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Abstract
Main conclusion  Genome editing offers revolutionized solutions for plant breeding to sustain food production to feed 
the world by 2050. Therefore, genome-edited products are increasingly recognized via more relaxed legislation and 
community adoption.

Abstract  The world population and food production are disproportionally growing in a manner that would have never 
matched each other under the current agricultural practices. The emerging crisis is more evident with the subtle changes in 
climate and the running-off of natural genetic resources that could be easily used in breeding in conventional ways. Under 
these circumstances, affordable CRISPR-Cas-based gene-editing technologies have brought hope and charged the old plant 
breeding machine with the most energetic and powerful fuel to address the challenges involved in feeding the world. What 
makes CRISPR-Cas the most powerful gene-editing technology? What are the differences between it and the other genetic 
engineering/breeding techniques? Would its products be labeled as "conventional" or "GMO"? There are so many questions 
to be answered, or that cannot be answered within the limitations of our current understanding. Therefore, we would like to 
discuss and answer some of the mentioned questions regarding recent progress in technology development. We hope this 
review will offer another view on the role of CRISPR-Cas technology in future of plant breeding for food production and 
beyond.
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CRISPR	� Clustered regularly interspaced short palindro-

mic repeat
Cas	� CRISPR-associated protein
GE	� Genome editing
GMO	� Genetically modified organism
LMO	� Living modified organism

ODM	� Oligonucleotide-directed mutagenesis
SDN	� Site-directed nuclease
DSB	� Double-stranded DNA break
NHEJ	� Nonhomologous end-joining
HDR	� Homology-directed repair
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Introduction

Crop traits are inherited from parent plants through many 
generations and are encoded by the genetic information 
contained within the DNA of cells. However, the genetic 
contents are continuously modified (Vergauwen and De 
Smet 2017) as a consequence of spontaneous mutations, 
transcriptional errors, environmentally or artificially 
induced mutations, transposon activities, meiotic crossing 
over, and cross-fertilization (allogamy) processes. Plant 
pests or symbiotic agents, such as Agrobacterium spp. 
(Kyndt et al. 2015) or Burkholderia (Pinto-Carbó et al. 
2016), integrate their genetic fragments with the hosts, 
thereby modulating host cells for replication or feeding. 
Therefore, genetic modifications continuously occur in any 
genetic containment of living plant cells.

Plant breeding is the process of generating plants con-
taining genetic entities encoding favorable traits that fit 
our agricultural production, processing, and subsequent 

consumption. Thus, it includes selection processes among 
a population of plants with diverse and undesirable traits. 
Via archeological evidence, plant breeding has been esti-
mated to have been actively carried out by humans a dozen 
thousand years ago (Vergauwen and De Smet 2017) when 
seeds of plants with favorable features were saved for the 
next plantation, a practice known as domestication. The 
historical milestones (Fig. 1) of plant breeding techniques 
were achieved in parallel with a more profound under-
standing of plants and their genetic makeup. With the 
increases in quantitative and qualitative food consumption, 
plant breeding has been revolutionized, with key achieve-
ments in crossbreeding (hybrid crops) and transgenesis. 
Hybrid crop backing by heterosis created the first green 
revolution, starting with semidwarf wheat varieties carry-
ing reduced height (Rht) alleles developed by Dr. Norman 
Borlaug in the 1940s–1950s (Swaminathan 2009; Vergau-
wen and De Smet 2017). Transgenic crops are now wide-
spread globally and are increasingly accepted as food and 
feed. In the US, one of the leading countries in adopting 

Fig. 1   Plant breeding milestones. The start of domestication and ini-
tial plant breeding dates back around 12,000 B.C. when the living 
style of Human-being changed from gathering and hunting to agri-
culture. The first-ever domesticated plant was emmer wheat. Since 
then, ancient domestication and selective breeding were dominant 
until the discovery of Mendel’s laws of genetics. The laws of genet-
ics triggered and enhanced the crossbreeding wave. A milestone in 
plant breeding that plays an essential role in modern plant breeding 
was the invention of the totipotency of plant cells in the early 1900s 
by Gottlieb Haberlandt. As a result, the first in  vitro tissue culture 
was introduced in 1960 with carrot. Plant tissue culture was the criti-

cal step for generating the first Agrobacterium-mediated transgenic 
tomato in 1994, known as transgenic breeding. In the meantime, 
mutational breeding using chemical or physical agents was also intro-
duced in the 1930s and played an important role in generating diverse 
genetic materials for crop breeding. Biochemical markers further 
enhanced crossbreeding in marker-assisted selection (MAS) breeding. 
The recently emerging genome editing approaches have revolution-
ized plant breeding to precision levels that have never been obtained 
before. High oleic acid soybean, the first genome-edited crop that was 
released in 2019, has been opening the wave of genome-edited preci-
sion breeding in plants
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transgenic crops, nearly all corn, cotton, and soybean areas 
are covered by transgenic varieties in 2021 (USDA 2020). 
Transgenesis changes the genetic information of a plant 
cell, resulting in a so-called genetically modified organ-
ism (GMO) or living modified organism (LMO), by add-
ing "foreign," cross-kingdom DNA fragment(s) to achieve 
beneficial trait(s) that the conventional breeding tech-
niques cannot obtain. While health and biodiversity con-
cerns regarding transgenic approaches are serious, there 
is very controversially limited evidence to support them. 
Nevertheless, a long and expensive procedure is required 
to release GMO/LMO events for cropping or consuming 
their products as food or feed, limiting the spreading of 
crops globally.

Recently, genome editing (GE), especially clustered 
regularly interspaced short palindromic repeats (CRISPR)-
CRISPR-associated protein (Cas), has appeared to offer 
powerful breeding tools without adding exogenous DNAs 
producing genetic variations, such as natural, spontaneous 
mutations. The approach has been shown to create many 
elite traits that conventional breeding either cannot generate 
or could only generate with a time-consuming and labori-
ous process (Vu et al. 2020). As a result, GE crops, espe-
cially those that carry genome modifications mimicking 
spontaneous mutations, are widely deregulated worldwide 
except in European countries where stringent GMO rules 
are applied (Schmidt et al. 2020b). What makes GE products 
more acceptable than GMOs? GE is usually triggered using 
"molecular scissors" to cleave the double-stranded DNA 
genome. The resulting DNA double-stranded breaks (DSBs) 
prime cellular responses that lead to the repair of broken 
DNAs primarily by nonhomologous end-joining (NHEJ) or 
homology-directed repair (HDR) (Puchta 2005; Scully et al. 
2019). DSB repair by NHEJ is dominant in somatic cells and 
usually results in erroneous products containing short base 
insertions or deletions, thus inducing mutations to the tar-
geted genes (Puchta 2005). These mutations can be produced 
naturally as spontaneous mutations or in plants created from 
chemical/radiation-based random mutagenesis. Notably, the 
introduced molecular scissors can be eliminated from the 
edited cells, resulting in transgene-free GE plants, thereby 
eliminating the concerns associated with the derived foods 
in some countries (Entine et al. 2021; Menz et al. 2020). 
Moreover, the edited site is controllable and highly specific 
due to the characteristics of the customized nucleases (Jinek 
et al. 2012; Gaj et al. 2013). Therefore, GE products are 
much "cleaner" than random mutagenesis products.

Under the current conditions of plant breeding and crop-
ping technologies, it is impossible to produce sufficient foods 
to feed the world by 2050. Additionally, cropping for foods 
faces many hurdles due to climate change and the shortage 
of arable lands as a result of urbanization. Therefore, adopt-
ing a revolutionized plant breeding technique such as GE 

is needed to generate new traits/cultivars that can enhance 
yield or sustain food production under unfavorable condi-
tions. In this review, we discuss the foundation of CRISPR-
Cas technology regarding crop genetic improvement and 
the potential uses of its derived foods for humans compared 
with other genetic engineering technologies. Future perspec-
tives of GE are also provided to suggest another view of the 
applied legislation.

In summary, CRISPR-Cas technology enables rapid and 
precise modification of breeding material, with targets, such 
as product ingredients, plant architecture, improved nutrient 
uptake or distribution in the crop, contributing to agricul-
tural sustainability and the UN Sustainable Development 
Goals (SDGs). Increased yields using less fertilizer, pesti-
cide, or water are further goals of CRISPR-Cas technology.

Food production in the CRISPR era

According to an analysis performed by van Dijk and cowork-
ers, under the impacts of climate change, global food pro-
duction needs to be increased from + 30 to + 62% between 
2010 and 2050 (van Dijk et al. 2021). If we also consider 
nutritional needs, then food production may be sufficient in 
2050 following radical changes in food types, such as con-
suming more plant-based alternatives of meat and dairy, and 
societal adaptation (Berners-Lee et al. 2018), which is likely 
impossible. Earlier, in the middle of the twentieth century, 
novel semidwarf wheat and rice varieties played a vital role 
during the first green revolution (Van Vu et al. 2019), which 
reversed the catastrophic prediction of hunger due to the 
food crisis. Food production was dramatically increased in 
Mexico, India, and other countries following the importation 
of new wheat and rice varieties (Khush 2001). The breed-
ing technology behind the success of the green revolution 
was crossbreeding that pyramided elite genes into elite plant 
varieties, which were selected under various geographical 
conditions (Swaminathan 2009; Vergauwen and De Smet 
2017). Recently, it was predicted that crop-based food pro-
duction may not be sufficient to feed the world by 2050 (Ray 
et al. 2013). To reverse the prediction, we must improve crop 
productivity with high-yield and/or climate-resilient varie-
ties. Hence, novel varieties are expected to play the same 
role in solving the next food crisis.

GE technology has paved the way for breeding crop plants 
to enhance growth and production under challenging envi-
ronmental conditions. It can also help improve crop plants' 
qualitative traits to sustain human health and other needs. 
Theoretically, any modification of a known genome site can 
be made at high efficiency and precision with the various 
GE tools currently available (Chen et al. 2019; Van Vu et al. 
2019; Marzec and Hensel 2019). Early in the development of 
GE tools, rice varieties that conferred resistance to bacterial 
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blight disease (Li et al. 2012) and fungal blast (Wang et al. 
2016) were developed (Table 1). A similar GE tool was 
also used to create powdery mildew-resistant wheat (Wang 
et al. 2014). By enhancing yield and improving the starch 
components in maize, superior corn was introduced in 2020 
(Gao et al. 2020). Recently, more attention has been given to 
the improvement of nutritional and health-functional traits 
of crop plants, such as oil contents of soybean (Haun et al. 
2014), the first commercialized GE product, starch qual-
ity in potato (Andersson et al. 2018) and gluten-free wheat 
(Sánchez-León et al. 2018). Japan was the first country to 
commercialize a genome-edited tomato product that con-
tains high ɣ-aminobutyric acid (GABA) contents (Nonaka 
et al. 2017) in September 2021. Increasingly, GE-derived 
foods and products enhance global food production and 
security with levels of speed, efficacy, and precision that no 
other plant breeding technologies can offer. Likewise, with 
the huge potential of GE technology, global food production 
can match the projected demands in 2050 in the CRISPR era 
if the technology is widely accepted in a similar manner to 
random mutagenesis.

What would new plant breeding technology 
such as CRISPR‑Cas‑based gene editing 
offer?

New breeding methods, such as CRISPR-Cas technology, 
allow rapid and precise manipulation of a target genome for 
the first time in human history. All previous mutation tech-
niques either involve introducing many unwanted changes 
(e.g., chemical and radiation mutagenesis) or are purely ran-
dom and unpredictable (e.g., natural mutations).

In crossbreeding, which is most commonly used for com-
bining positive traits, the genome of the elite background 
must then be enriched again through several backcross-
ing steps. Crossbreeding is time-consuming and costly. In 
addition, this technology has the disadvantage that certain 
genomic regions cannot be separated from each other due 
to a lack of recombination. This phenomenon is called link-
age drag.

CRISPR-Cas technology can also increase breeding 
diversity within a species. Here, a reduction in genetic 
diversity has occurred in the course of domestication due 
to the processes described above (Voss-Fels et al. 2019). 
Enhanced genetic diversity can now be achieved through the 
targeted induction of double-strand breaks between previ-
ously inseparable loci (for review, see Rönspies et al. 2021) 
(Rönspies et al. 2021). Several approaches have described 
heritable inversions and translocations in this way. Schmidt 
and colleagues (2020) used the Staphylococcus aureus Cas9 

Table 1   Several representative CRISPR-Cas-based food crops suggested in this minireview

No. Crop Modification Added trait Targeted gene(s) Targeted site Regulation 
status

Release status References

1 Rice Indel mutation Bacterial blight 
resistance

Os11N3 (OsS-
WEET14)

Cis-element NA NA Li et al. (2012)

2 Indel mutation Rice blast Resist-
ance

OsERF922 Coding 
sequence

NA NA Wang et al. 
(2016)

3 Wheat Indel mutation Powdery mildew 
resistance

TaMLO Coding 
sequence

NA NA Wang et al. 
(2014)

4 Indel mutation Reduced gluten 
content

α-gliadin genes Coding 
sequence

NA NA Sánchez-León 
et al. (2018)

5 Maize Indel mutation High-yield waxy 
corn

ZmWx1 Coding 
sequence 
removal

NA NA Gao et al. (2020)

6 Soybean Indel mutation High oleic acid 
oil

GmFAD2-1A 
and GmFAD2-
1B

Coding 
sequence

Passed in the US February 2019 Haun et al. (2014)

7 Potato Indel mutation Altered starch 
contents

StGBSS Coding 
sequence

NA NA Andersson et al. 
(2018)

8 Tomato Indel mutation Highly accumu-
lated GABA

SlGAD2 and 
SlGAD3

Coding 
sequence, 
autoinhibi-
tory domain 
removal

Passed in Japan September 2021 Nonaka et al. 
(2017)
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nuclease and the ovule-specific promoter in Arabidopsis to 
invert an 18-kb fragment. Subsequently, the same group suc-
ceeded in changing the difference between the two Arabi-
dopsis ecotypes Ler-1 and Col-O, known as a heterochro-
matic knob (hk4S) inversion on chromosome 4 (Schmidt 
et al. 2020a). This inversion made a meiotic crossover in this 
region on chromosome 4 possible for the first time. Recently, 
a translocation of 0.5- to 1-Mbp chromosomal segments was 
reported (Beying et al. 2020). Fragments could be exchanged 
between Arabidopsis chromosomes 1 and 2 and between 
chromosomes 1 and 5. These changes were also detectable 
in subsequent generations. Even though similar evidence for 
crop plants has been lacking, it is now possible to exchange 
positively correlated alleles between accessions of a species 
in a targeted manner using the methods described above.

Another advantage of CRISPR-Cas technology is the 
acceleration of the breeding process. Knowing the molecu-
lar basis for domestication genes, such as fruit color, fruit 
size, or the number of fruits, makes it possible to precisely 
convert a wild species into a cultivated plant within one gen-
eration (for review, see Fernie and Yan 2019) (Fernie and 
Yan 2019). This process is also referred to in the literature as 
de novo domestication, and several examples already exist. 
For example, by altering six loci in the precursor of our 
present-day tomato Solanum pimpinellifolium, plants were 
generated that had a threefold increase in fruit size, a tenfold 
increase in the number of fruits, and a 500-fold increase in 
the accumulation of lycopene (Zsögön et al. 2018). Parallel 
attempts were made in the same species to alter daylength 
sensitivity, shoot architecture, flower and fruit production, 
and nutrient content by simultaneous gene editing (Li et al. 
2018). These authors also reported successful domestication 
in only one step. Similar approaches in Physalis pruinosa 
(Lemmon et al. 2018) and allotetraploid wild rice (Yu et al. 
2021) further demonstrated the potential of this technology 
for the breeding process.

Although many agronomically relevant traits are not 
based on single modifications, some examples illustrate 
that this is still possible. The domestication-related barley 
genes for brittleness and row-type Btr1, Btr2 and Vrs1 
(Komatsuda et al. 2004, 2007) demonstrate that few modi-
fications dramatically change the phenotype. Either the 
deletion of 1 or 11 nucleotides allows the barley grains 
to stay in the spike until harvest, which allowed ancient 
farmers easier harvest (Pourkheirandish et al. 2015). For 
the switch from two- to six-rowed barley, a mutation in 
the Vrs1 gene is necessary. It has been illustrated using 
RNAi technology that the causal gene has been identified 
(Sakuma et al. 2013). Using CRISPR/Cas-mediated knock-
out, full development of the lateral grains was observed 
(Hensel et al., unpublished). Another example of fungal 
resistance in wheat further supports the idea that slight 
modifications have a severe impact. The Lr34 gene decides 

whether a wheat accession is susceptible or tolerant to fun-
gal infections. As barley (Chauhan et al. 2015) shows, just 
one amino acid can alter the resistance of a cultivar. Using 
CRISPR-Cas technology as prime editing can achieve such 
allele exchange.

All targeted mutagenesis platforms rely on the knowledge 
of sequence information. With the tremendous improve-
ments in sequencing technologies, discovering new genomes 
is possible within hours and for an affordable amount of 
money. This development allows the direct comparison of 
multiple accessions of the same species (known as pange-
nome, (Golicz et al. 2016)) and identifies the beforemen-
tioned necessary sequence polymorphisms.

The fundamental prerequisite of the aforementioned 
accelerated evolution is the simultaneous targeting of mul-
tiple target sites in a genome. Various methods have been 
developed and applied for this purpose. Either several gRNA 
arrays can be united in one T-DNA using the methods based 
on type-II restriction enzymes (Hahn et al. 2020), or tRNA-
based techniques are used (Xie et al. 2015). Reducing aller-
gens in food is highlighted here from the endless array of 
applications. First, gluten-free wheat should be mentioned 
(Sánchez-León et al. 2018). Simultaneously, targeting 35 
different α-gliadin genes in bread wheat reduced the coe-
liac disease-triggering gluten content by 85%. This reduc-
tion makes the production of gluten-reduced foods possible. 
Recently, CRISPR-Cas was used to remove the major aller-
gen, 2S albumin class gene Bra j I in brown mustard (Bras-
sica juncea), and mutant plants with reduced allergenicity 
were generated (Assou et al. 2021).

The CRISPR-Cas technology application can go far 
beyond inducing a double-strand break by fusing functional 
domains to Cas proteins. For example, genes could be acti-
vated in rice (Xiong et al. 2021), repressed in Arabidopsis 
(Lowder et al. 2015), their position in the Nicotiana tabacum 
genome visualized by reporter genes (Dreissig et al. 2017), 
or modified using base editors. Review articles on how these 
approaches can be used for breeding salt-tolerant rice (Ganie 
et al. 2021) or tomato (Vu et al. 2020) have recently been 
published.

A variety of prime editing (PE) and base editing (BE) var-
iants have been developed over the past years and have been 
successfully tested in plants (for review, see Molla et al., 
2021) (Molla et al. 2021). Prime editing (Anzalone et al. 
2019) and base editing (Gaudelli et al. 2017; Ren et al. 2018) 
now allow modification of the target sequence, which does 
not require induction of a double-strand break. With these, 
applications, such as regulation of cis-elements, modifica-
tion of RNA splice sites, integration of synthetic miRNAs, 
or adaptation of miRNA-binding sites, are possible. This 
mechanism could also alter the binding sites of effectors 
released by fungal pathogens to target plant susceptibility 
genes. In this way, heritable resistance might be conferred.
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Using CRISPR-Cas technology, generating resistance 
to herbicides is also possible. Here, a wealth of herbicide 
resistance can be produced in agronomically essential plants 
through the targeted selection of target genes. While most 
plants for commercial use constitute a GMO through the 
transfer of bacterial genes, the adaptation of plant targets, 
such as EPSPS, HPPD, and ALS genes from Zea mays, 
Avena sativa, and N. tabacum, can be made using CRISPR-
Cas technology. This review provides a detailed overview 
(Han and Kim 2019).

What makes CRISPR‑Cas the most powerful 
gene‑editing technology?

CRISPR-Cas technology, unlike zinc finger nucleases 
(ZFNs) and transcription activator-like effector nucleases 
(TALENs), is an RNA-based gene modification system 
(Jinek et al. 2012). ZFNs and TALENs, in contrast, are 
based on the attachment of polypeptides to DNA. In ZFN, a 
finger-like peptide binds a DNA triplet (Urnov et al. 2010), 
whereas, in TALEN, approximately 33 amino acid-length 
peptides bind specifically to a DNA nucleotide (Boch et al. 
2009). In ZFN and TALEN, these DNA-binding domains 
are coupled to the nonspecific FokI endonuclease. How-
ever, this is only active as a dimer (Vanamee et al. 2001), 
which means that ZFN and TALEN approaches require two 
target molecules on the respective complementary strand. 
This mode of action makes cloning more difficult because 
larger and repetitive DNA fragments have to be assembled. 
The target sequence area is thus larger, which increases the 
specificity and reduces the probability of an off-target muta-
tion. The basis for this is that a DNA region of approxi-
mately 40 nucleotides per target genome is more likely to 
be unique than a region only 20 nucleotides long, as with 
CRISPR-Cas. However, this potential negative feature of 
the CRISPR system can be reduced by carefully selecting 
the target sequence. Various online tools, such as CRISPOR 
(Concordet and Haeussler 2018) and CRISPR-Plant (Xie 
et al. 2014), will only be mentioned here as examples. A 
review on this has been published previously (Cui et al. 
2018; Naim et al. 2020).

Proof of the development of revolutionary technology is 
its broad application. Apart from the introduction of next-
generation sequencing technology, there has been no other 
technology in the life sciences in recent years that has been 
used so widely and successfully in such a short time. The 
reason for this is its universal use in every organism tested 
to date, but above all, its simplicity in creating the necessary 
reaction reagents. For the most common usage, the trans-
formation of a simple vector carrying expression cassettes 
encoding a CRISPR-Cas protein and a guide RNA (gRNA) 
is sufficient in many cases. Additionally, the creation of 

complex constructs is straightforward through the imple-
mentation of methods based on type-II restriction enzymes 
(Engler et al. 2008). Furthermore, in recent years, commer-
cial suppliers have CRISPR products in their portfolios at 
affordable prices, further fueling the use of CRISPR-Cas 
technology.

As CRISPR-Cas technology uses a relatively short 
sequence (on average, 20 nucleotides) to navigate the dou-
ble-strand inducing Cas protein, special attention must be 
paid to gRNA selection. Multiple online platforms allow the 
identification of target genome-specific sequences (Liu et al. 
2020). It has to be mentioned that not just sequence simi-
larities of the gRNA are essential. The necessity of being 
adjacent to a PAM sequence further reduce putative off-
targets (Jinek et al. 2012). Several studies have shown that 
mismatches in the twelve nucleotides in front of the PAM 
abolish the functionality of the RNP complex (Zheng et al. 
2017). Another possibility to reduce potential off-targets is 
using preassembled RNP complexes (Park and Choe 2019). 
As these complexes do not contain DNA that becomes inte-
grated into the host genome and is transmitted during cell 
divisions, inducing off-targets is reduced.

The biotechnological use of the CRISPR-Cas system 
involves two components. These are target sequence-spe-
cific gRNAs and double-strand break-inducing Cas enzymes 
(Jinek et al. 2012). The Cas enzyme to bind to the target 
DNA requires a so-called protospacer adjacent motif (PAM) 
sequence. This PAM sequence is specific for each Cas pro-
tein. For the most commonly used SpCas9, NGG somewhat 
limits the choice of a target sequence. Although there are 
sufficient NGG positions in each genome, if one needs to 
cut at a specific place due to a functional amino acid or 
protein domain being present, this can lead to limitations. 
This disadvantage has been overcome by identifying Cas 
proteins from other organisms or the synthetic evolution of 
existing Cas proteins (for review, see Liu et al. 2021) (Liu 
et al. 2021).

Another advantage of the CRISPR-Cas system is its 
DNA-binding properties. By inactivating the catalytic 
domains, activity-killed Cas protein can target specific areas 
of a target genome. This approach can be used for gene acti-
vation (Xiong et al. 2021), repression of gene function (Low-
der et al. 2015), visualization of specific genomic regions 
(Dreissig et al. 2017), or setting epigenetic marks (Nakamura 
et al. 2021). This diversity of applications demonstrates the 
broad and universal use of a modified bacterial immune sys-
tem (Huang and Puchta 2021).

In summary, CRISPR-Cas technology has revolutionized 
the life sciences as a whole, not only basic biology or agri-
culture. Many applications use the technology in medicine 
as exemplified by diagnostics (Hajian et al. 2019) or altering 
cancer treatments (Stadtmauer et al. 2020). It is one of the 
most powerful technologies discovered recently.
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What are the differences 
between CRISPR‑Cas and other genetic 
engineering techniques?

The era of conventional plant breeding methods

Since the Neolithic age, plant breeding has been a para-
mount part of an evolving human civilization. It is based 
on the introduction of genetic variability, yield increment, 
and improved nutritional value in crops by crossing wild 
species and landraces (Fig. 1) (Podevin et al. 2013). How-
ever, in this contemporary age of agriculture, conventional 
breeding techniques, such as crossbreeding and mutagen-
esis breeding, using irradiation or chemical mutagenesis 
are unlikely to be adapted to mass production to feed 
approximately 10 billion people by 2050 (FAO 2017; Gao 
2021). In the late 1950s, the first Green Revolution, intro-
ducing “dwarfing” gene mutations, was bred into major 
staple crops, such as wheat (Triticum aestivum) and rice 
(Oryza sativa), to obtain high-yield crops (Khush 2001). 
In chemical and radiation-induced mutation breeding, 
genome-wide random mutagenesis was observed, which 
led to genetic variation (Holme et al. 2019). However, 
both the crossbreeding and mutation breeding techniques 
encountered limitations, such as introducing undesirable 
traits, high labor requirements, and the amount of time 
needed to choose a rare variety that harbored the desired 
feature (Gao 2021).

The long history of plant breeding pivoted its focus 
from crossing, random mutagenesis, and transgenic breed-
ing to genome editing (Hickey et al. 2019; Chen et al. 
2019). Modern plant breeding techniques can be one of 
the critical solutions for securing food production to feed 
the world under emerging biotic and abiotic risks, such as 
environmental and climatic changes and disease and pest 
management (Podevin et al. 2013).

Transgenic breeding and new plant breeding 
techniques

Transgenic breeding opened a new era, but its products 
contain foreign DNA fragments with random insertions in 
the genome that may cause potential unintended effects. 
New plant breeding techniques were introduced to over-
come some of these transgenic products. These tech-
nologies include cisgenesis and intragenesis, grafting, 
agroinfiltration, reverse breeding, RNA-directed DNA 
methylation, genome elimination, oligonucleotide-directed 
mutagenesis (ODM), and site-directed nucleases (SDNs) 
(Enfissi et al. 2021). However, most of them could not 
overcome the regulatory limitations in many countries 

(Podevin et al. 2013). Cisgenesis and intragenesis can 
be categorized under a traditional genetic transforma-
tion technology of plant breeding, as they involve T-DNA 
integration into a plant genome. Intragenesis creates new 
genes with desired traits by isolating functional genetic 
elements, such as promoters, coding regions, or termi-
nators of existing genes, rearranging them in vitro, and 
inserting the ‘intragenic’ DNA combination back into the 
plant (Rommens et al. 2007). In contrast, a ‘cisgenic plant’ 
is a crop plant that has been genetically modified with one 
or more genes (containing conserved introns and flanking 
regions, such as native promoter and terminator regions 
in a sense orientation) isolated from a crossable donor 
plant (Schouten et al. 2006). Cis/intragenic lines should 
be free from foreign sequences (i.e., selectable markers 
and reporter genes) (Liu et al. 2013).

The use of Agrobacterium tumefaciens-derived T-DNA 
borders is a particular concern for public acceptance in 
GMO regulation; thus, it can be preferentially replaced 
by plant-derived P-DNA borders (Schouten and Jacobsen 
2008). The debate for using P-DNA borders for Agrobacte-
rium-mediated transformation over T-DNA borders is that 
DNA sequences integrated into the recipient plant should be 
derived from the sexually compatible DNA pool (Rommens 
et al. 2004). However, in the case of T-DNA sequences, it 
can be identified within different plant species, as sometimes 
it integrates into the genome without integration of T- DNA 
border sequence, thus making an alternative way to identify 
and select transformants (Zhu et al. 2013).

Nevertheless, this technique randomly integrated foreign 
DNA into plant genomes and was strictly subjected to gov-
ernment regulations for introducing foreign genes; the prod-
ucts were called GMOs (genetically modified organisms). To 
date, public and government opinions remain largely unde-
cided regarding the safe usage of the final products created 
by cisgenesis and intragenesis approaches (Raman 2017; 
Gao 2021). Apart from transgenic breeding that maintains 
inserted genes, another class of NPBTs temporally intro-
duces recombinant genes that change the expression of one 
or more endogenous genes, resulting in reverse breeding or 
early flowering. Another extended method is RNA-directed 
DNA methylation for gene silencing induced by transient 
expression via agroinfiltration or grafting to a GM stock 
(Bally et al. 2018; Enfissi et al. 2021). In the absence of 
an introduced recombinant gene or removal by segregation, 
these techniques result in no change in their native genome 
in the final products (Schaart et al. 2016).

Plant genome editing

The era of gene editing in NPBT makes precise manipula-
tion of the genome possible with SDNs (Table 2), which 
are primarily executed as molecular scissors of the genome 
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by programmable DNA-binding proteins that recognize a 
specific DNA sequence of a DNA target and induce DSBs 
(Gaj et al. 2013; Shrivastav et al. 2008; Enfissi et al. 2021). 
Although uncertainties remain over the future applications 
of plant genome editing, this technique has the potential 
to surpass the time-consumption and regulatory limita-
tions associated with conventional (crossing and random 
mutagenesis) and transgenic breeding techniques, respec-
tively (Lusser and Rodríguez-Cerezo 2012). The advantage 
of gene editing over genetic engineering is that the end prod-
uct acquires no foreign genes (Schaart et al. 2016). The asso-
ciated plants produced via the SDN1 method are designed to 
introduce random mutations (substitutions, insertions, and 
deletions) using double DSBs to a specific gene, followed 
by a NHEJ repair pathway (Roth et al. 2012; Waterworth 
et al. 2011). Deletions of regulatory regions, exons, introns, 
or large chromosomal fragments by introducing one or two 
DSBs at different sites using either one or two SDNs lead to 
frameshifts, duplication, inversion, and translocation events 
(Petolino et al. 2010; Şöllü et al. 2010; Lee et al. 2012; 
Fauser et al. 2012). SDN2-edited products are developed in 
the presence of the donor DNA repair template containing 
targeted mutations by single-base substitution or short indels 
and have high sequence identity to the endogenous gene by 
exploiting HDR pathway (Podevin et al. 2013; Schaart et al. 
2016). The final edited products from SDN3 can be maneu-
vered for targeted gene correction or to introduce gene/allele 
replacement for creating new phenotypes. SDN3 defines 
an insertion of new DNA fragments at a predefined locus 
using sequence-specific donor DNA templates with flanking 
DNAs showing homology to the target locus by both NHEJ 
and HDR, which would otherwise integrate randomly in the 
genome at naturally occurring DSBs (Naegeli et al. 2020; 
Podevin et al. 2013). The ODM approach does not rely on 
exogenous nucleases but uses oligonucleotides to introduce 
targeted mutations in the genome, usually of one or a few 
adjacent nucleotides, an approach that is distinct from SDN-
based techniques (Zhu et al. 2000).

The products of NPBT developed as SDN-1, SDN-2, and 
SDN-3 (Table 2) are implemented using molecular scissors, 
such as protein-guided zinc finger nucleases (ZFNs, the first 
generation of editing tools) (Bitinaite et al. 1998; Laity et al. 
2001; Urnov et al. 2005; Kim et al. 1996) and transcrip-
tion activator-like effector nucleases (TALENs, the second 
generation) (Miller et al. 2011; Li et al. 2011). The third 
generation of molecular scissors is an RNA-guided pro-
tein complex, CRISPR-Cas systems. The most widely used 
CRISPR-Cas systems are Cas9 and Cas12a (Cpf1) (Jinek 
et al. 2012; Zetsche et al. 2015; Kim et al. 2016).

The GE tools ZFN, TALENs, and the CRISPR-Cas sys-
tem can be used as SDN-1 (for random mutagenesis), SDN-2 
(predicted mutagenesis of a targeted genomic locus), and 
SDN-3 (precision insertion of a DNA sequence). However, 

the ODM technique resembles the SDN-2 type. Recent GE 
findings of base editing and prime editing (Komor et al. 
2016; Anzalone et al. 2019; Lin et al. 2020) generate specific 
base changes in the target sequence without inducing DSBs 
or positioning any template DNA in the targeted locus. SDN 
tool delivery can be executed in plant genome editing by 
stable DNA integration, transient expression, or ‘DNA-free’ 
methods. The SDN modules integrated into the genome can 
be removed by segregation in edited progeny events in sexu-
ally propagated crops. In asexually (vegetatively) propagated 
crops, transient expression or DNA-free delivery of the SDN 
tool is required (Ma et al. 2017). For both ODM chemically 
synthesized oligonucleotide and ‘DNA-free’ delivery, RNA 
expressing the SDN module or the protein (TALEN, ZFN) or 
ribonucleoprotein complex (in case of CRISPR-Cas) itself 
can be delivered directly into plant cells (Metje-Sprink et al. 
2018; Okuzaki and Toriyama 2004). In summary, CRISPR-
Cas technology provides the most efficient tools to modify 
endogenous gene sequences precisely, resulting in foreign 
gene-free GE products.

Would its products be labeled 
as "conventional" or "GMO" or something 
else?

There is a continuous debate regarding the acceptance of 
GMO/LMO products as foods or feeds (Teferra 2021). The 
tendency is to assure no potential harm can be caused to con-
sumers' health or no environmental threat. One of the pri-
mary reasons for the regulation of GMOs is that cross-king-
dom genetic materials are integrated into plant genomes and 
overexpressed during plant growth and development (Tef-
erra 2021). However, it is different in the case of GE plants, 
when in some cases, indel mutations are indistinguishable 
from wild plants since there are no foreign genetic materi-
als integrated into edited plant genomes (Wolt et al. 2016). 
Therefore, GE plants and derived products are as readily 
accepted as foods and feed as those obtained from conven-
tional breeding if they do not contain exogenous genetic 
materials (Entine et al. 2021; Menz et al. 2020). Rapid appli-
cations and relaxed regulations have accelerated the release 
of the first (high oleic soybean) and second (GABA tomato) 
GE products in less than eight years from the first publica-
tion of TALEN and CRISPR-Cas9 techniques, respectively. 
Significantly, the commercialization of the GE products is 
much less expensive than that of GMO products thanks to 
the omission of the costly regulatory process that applied to 
GMO products. Thus, for the first time, small enterprises, 
such as Calyxt or Sanatech Seed Co., Ltd, have released new 
biotech products. Many requests for the deregulation of GE 
events were from small or medium enterprises (https://​www.​
aphis.​usda.​gov/​aphis/​ourfo​cus/​biote​chnol​ogy/​am-i-​regul​

https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/am-i-regulated/regulated_article_letters_of_inquiry/regulated_article_letters_of_inquiry
https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/am-i-regulated/regulated_article_letters_of_inquiry/regulated_article_letters_of_inquiry
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ated/​regul​ated_​artic​le_​lette​rs_​of_​inqui​ry/​regul​ated_​artic​
le_​lette​rs_​of_​inqui​ry, accessed on 30.11.2021). These facts 
encourage other small-scale labs and companies to develop 
new GE crops, thereby bringing hope to the idea that global 
food production can feed the world by 2050. This section 
analyzes the two GE cases to understand how they were 
deregulated by the US and Japan.

Case #1: GABA tomato

Gamma-aminobutyric acid (GABA) is an amino acid that 
is not used to make proteins. Consumption of GABA may 
help to reduce blood pressure and may have several other 
sound health effects. GABA is an intermediate product of a 
biochemical pathway called the GABA shunt that converts 
glutamate to succinate (Bown and Shelp 1997). In plants, 
GABA accumulation was enhanced under stresses that stim-
ulate the Ca2+/calmodulin-dependent activities of glutamate 
decarboxylase (GAD, EC 4.1.1.15). Suppressing GAD genes 
by RNAi reduced GABA accumulation in plants (Takayama 
et al. 2015). GAD's C-terminal calmodulin-binding domain 
(CaMBD) plays an autoinhibitory function in switch-
ing GAD activities between normal and stress conditions. 
Thus, removing it enhanced the GABA contents in toma-
toes (Takayama et al. 2017). CRISPR-Cas-based targeted 
mutagenesis of GAD2, GAD3, and GABA transaminase-
encoding genes (GABA-T) resulted in hyperaccumulation 
of GABA in tomato (Sicilian Rouge CF cultivar) (Nonaka 
et al. 2017). The line containing a mutation that eliminated 
the CaMBD of GAD2 was the first commercial GE tomato 
globally.

Sanatech Seed Co., Ltd., the owner of the high GABA 
line, sent a letter to the Animal and Plant Health Inspec-
tion Service (APHIS, USA) to request the exclusion of 
the high GABA tomato from the APHIS oversight under 7 
C.F.R. Part 340 article. It is a T2 segregated line validated as 
T-DNA-free by conventional PCR covering the entire binary 
plasmids used for Agrobacterium-mediated transformation. 
The edited allele contains a single-base insertion resulting 
in a premature stop codon just before the CaMBD domain, 
eliminating it from the GAD2 protein. Therefore, the line 
accumulated GABA at levels 4- to fivefold higher than in its 
parents, and the traits were stable for at least three genera-
tions (T0, T1, and T2) (https://​www.​aphis.​usda.​gov/​biote​
chnol​ogy/​downl​oads/​reg_​loi/​20-​140-​01_​air_​CBIdel_​a2.​
pdf, accessed on 29.11.2021). More importantly, the high 
GABA content does not affect the growth and development 
of the line. A steroidal glycoalkaloid, tomatine, and its con-
tents in ripened fruits were not altered, indicating that toxin 
or allergen production does not increase. Ultimately, the 
high GABA tomato line was confirmed to be deregulated 
from APHIS oversight under 7 C.F.R. Part 340 in a process 
called "Am I Regulated (AIR)" (https://​www.​aphis.​usda.​gov/​

biote​chnol​ogy/​downl​oads/​reg_​loi/​20-​140-​01_​air_​respo​nse_​
signed.​pdf, accessed on 29.11.2021).

Case #2: high oleic acid soybean

The GE event of soybean that increased oleic acid content 
was the first GE soybean to be released to the US market by 
Calyxt (previously known as Cellectis Plant Sciences). On 
May 5, 2015, APHIS issued a letter to Cellectis Plant Sci-
ences for deregulating a TALEN-based FAD2KO soybean 
that accumulated high levels of oleic acid from the 7 C.F.R. 
Part 340 (https://​www.​aphis.​usda.​gov/​biote​chnol​ogy/​downl​
oads/​reg_​loi/​brs_​respo​nse_​celle​ctis_​air_​fad2k0_​soy_​cbidel.​
pdf, accessed on 30.11.2021). The FAD2KO event contains 
knockout alleles of the Fatty acid desaturase 2-1a (FAD2-
1a, a 63-bp KO allele) and FAD2-1b (a 23-bp KO allele) 
genes, which play roles in converting oleic acid to linoleic 
acid (Haun et al. 2014). Seeds collected from plants carrying 
homozygous knockout alleles of the two genes increased the 
oleic acid content up to 80% compared to 20% in its parental 
lines. They reduced the linoleic acid content to under 4% 
(Haun et al. 2014). In the US, the cropping area of FAD2KO 
has dramatically increased since 2018 (Menz et al. 2020). 
The event was confirmed not to contain T-DNA by PCRs 
that amplified three distinct regions of the T-DNA, including 
the TALEN gene, the selection marker, and the right border 
(Haun et al. 2014).

Would production be sufficient 
with gene‑edited varieties?

It is difficult to answer this question since better future tech-
nologies can replace the present. Moreover, if the world pop-
ulation continues to increase at the current rate, we will need 
more improved crop cultivars created by diverse technolo-
gies than just GE plants. However, at present, GE varieties 
are bringing hope to sustain and secure global food produc-
tion to meet the demand by 2050 since the technology can 
quickly generate or domesticate desirable alleles into elite 
cultivars at low costs and with no linkage drag. Neverthe-
less, GMO/LMO varieties still play essential roles, featur-
ing crucial traits that GE has not been able to successfully 
generate, such as those that require a strong expression of 
genes, such as herbicide- or insect-resistant alleles. Usually, 
genome editing is sufficient to introduce herbicide-resistant 
alleles into a plant. However, the expression levels, driven 
by endogenous promoters, might not be adequate to support 
durable herbicide resistance at high doses while maintaining 
enzymatic activities (Li et al. 2016; Jin et al. 2021; Hum-
mel et al. 2018). Alternatively, the endogenous promoter can 
also be engineered by the CRISPR-Cas system to increase 
its strength (Rodríguez-Leal et al. 2017), which may further 

https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/am-i-regulated/regulated_article_letters_of_inquiry/regulated_article_letters_of_inquiry
https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/am-i-regulated/regulated_article_letters_of_inquiry/regulated_article_letters_of_inquiry
https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/20-140-01_air_CBIdel_a2.pdf
https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/20-140-01_air_CBIdel_a2.pdf
https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/20-140-01_air_CBIdel_a2.pdf
https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/20-140-01_air_response_signed.pdf
https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/20-140-01_air_response_signed.pdf
https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/20-140-01_air_response_signed.pdf
https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/brs_response_cellectis_air_fad2k0_soy_cbidel.pdf
https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/brs_response_cellectis_air_fad2k0_soy_cbidel.pdf
https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/brs_response_cellectis_air_fad2k0_soy_cbidel.pdf
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advance the technology for those traits. For insect resistance, 
it seems that only cross-kingdom genes have been successful 
at this point; hence, insect-resistant GMO/LMO varieties 
are still needed.

Future perspectives

Several significant threats endanger global food security, 
especially in developing countries (Khush 2001; Ray et al. 
2013). The first is the decrease in arable lands due to urbani-
zation, which is greatly extended in developing countries. 
Second is the shifting of environmental conditions caused 
by climate changes that can affect the sustainability of plant-
based food production because the growth and development 
of plants are sensitive to subtle changes in environmental 
conditions. The third is the yield barrier limiting conven-
tional breeding techniques from achieving higher productiv-
ity. More importantly, the three significant threats become 
more serious when combined. In the meantime, the global 
population in developing countries is increasing at speeds 
much higher than that of food production, threatening devel-
oping countries with hunger and undernourishment. There-
fore, the UN's Sustainable Development Goals to "end hun-
ger by 2030" may not be reached in time.

All plant breeding techniques have significantly contrib-
uted to global food production regardless of the legislation 
applied to them or the products derived from performing 
these techniques. There is a clear trend of technological 
advances in plant breeding and food productivity, indicating 
their importance. However, when technologies are advanced, 
new components added to the traditional system cause con-
cerns about potential risks to consumers' health. There-
fore, even when proven to be safe for humans, GMO/LMO 
products are still subjected to costly and lengthy regulation 
procedures (Teferra 2021). However, transgene-free GE 
products cannot be more "traditional" and much "cleaner" 
than products obtained by random mutagenesis. There are 
even difficulties distinguishing a GE plant from its parents 
because legislators cannot find any convenient detection 
tools (Grohmann et al. 2019). Then, the question is, do we 
have to consider GE plants as riskier than their parents? The 
answer is no from the leading countries in biotechnological 
innovation, such as the US and Japan, where the products of 
the first GE crops were commercialized like traditional ones. 
Many countries have now deregulated the GE crops listed 
in the SDN-1 category (Table 2) (Van Vu et al. 2019; Menz 
et al. 2020). Surprisingly, GE plants have been listed along 
with GMOs/LMOs in Europe, where cropping of GMOs/
LMOs is not allowed, even though these regions are major 
importers of GMO/LMO products. Fortunately, scientists 
are raising voices to defend GE plants and their products; 
for example, the EU-based petition called "give CRISPR a 

chance" (Vangheluwe et al. 2020) has successfully changed 
the minds of legislators to reconsider regulatory bills for 
GE plants (https://​www.​reute​rs.​com/​world/​europe/​eu-​calls-​
rethi​nk-​gmo-​rules-​gene-​edited-​crops-​2021-​04-​29/, accessed 
on 03.12.2021). Moreover, after Brexit, the UK considered 
genome editing as a science innovation and opened the door 
for its use (https://​www.​nature.​com/​artic​les/​d41586-​021-​
01572-0. Accessed on 03.12.2021).

Although the first concern about a new biotech product is 
always consumer safety, overestimating their risks in a non-
scientific manner has been preventing innovations in plant 
breeding and food production (Jorasch 2020; Whelan et al. 
2020). It may not be a significant issue to wealthy countries 
like those in the European zone but may affect food security 
in developing countries. Therefore, giving CRISPR a chance 
allows developing countries to ensure adequate food produc-
tion, which will help reach the UN's Sustainable Develop-
ment Goals to "end hunger by 2030" and further overcome 
the tragic prediction of food crises in 2050.

Concluding remarks

Plant breeding has played a critical role in securing food pro-
duction to feed the world. Regardless of the breeding tech-
nique applied to generate a new variety, safety assessments 
based on the product and not the technology used should be 
used to determine whether the plant should be released into 
the environment. Many crop cultivars obtained by random 
mutagenesis were released into the environment without any 
restriction simply because they have an extended historical 
profile of safe use as foods and feeds (Holme et al. 2019). 
If everything is decided in a science-based manner, then 
most GE plants should also be considered at least as safe 
as those obtained from random mutagenesis (Entine et al. 
2021; Jorasch 2020; Whelan et al. 2020). In other aspects, 
compared with GMO/LMO plants, many GE traits can be 
generated without the incorporation of transgenes. GE plants 
are likewise very similar to those that evolved in nature but 
require only months to obtain compared to multiyear selec-
tion on multiple generations of ancient domesticated crops. 
Therefore, it is natural not to regulate GE plants, as shown 
by Sanatech's high GABA content and Calyxt's FAD2KO 
events. GE technology is continuously improving, and we 
are expecting more exciting applications in crop breeding 
and the global acceptance of GE plants and foods for ending 
hunger and poverty in every country in the world.
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