the 2^-∆Ct formula and normalized with 
CaCAC  and LcTUB as endogenous reference genes (Suppl. Table S1). 
Error bars represent confidence intervals corresponding to three bio-
logical replicates consisting of 10 plants each replicate (n = 10). Dif-
ferent letters on the bars indicate significant statistical differences 
according to Tukey’s test at a 95% significance level
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previously published articles and were properly cited in this work. It is 
also worth noting that these datasets used already had the differential 
expression information analyzed and normalized, so we only work with 
the final data.
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