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Abstract
Main Conclusion  Autophagy is a key but undervalued process in root ontogeny, ensuring both the proper develop-
ment of root tissues as well as the senescence of the entire organ.

Abstract  Autophagy is a process which occurs during plant adaptation to changing environmental conditions as well as dur-
ing plant ontogeny. Autophagy is also engaged in plant root development, however, the limitations of belowground studies 
make it challenging to understand the entirety of the developmental processes. We summarize and discuss the current data 
pertaining to autophagy in the roots of higher plants during their formation and degradation, from the beginning of root tis-
sue differentiation and maturation; all the way to the aging of the entire organ. During root growth, autophagy participates 
in the processes of central vacuole formation in cortical tissue development, as well as vascular tissue differentiation and 
root senescence. At present, several key issues are still not entirely understood and remain to be addressed in future stud-
ies. The major challenge lies in the portrayal of the mechanisms of autophagy on subcellular events in belowground plant 
organs during the programmed control of cellular degradation pathways in roots. Given the wide range of technical areas of 
inquiry where root-related research can be applied, including cutting-edge cell biological methods to track, sort and screen 
cells from different root tissues and zones of growth, the identification of several lines of evidence pertaining to autophagy 
during root developmental processes is the most urgent challenge. Consequently, a substantial effort must be made to ensure 
whether the analyzed process is autophagy-dependent or not.
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Introduction

Autophagy is a major pathway for the degradation of cyto-
plasmic material in eukaryotic cells; including macromol-
ecules, aggregates and the degradation of entire organelles 
(Izumi et al. 2010; Liu et al. 2012; Wang et al. 2013; Li et al. 
2014; Floyd et al. 2015; Marshall et al. 2015; Masclaux-
Daubresse et al. 2020). Autophagy has been identified as the 
primary process for the degradation that is activated by 
plants subjected to environmental stress conditions (Liu 

et al. 2009; Pillajo et al. 2018; Shangguan et al. 2018), star-
vation (Sláviková et al. 2005; Goto-Yamada et al. 2019), in 
root hydrotropic response (Jiménez-Nopala et al. 2018), as 
well as during developmental events (Sláviková et al. 2005; 
Kwon et al. 2010; Hanamata et al. 2014; Machado and Rod-
rigues 2019; Wojciechowska et al. 2019), ageing and senes-
cence (Xiong et al. 2005; Wojciechowska et al. 2018a). Even 
within the same plant cell, autophagy operates under favora-
ble conditions and the autophagic activity can be upregu-
lated under stress conditions (Slavikova et al. 2005; Fan 
et al. 2019). Moreover, autophagy can occur in plant cells 
constitutively, determining the proper development of plant 
organs (Inoue et al. 2006; Yano et al. 2007). Independently 
of the process studied, the regulation of autophagy is strictly 
controlled by the machinery mediated by transcription fac-
tors and epigenetic regulators (Yang et al. 2020). Autophagy 
may operate in a specific manner towards the degradation of 
specific molecules or structures, and is termed ‘selective 
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autophagy’ (Honig et al. 2012; Yoshimoto et al. 2014; Kell-
ner et al. 2017; Borek et al. 2019). It can also act in a general 
and non-selective manner; providing raw material into the 
vacuole (Li and Vierstra 2012; Wang et al. 2018). Besides, 
depending on the conditions, it can cause the removal of 
individual damaged or unnecessary organelles or it can be 
engaged in the unspecific cellular degradation. Given the 
above, paradoxically, as it was suggested, autophagy is 
involved both in cell life and cell death; playing a dual role 
in cell death suppression and promotion (Ustun et al. 2017) 
as well as cell death initiator and executor (Minina et al. 
2014a). When it is involved in developmental programmed 
cell death (dPCD), differentiation-induced execution is 
tightly controlled. Molecular mechanisms governing dPCD 
include several steps from sequential transcriptomic repro-
gramming, accumulation of lytic enzymes and autophagy-
related events (Phase I), to signalling and the initiation of 
cell death execution (Phase II) and finally completement of 
cell death and autolysis (Phase III) (Van Durme and Nowack 
2016). Autophagic mechanisms rely on the coordinated 
operation for a number of cellular processes. All of these 
aforementioned processes were classified and previously 
described in detail for different processes and conditions 
(van Doorn and Woltering 2005; Yang et al. 2015; Goto-
Yamada et al. 2019; Machado and Rodrigues 2019). Depend-
ing on whether the cell follows the terminal pathway to death 
or not, only some or all of the autophagic processes, such as 
micro-, macro- and mega-autophagy, can be initiated. Micro-
autophagy is typically characterized by tonoplast invagina-
tion with small cytoplasmic material followed by the forma-
tion of vesicles inside the vacuole. These vesicles are termed 
‘autophagic bodies’ and enable the digestion of cargo by 
vacuolar enzymes (Fig. 1a). Undoubtedly, however, the most 
common and well-characterized type of autophagy is termed 
macroautophagy. In plants, the macroautophagy pathway 
involves several steps, from induction through the regulation 
and generation of a phagophore. This double membrane 
structure functions to surround and isolate components that 
are targeted for degradation. The macroautophagy pathway 
includes the expansion of phagophores and the enclosure of 
targeted components for autophagosome formation and 
finally fusion with a vacuole (Fig. 1b). These processes 
occur in every cell and ensure its homeostasis. However, 
when the cell is introduced into the programmed death path, 
the decisive key type is mega-autophagy. This process 
involves the permeabilization or rupture of the tonoplast and 
the release of hydrolytic enzymes into cytoplasm for bulk 
digestion of the remaining protoplast (Fig.  1c). Mega-
autophagy is usually associated with the final stage of pro-
grammed cell death (PCD), which occurs during tracheary 
element development as an example (Kwon et al. 2010; 
Bagniewska-Zadworna et al. 2012). Shortly thereafter, this 
leads to cell death characterized by an irreversible loss of 

cellular metabolic activity and final post-mortem autolytic 
cell clearance. In an attempt to comprehensively understand 
autophagy in a plant cell, a series of analyses at the ultras-
tructural, histochemical and molecular level are required; 
however, it must be recognized that, as it was suggested, 
different types of autophagy (micro-, macro- and mega-
autophagy) may occur simultaneously within the same cell, 
or sequentially as the intensity of the dPCD progresses (van 
Doorn and Woltering 2005; Bagniewska-Zadworna et al. 
2012, 2014b). The autophagic structures in plants, character-
izing the different autophagy types, can be observed using 
transmission electron microscopy techniques (TEM) accord-
ing to specific guidelines (van Doorn and Papini 2013; 
Klionsky et al. 2021; Zheng et al. 2018). These approaches 
with the electron microscope allow scientists to monitor both 
selective and non-selective autophagy at the ultrastructural 
level. The study of autophagy, however, typically requires 
“-omic” approaches; such as transcriptomics or proteomics 
which focus on studying specific genes termed as autophagy-
related genes (ATG​) and/or the proteins they encode (Liu 
et al. 2018; Jacomin et al. 2018). The core ATG​ genes were 
originally identified in yeast (Saccharomyces cerevisiae) and 
consist of 18 genes (Avila-Ospina et al. 2014). After that, 
the presence of ATG homologs was also confirmed in mul-
tiple plant species such as Arabidopsis (Thompson et al. 
2005; Inoue et al. 2006), rice (Su et al. 2006; Shin et al. 
2009), maize (Chung et al. 2009), barley (Sobieszczuk-
Nowicka et al. 2018) or petunia (Shibuya et al. 2013). ATG​ 
genes encode proteins that are involved in the induction and 
progression autophagy process. Among these proteins, 
ATG8 has a crucial role which is required for the elongation 
and enclosure steps during autophagosome assemble (Avila-
Ospina et  al. 2014; Xie et  al. 2008). The formation of 
autophagic structures can be also detected using confocal 
laser scanning microscopy (CLSM) and by the immunolo-
calization of the ATG proteins which are critical for the 
proper formation and function of autophagosomes as well 
as vesicle trafficking and vacuolar fusion with autophago-
some (Pankiv et al. 2010; Ryabovol and Minibayeva 2016; 
Li et al. 2018). In addition to the immunolocalization based 
on using of specific antibodies, fluorescent fusion proteins 
(FFP) are becoming more increasingly used to visualize the 
subcellular distribution of ATG proteins (Yano et al. 2007; 
Phillips et al. 2008; Li et al. 2014;). The great advantage of 
using FFP is the in vivo localization of the studied protein, 
without a requirement for fixation of the biological material. 
This is especially important because improper fixation can 
generate false-negative results which are a consequence of 
epitope masking by the cross-linking fixation (Stadler et al. 
2013). Autophagy has been studied for years in plants, how-
ever, limited work pertaining to the involvement of 
autophagy in developmental processes within roots has been 
undertaken. A three-layered system has been proposed to 



Planta (2021) 254:15	

1 3

Page 3 of 16  15

reveal how selective autophagy can function and influence 
plant development and organismal fitness: stimulus specific-
ity, cell-type specificity and subcellular compartmentaliza-
tion (Stephani and Dagdas 2020). To date, however, studies 
of autophagy in roots has primarily focused on deciphering 
the role of this process in response to abiotic stress (Liu et al. 
2009; Kim et al. 2014; Zhai et al. 2016; Guan et al. 2019) 
and nutrient deficiency (Demidchik et al. 2018). In plants, 
PCD has been described and reviewed in relation to both 
developmental processes and in response to environmental 

conditions (Bagniewska-Zadworna and Arasimowicz-
Jelonek 2016; Van Durme and Nowack 2016; Huysmans 
et al. 2017). However, given that the autophagy is not always 
associated with PCD, such knowledge of the occurrence of 
autophagy, as well as its regulation in root development-
related processes, determine understanding the role of the 
organ which is so important for the proper physiological 
function of plants. In an effort to increase our knowledge in 
this area, this work aimed to summarize and discuss current 
data relating to autophagy in the roots of higher plants 

Fig. 1   Autophagy pathways that 
have been confirmed in plants, 
micro-autophagy (a), where 
small cytoplasmic components 
are sequestered in the vacuole 
through the invagination of the 
tonoplast; macro-autophagy 
(b), where a double-membrane 
structure (phagophore) engulfs 
cellular material; resulting in 
the formation of an autophago-
some that fuses with the vacuole 
for further degradation; mega-
autophagy (c), where the tono-
plast is permeable or ruptured; 
allowing the release of the lytic 
contents into the cytoplasm and 
final protoplast autolysis
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during their development from the stage of tissue differentia-
tion and maturation, and all the way through to the aging of 
the entire organ.

Autophagy during root ontogeny

In this report, the occurrence of autophagy during histogen-
esis, growth and senescent phases of root ontogenesis are 
discussed.

Root tissue differentiation and maturation

In their primary stage of growth, roots show a structure that 
is divided into three different growth zones: a region of cell 
divisions with meristematic cells; a region of cell elongation 
with elongated cells that end their divisions; and a region 
of maturation, where cells differentiate into different types 
of specific cells of particular tissues (Evert 2006a). A cross 
section of primary roots reveals the three tissue systems 
that can be distinguished: dermal, cortex (ground tissue) 
and vascular tissues (Gregory 2007). During their differ-
entiation and maturation, autophagy plays a crucial role 
for their establishment and further functioning. Given the 
wide range of technical areas of inquiry where root-related 
research can be applied, the identification of several lines 
of evidence pertaining to autophagy during root develop-
mental processes is challenging. Consequently, substantial 
effort must be made to ensure whether the analyzed process 
is autophagy-dependent or not.

Lateral root cap

Root tips are protected and wrapped up by root cap cells 
that are sloughed off and continuously formed by a root cap 
meristem (Kumpf and Nowack 2015). The autophagy-related 
AtAtg8 genes are noticeable mainly in root caps and in the 
region of maturation, which correspond to root areas that are 
associated with severe protein degradation (Slavikova et al. 
2005). Different strategies of autophagy have been described 
in this region such as the dismantling of root caps through 
a release of individual metabolically active border cells that 
are programmed to separate from each other to the cell death 
and rapid autolysis (Vicre et al. 2005; Driouich et al. 2007; 
Plancot et al. 2013; Fendrych et al. 2014). Under favorable 
conditions, the autophagy-related AtATG8 gene functions 
predominantly in Arabidopsis root caps; suggesting that the 
role of autophagy degradation of macromolecules in this 
region may enable metabolite remobilization from old to 
newly formed cells (Slavikova et al. 2005). Rapid PCD and 
cellular turnover of the lateral root cap is achieved in plants 
to control cap size in the growing root tips (Yadav and Helar-
iutta 2014). Interestingly, it was suggested that synchronous 

bursts of cell death in lateral root cap cells release pulses 
of auxin to surrounding root tissues. As a result, this estab-
lishes the pattern for lateral root formation and is function-
ally important for primary root development and branching 
(Xuan et al. 2016). The last step of lateral root cap differen-
tiation and preparation for cell death, before they fully enter 
the root elongation zone, is controlled at the transcriptional 
level by ANAC033/SOMBRERO. As a result, DNA frag-
mentation and tonoplast rupture, followed by cell clearance 
through autolytic processes involvement, were noticed (Fen-
drych et al. 2014). Although it is well known that cell death 
can be preceded by the degradation of several cytoplasmic 
structures, there is a lack of cytological data confirming that 
this process actually involves autophagy-like structures.

Cortical tissue differentiation

There is a greater body of evidence that has been presented 
for the involvement of autophagy in the formation of cor-
tical tissue. Meristematic cells, which give rise to future 
differentiated tissue cells, are completely filled with dense 
cytoplasm containing a number of organelles (Fig. 2). 
Cortical parenchyma cells, which have already differenti-
ated, usually contain a large central vacuole with proto-
plasts located along the cell wall (Evert 2006a) (Fig. 2a). 
The autophagosome-like organelles in root meristematic 
cells were present at a very early stage of development, 
prior to the formation of large vacuoles (Buvat and Rob-
ert 1979; Marty 1999). In Arabidopsis and barley roots, 
ground tissue differentiation requires autophagy for the 
degradation of cytoplasmic material and proper vacuole 
formation from the meristematic to the elongation zone 
(Inoue et al. 2006). In these ground tissue cells, parts of 
the cytoplasm were observed to accumulate in autolytic 
vacuoles and pre-existing central vacuoles; suggesting that 
autophagy occurs constitutively in these cellular regions 
(Inoue et al. 2006; Yano et al. 2007). Similarly, the occur-
rence of constitutive autophagy was also reported as a 
process accompanying the formation of autolysosomes in 
root cells (Oh-ye et al. 2011; Merkulova et al. 2014). The 
number of autophagosomes in Arabidopsis seedling root 
cells increased in the elongation and maturation zones, 
suggesting that one of the functions of autophagy is the 
degradation of cytoplasmic materials for the recycling 
of molecules for biosynthesis (Yano et al. 2007). It was 
shown that constitutive autophagy occurs during the for-
mation of the central vacuole in maturing plant cells, and 
is not restricted to only occurring in roots (Zouhar and 
Rojo 2009). Under favorable growth conditions of roots, 
autophagy-like structures were observed in the cytoplasm 
and also within the forming central vacuole (Slavikova 
et al. 2005). In Arabidopsis roots, the ATG8f protein was 
localized to autophagy-like structures in both the cytosol 
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(autophagosome-resembling structures) and in the central 
vacuole (Slavikova et al. 2005); suggesting that the con-
stitutive autophagy determines vacuole biogenesis also 
in cortical parenchyma cells. During the differentiation 
of cortical parenchyma cells, the precise timing of that 
process is critical for the elimination of the cytoplasmic 
material in order to allow roots to immediately function in 
their role for absorption.

Vascular tissue differentiation

Concurrent to the differentiation of cortical tissue, vascu-
lar tissue ceases to differentiate. In roots of higher plants, 
vascular tissues are differentiated from meristematic cells, 
such as procambial cells, during primary growth and vascu-
lar cambium cells during secondary growth. Two different 
developmental processes can be distinguished: xylogenesis 
and phloemogenesis, leading to xylem and phloem forma-
tion, respectively (Fig. 2b, c).

Xylogenesis

In cell cultures, cell death of xylem tracheary elements 
(TEs), which is a typical example of vacuolar cell death in 
dPCD, has been suggested to be autophagic (Kwon et al. 
2010). The increment of vacuolization of cells undergoing 
dPCD was proven to be dependent on autophagy that is acti-
vated by metacaspases (Minina et al. 2013). As proposed in 
a hypothetical model, metacaspase type II inhibits a repres-
sor of autophagy by cleaving it or interacting with it, which 
directly leads to an increased autophagic flux and a massive 
delivery of cytoplasmic contents into the vacuole (Minina 
et al. 2014b). In planta, TEs undergoing PCD involve both 
micro- and macro-autophagy, enabling the initial degrada-
tion of the cellular components with lytic central vacuole 
formation and the mega-autophagy and final autolysis after 
tonoplast rupture. In roots, xylogenesis proceeds from sign-
aling via NO, through secondary cell wall synthesis and 
protoplast degradation that are gradual and initiated far in 
advance prior to lignification (Bagniewska-Zadworna et al. 

Fig. 2   Cells, which differentiate and mature from meristematic tissue 
to perform specialized functions, require autophagy involvement in 
this process. Cortical parenchyma cells (a) are characterized by the 
presence of a large vacuole that occupies most of the cell, and the 
cytoplasm is only in a narrow space near the cell wall. Such structure 
is created through the autophagy activity and both micro- and macro-
autophagy are involved in the degradation of cytoplasmic material; 
and this determines vacuole biogenesis to allow roots to immediately 
function in their role for absorption. The role of autophagy has also 
been proven in the differentiation of vascular tissues (b, c). During 
xylogenesis mature tracheary elements (TEs) are dead cells and their 

differentiation is related to the activation of PCD process, which 
involves both micro- and macro-autophagy, enabling the initial deg-
radation of cellular components and large vacuole formation (b). 
In the last stage of xylogenesis, the tonoplast ruptures causing final 
autolysis. During phloemogenesis (c), sieve elements (SEs) undergo 
dramatic remodeling of its subcellular components. Mature sieve 
elements (SEs) lose most of their organelles while companion cells 
(CCs) remain highly metabolically active, with a dense cytoplasm 
containing the number of organelles. It is believed that autophagy 
might be responsible for that selective degradation of organelles in 
SEs. Note: the figure is not drawn to scale
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2014a). These events also precede the rupture of tonoplasts 
and cell death. However, final autolysis, which occurs post-
mortem, is the most crucial process to enable TEs to eventu-
ally function as effective conductors of nutrient fortified 
water, both in roots (Avci et al. 2008; Bagniewska-Zadworna 
et al. 2012) and in aboveground tissues (Courtois-Moreau 
et al. 2009; Escamez and Tuominen 2014). Interestingly, in 
stems, during xylem fiber differentiation, the gradual degra-
dative processes in both the nucleus and cytoplasm occur, 
which results in almost a complete loss of the cytoplasmic 
contents well before the loss of vacuolar integrity (Courtois-
Moreau et al. 2009). Thus, it seems that the development of 
xylem tissue must be strongly dependent on the proper func-
tioning of autophagic as well as autolytic machineries. Dur-
ing the differentiation of root TEs in Populus (pioneer and 
fibrous roots), all types of autophagy have been documented 
to occur (Bagniewska-Zadworna et al. 2012). These pro-
cesses begin with the initiation of micro- and macroau-
tophagy along with the central vacuole formation until the 
formation of fully functional TEs. Autophagic-bodies within 
the vacuole, and the formation of autophagosomes, were 
demonstrated for both TEs and xylary fibers that were under-
going PCD in Populus trichocarpa roots (Bagniewska-Zad-
worna et  al. 2012, 2014a; Wojciechowska et  al. 2019). 
Autophagy-related processes appear to function both in cen-
tral vacuole formation and partial degradation of cytoplas-
mic material at the beginning of xylem differentiation. In 
those differentiating cells, macroautophagy processes were 
initiated by a double membrane structure (phagophore) 
which surrounded a large portion of cytoplasm; resulting in 
the formation of an autophagosome after its complete enclo-
sure of the cytoplasm. The functional mechanisms respon-
sible for the development of autophagosomes are well under-
stood (Kim et al. 2012); including those that function in 
plants (Yoshimoto and Ohsumi 2018). Proteins encoded by 
ATG​ genes are known to control the process of autophago-
some formation by forming complexes (Yorimitsu and 
Klionsky 2005). Thus, the upregulation of several ATG​ 
genes (ATG8C, ATG8D and ATG18D) has been documented 
in root segments with differentiating primary and secondary 
xylem; while high expression of ATG11 was exclusively 
noticed in roots showing secondary growth. Importantly, 
concurrent detection of ATG8 protein was characterized 
immunohistochemically during the early development of 
TEs and xylary fibers (Wojciechowska et al. 2019). Two 
forms of ATG8 protein exist, both free and conjugated to 
phosphatidylethanolamine (PE), which participate in the 
biogenesis of autophagosomes and regulation of the conju-
gation of ATG8 to PE and its localization to the Pre-
Autophagosomal Structure (PAS) (Nair et al. 2012). Conse-
quently, these features make the ATG8 protein a convenient 
molecular marker of macro-autophagy. However, it is impor-
tant to note that transmission electron microscopy detected 

nuclei in differentiating TEs in roots until the stage at which 
vacuole integrity was maintained; thereby indicating that the 
degradation of nuclei was slow and prolonged (Bagniewska-
Zadworna et al. 2014a). However, it is also proposed that 
TEs programmed autolysis is initiated far in advance prior 
to cell death but is finished post-mortem (Escamez and 
Tuominen 2017). It was suggested that nuclei undergo post-
mortem autolysis rather than controlled degradation during 
the differentiation of TEs (Bollhöner et al. 2012). Similarly, 
autolysis is delineated as necessary for protoplast elimina-
tion in both TEs (Escamez and Tuominen 2014) and several 
other processes during plant development (rev by Escamez 
and Tuominen 2017). During TE differentiation in Arabi-
dopsis roots, the central vacuole increases in size and xylem 
cysteine proteases (XCP1 and XCP2) accumulate to enable 
their participation in micro-autolysis within vacuoles that 
are still intact. After tonoplast implosion, both XCP1 and 
XCP2 remained associated with disintegrating cellular mate-
rial of maturing TEs in roots, and degraded the bulk of the 
cellular contents through mega‐autolysis (Avci et al. 2008). 
Interestingly, barley vacuolar aspartic proteinase (phytepsin, 
a plant homologue to cathepsin D in animals) was detected 
in roots during both TE and SE development, but vacuolar 
cysteine proteinases were present only with TE differentia-
tion (Runeberg‐Roos and Saarma 1998). Specifically, it is 
plausible that those proteinases may also play a role in active 
cellular degradation during xylogenesis. Due to the release 
of a large amount of hydrolytic enzymes from the lytic com-
partment, mega-autophagy followed by mega-autolysis is an 
irreversible step of xylem differentiation (Fig. 2b). This pro-
cess occurs exactly when TEs are capable of performing 
their conductive function (Avci et al. 2008; Bagniewska-
Zadworna et  al. 2012) and after cyclosis is no longer 
observed after collapse of the vacuole. As a result, the last 
autolytic processes are also capable of occurring after the 
disintegration of vacuoles. Therefore, entire cell clearance 
can be completed after cell death (Bollhöner et al. 2013; 
Escamez and Tuominen 2014; Van Durme and Nowack 
2016). On the other hand, as indicated by van Doorn and 
Woltering (2010), the rupture of the tonoplast does not nec-
essarily mean cell death. A classic example of this scenario 
are phloem sieve elements which are still alive, despite the 
tonoplast breakage and the lack of a vacuole in their mature 
form. To cause death, tonoplast rupture must be followed by 
lytic activity of enzymes released from vacuoles. As a result, 
mega-autophagy is capable of causing death in most or even 
all examples of dPCD (van Doorn and Woltering 2010). It 
was shown that vacuolar cell death in the embryo suspensor 
of Norway spruce requires metacaspase controlled 
autophagy, thus cell death is not directly executed by 
autophagy (Minina et al. 2013). Additionally, the META-
CASPASE 9 (AtMC9) revealed a role in the clearance of the 
cell contents post-mortem, which is a crucial part of a 
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proteolytic cascade in xylem cell death of Arabidopsis thali-
ana roots (Bollhöner et al. 2013). Interestingly, in cell cul-
tures, TE cell types displayed higher levels of autophagy 
when expression of the TE-specific AtMC9 was reduced. As 
a consequence, this results in the modulation of autophagy 
to confine cell death only to the target cells (Escamez et al. 
2016). It was suggested that there is a need for a tight control 
of autophagy in differentiating TEs undergoing PCD to 
implement intercellular signaling to protect surrounding 
cells (ectopic non-TEs) from triggering an unnecessary 
death path (Escamez et al. 2016). It seems plausible that 
there is a key to restrict cell death only to specific cell types, 
such as TEs.

Phloemogenesis

During phloemogenesis, it is also likely that autophagy 
plays a role in the partial and highly selective degradation 
of cytoplasmic structures from other conductive elements 
in roots, such as sieve elements (SEs). Unfortunately, as 
compared to xylogenesis, there is a lack of comprehensive 
literature data pertaining to the involvement and mecha-
nisms of autophagy in the process of phloemogenesis. At 
their maturity, SEs do not contain many organelles and are 
they devoid of a nucleus, dictyosomes of the Golgi apparatus 
and vacuoles. The only visible intracellular components are 
a few plastids, mitochondria, endoplasmic reticulum, spe-
cific vesicles and phloem-specific P proteins (Eleftheriou 
1996; Zhou et al. 2004; Evert 2006b; Heo et al. 2017). In 
contrast to dead xylary tissue, the process of cellular com-
ponent degradation is slightly different in phloem. As a 
result, cell death does not occur and SEs remain alive and 
exist in a poor form with limited cellular organelles. An 
unusual process during the differentiation of phloem is the 
cessation of autophagy which ultimately leads to cell death. 
At the present time, the signal which triggers the sudden 
cessation of further degenerative processes is not known. 
Additionally, the molecular mechanism that is responsible 
for the selective degradation of cytoplasmic structures dur-
ing the differentiation of phloem is not entirely understood. 
In recent years, several factors regulating phloem develop-
ment in plants have been discovered (Truernit et al. 2012; 
Rodriguez-Villalon et al. 2014, 2015). However, the course 
and chronology of phloem differentiation has not indicated 
the degradation of individual structures during SE matura-
tion. The mechanism of autophagy activity and its functional 
role in the process of phloemogenesis still remains to be 
elucidated. The majority of information for this process was 
obtained from the discovery of the NAC45/86 transcription 
factors which are responsible for the mechanism of selective 
autolysis of the nuclei in root SEs. Additionally, it was also 
discovered that this process occurred simultaneously with 
the autolysis of other cytoplasmic structures as well (Furuta 

et al. 2014). A selective autophagy-like process, similar to 
microautophagy, is functionally involved in the formation 
of phloem SEs in the developing caryopsis in wheat (Wang 
et al. 2008). The process pertaining to the partial degrada-
tion of cytoplasmic material in SEs is even referred to as 
‘programmed cell semi-death’ (Yang et al. 2015). Within 
the developing caryopsis of wheat, the central vacuole and 
cytosol of differentiating phloem cells were found to become 
weakly acidified after rupture of the tonoplast (Yang et al. 
2015). It is plausible that two potential degradation path-
ways exist; one that involves the function of the endoplasmic 
reticulum (ER) for the selective envelopment of organelles; 
and the other putative pathway involves selective inclusion 
into vacuoles (Wang et al. 2008). Given that the ER, and 
especially ER-mitochondria contact sites, is the source of 
membranes to drive the formation of autophagosomes (Chan 
and Tang 2013; Zhuang et al. 2017); it is highly probable 
that macroautophagy also plays a crucial role for enabling 
cellular degradation during phloemogenesis in root tissues 
as well. Accordingly, it is important to note that immuno-
histochemical methods confirmed the localization of the 
autophagy-related protein ATG8 to phloem cells exhibiting 
autophagy during the differentiation and early development 
of primary and secondary phloem; including phloem fibers 
in roots (Wojciechowska et al. 2019). These data provided 
the first premise to suggest the involvement of macroau-
tophagy during the differentiation of phloem in roots. In 
contrast to the documented involvement of autophagy for 
xylogenesis in roots and TE differentiation where a large 
amount of information already exists, this has been an area 
of study that has been slow to progress.

The examples detailing the involvement of autophagy in 
the tissue differentiation processes are presented in Fig. 3.

Root senescence and cell death

Autophagy, which is activated as a pro-survival and pro-
death process, plays a dual role in plant tissues and is 
actively involved in the senescence of above-ground plant 
organs. A significant body of work has functionally charac-
terized the mechanisms related to autophagy and confirmed 
that they are active during leaf and petal senescence. Addi-
tional studies with TEM and CLSM microscopy have con-
firmed the processes at the ultrastructural level; as well as the 
analyses of ATG​ genes and ATG proteins (Guo et al. 2004; 
van der Graaff et al. 2006; Shibuya et al. 2011; Shibuya 
2012; Shibuya et al. 2013; Avila-Ospina et al. 2014; Ishida 
et al. 2014; Sobieszczuk-Nowicka et al. 2018). Despite the 
abundance of research pertaining to the characterization of 
autophagy in senescing leaves and petals, only a few studies 
have focused on the role of autophagy in the senescence of 
below-ground organs. Similar to above-ground plant organs, 
senescence and cell death can be considered for specific root 
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tissues (e.g., root cortical senescence; RCS), as well as for 
entire organs such as the seasonal senescence of fine, absorp-
tive roots. Both processes have been classified as examples 
of PCD. Additionally, these processes have also been associ-
ated to similar morphological (root browning and shrinkage) 
and anatomical (degradation of cortex parenchyma cells) 
hallmarks; since known characteristics have already been 
documented for aboveground organs (Schneider et al. 2017; 
Wojciechowska et al. 2018a, b; Liu et al. 2019).

Root cortical senescence (RCS) and death (RCD)

RCS typically initiates in the rhizodermis and spreads 
towards the endodermis; especially for grass species includ-
ing wheat, barley and maize (Drew et al. 2000). In accord-
ance to what has been observed in senescent leaves, semi-
nal roots of Hordeum vulgare undergo significant changes 
associated with cortex senescence such as the upregulation 
of NAC and WKRY transcription factors, increased concen-
tration of abscisic acid (ABA) and salicylic acid (SA); and a 
decrease in cytokinins (CKs). Interestingly, the upregulation 
of ATG​ genes, which may confirm the role of autophagy in 

this process, has not been detected. However, the authors 
emphasized that seminal roots of H. vulgare do not contain 
the same abundance of proteins in comparison to leaves. 
Additionally, the plants were exposed to a continuous sup-
ply of nutrients which may have suppressed nutrient remo-
bilization; and thus, the overall process of autophagy (Liu 
et al. 2019). It is important to note that these results are 
mostly relevant for annual plants; since the remobilization 
from roots is not as crucial as for trees. Nevertheless, it is 
interesting to determine the responsible mechanism for 
the massive degradation of cortex tissue. An interesting 
but not yet fully understood process pertains to the role of 
autophagy in the formation of aerenchyma within cortical 
tissue; which is referred to as root cortical death (RCD). 
Aerenchyma is a specialized cortical tissue which is com-
posed of a network of interconnected gas spaces that occur 
in many plants to improve the aeration of the rhizosphere 
(Jackson and Armstrong 1999; Evans 2004). It is plausi-
ble that the formation of this tissue, which paradoxically 
relies on cell degradation, might be a part of normal devel-
opment or a response to abiotic stress; which in most cases 
is directly caused by hypoxia (Evans 2004; Thomas et al. 

Fig. 3   Particular tissue develop-
ment was monitored at subse-
quent sections from the pioneer 
root differentiation zone of 
Populus trichocarpa. Represent-
ative images of xylem (a, b) and 
phloem (c, d) differentiation are 
presented at different distances 
from the root tip. In roots, the 
fluorescent signal appeared only 
in a particular root segment, 
exactly where particular vascu-
lar tissue differentiated. ATG8 
was observed in developing 
primary xylem, also a strong 
signal came from differentiat-
ing primary phloem and from 
developing secondary xylem 
(for details see Wojciechowska 
et al. 2019). For each of the 
examples, light microscopy 
(LM) and ATG8 protein locali-
zation (immunofluorescence, 
green fluorescence, detection 
of both free form of ATG8 and 
conjugated with PE) images are 
provided. Lignin distribution 
(red autofluorescence). Methods 
described in Wojciechowska 
et al. 2019. (Original data). Ph 
phloem, X xylem; Bars = 50 µm
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2005). There are two basic types of aerenchyma, schizog-
enous and lysigenous, which differ in the pathway of origi-
nation (Evans 2004; Takahashi et al. 2014). The formation 
of schizogenous aerenchyma is based on cell separation and 
does not result in their own cell death. In contrast, however, 
the formation of lysigenous aerenchyma includes a series 
events which are similar to PCD; which ultimately lead 
to cell death while neighboring cells remain alive (Evans 
2004). During the formation of lysigenous aerenchyma in 
maize roots, plasma membrane invagination, small vesicle 
formation, DNA fragmentation, and chromatin condensa-
tion are the examples of the PCD-related changes that have 
been documented (Gunawardena et al. 2001a, b). Moreo-
ver, plenty of membrane bodies enclosing organelles such 
as mitochondria, ER and Golgi apparatus were also observed 
and characterized from ultrastructural analyses. Accordingly, 
autophagy-like structures have also been observed during 
root aerenchyma formation in several species such as Sagit-
taria lancifolia (Schussler and Longstreth 2000), Sium lati-
folium (Shevchenko et al. 2016), Triticum aestivum (Jiang 
et al. 2010; Xu et al. 2013) and Zea mays (Gunawardena 
et al. 2001b; Lenochova et al. 2009). In past studies, some 
authors have clearly suggested that autophagy mechanisms 
are involved in the development of aerenchyma (Bouranis 
et al. 2007). However, despite their findings, there are still 
only a few molecular analyses which have focused on this 
topic. During an experiment which evaluated waterlogged 
roots in Arabidopsis, the increased expression of several 
ATG​ genes (ATG2, ATG5, ATG7, ATG8e, ATG10, ATG18a) 
was observed, in addition to an overall increase in the num-
ber of autophagosomes as well (Guan et al. 2019). ATG8 
protein was also detected in developing aerenchyma using 
immunofluorescent method (Fig. 4). In addition to these 
aforementioned changes, a concomitant accumulation of 
ROS was also observed. Waterlogging is also one of the 
best-known stimuli of aerenchyma formation, and has also 
been documented to be accompanied by an increase of ROS 
(Xu et al. 2013; Ni et al. 2019). If we combine these data, 
we can hypothesize that these mechanisms function to acti-
vate autophagy in Arabidopsis roots are therefore related to 
the first committed step of aerenchyma formation. However, 
there are only a few data showing the relation of aerenchyma 
formation and nutrient remobilization. Some authors have 
suggested that root cortical aerenchyma (RCA) formation 
may play a dual role (1) in nutrient remobilization and (2) 
decreased respiration, especially in nutrient deficiencies 
(Adamakis et al. 2011). It was indicated that RCA may play 
a role in the acquisition and utilization of plant-valuable ele-
ments such as nitrogen (N), phosphorus (P), and potassium 
(K). It is reasonable to consider that this may be an adaptive 
trait to obtain nutrients by relocating them from the cortex 
and reducing metabolic costs of soil exploration (Adama-
kis et al. 2011; Postma and Lynch 2011). In nutrient-poor 

soils, this trait is an important factor influencing biomass 
and agricultural production. Moreover, it is plausible that the 
elevated expression of several ATG8 genes in primary roots 
of maize may be related to processes that are functionally 
connected to the formation of aerenchyma (Li et al. 2015). 
To address this question, we performed immunolocalization 
studies which clearly documented the presence of ATG8 
protein in developing aerenchyma tissue of maize roots, with 
stronger signal at the beginning of aerenchyma formation 
(Fig. 4b, d). These data provide evidence to suggest that 
autophagy could be involved in this process. It appears that 
the final stage of aerenchyma generation in roots is tonoplast 
rupture and cytoplasm acidification (Kawai et al. 1998; Joshi 
and Kumar 2012); reflecting a subsequent symptom of the 
implementation of mega-autophagy and autolysis.

The entire root senescence

At the end of the vegetative season, senescence in roots 
is not always connected with RCS or RCD but also with 
the whole organ senescence. Studies conducted on Popu-
lus trichocarpa have suggested that the autophagy pro-
cess occurs during the senescence of fine, absorptive roots 
(Bagniewska-Zadworna et al. 2014b; Wojciechowska et al. 
2018a). Similar to leaves and petals, these roots are classi-
fied similarly as ephemeral organs; which undergo senes-
cence and die after performing their specific physiological 
functions at the whole plant level. According to previously 
published reports, the lifespan of these absorptive roots is 
species-specific and may range from a few weeks to as long 
as a 2-year period (Wells and Eissenstat 2001; Xia et al. 
2010). Fine, absorptive roots are specifically defined as roots 
of the first, second and third order with a diameter smaller 
than 2 mm. They are also characterized by a lack of second-
ary structure, a high nitrogen concentration, colonization 
by mycorrhiza and a high surface to weight ratio (McCor-
mack et al. 2015). Collectively, these properties make them 
efficient for the absorption of water and nutrients from the 
soil. Studies have indicated that the senescence of these 
roots is not a passive process and is strictly regulated; with 
autophagy playing a key role in the process (Wojciechowska 
et al. 2018a). Ultrastructural analyses have confirmed that 
more than one type of autophagy occurs in parenchyma 
cortex cells during senescence. Tonoplast invagination and 
the presence of autophagic bodies inside the vacuole have 
suggested the role of microautophagy in small cytoplasmic 
fragment degradation; while double-membrane vesicles 
with residual cytoplasmic material inside provide evidence 
of macroautophagy (Bagniewska-Zadworna et al. 2014b; 
Wojciechowska et al. 2018a). Finally, the last step of senes-
cence, which is characterized by the rupture of tonoplasts 
and the degradation of cytoplasmic material after cell death, 
is designated as post-mortem autolytic processes. In addition 
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to microscopic analyses, the upregulation of several ATG8 
genes (ATG8C, ATG8D, ATG8G) has been detected during 
the senescence of fine, absorptive roots (Wojciechowska 
et al. 2018a). ATG8 genes encode ubiquitin-like proteins, 
which are required for the formation of autophagosomes and 
are responsible for their size regulation (Ohsumi 2001; Xie 
et al. 2008). In senescent roots, the amount of ATG8 protein 
also increased, which was similar to the elevated expression 
of the ATG8 gene (Wojciechowska et al. 2018a). ATG8 pro-
tein was detected in senescent fine roots as well, especially 
in cortical cells, using immunofluorescent method (Fig. 4f). 

The changes related to the autophagy process that were 
documented during the senescence of absorptive, fine roots 
are analogous to those observed in senescent leaves. These 
observations indicate that autophagy is a universal process 
which is responsible for the proper course of senescence in 
ephemeral organs. Moreover, the dual role of autophagy as 
a pro-survival and pro-death process is emphasized during 
senescence (Avila-Ospina et al. 2014; Wang and Schippers 
2019). During the first stage of senescence, autophagy coun-
teracts instantaneous cell death, and maintains cell homeo-
stasis. Additionally, autophagy also participates in the proper 

Fig. 4   Autophagy examples in 
aerenchyma differentiation and 
root senescence. For each of 
the examples, light microscopy 
(LM) and ATG8 protein locali-
zation (immunofluorescence, 
green fluorescence, detection 
of both free form of ATG8 and 
conjugated with PE) images are 
provided. a–d Representative 
images of aerenchyma forma-
tion, which was successively 
monitored in the cortical cells 
of Zea mays roots grown in 
hydroponic conditions for 
14 days. No such signal was 
detected in favorable condi-
tions. Transverse section of 
root showing subsequent stages 
of lysigenous aerenchyma 
formation—early (a, b) and late 
(c, d) stages are provided. e, f 
Seasonal senescence of Populus 
trichocarpa fine roots. Please 
note the strong fluorescent 
signal in the cytoplasm (b, d, f) 
located along cell walls due to 
large central vacuole occur-
rence in cortical cells. Methods 
described in Wojciechowska 
et al. 2018a (Original data). 
c cortical air space, w wall 
residues of collapsed cells, i 
intact cells linking inner and 
outer cortex, SC senescent 
cortex. Bars (a–d) = 50 µm, 
(e–f) = 25 µm
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occurrence of the remobilization process; which is an overall 
key step in the senescence process (Chen et al. 2019). Gain-
ing insight into the aging process of the roots is also essen-
tial to understand the carbon-nutrient relationships in trees 
(explained by Niinemets and Ostonen 2020). Consequently, 
the knowledge pertaining to this mechanism is crucial. Stud-
ies performed in Populus documented a decreased content of 
nitrogen along with an increased expression of genes encod-
ing enzymes participating in N remobilization during senes-
cence (Wojciechowska et al. 2020). However, autophagy is 
also one of the crucial mechanisms that is responsible for 
the degradation of cellular components. Functional evidence 
has documented that atg mutants are more sensitive to stress, 
have improper nutrient remobilization and are also charac-
terized by premature leaf senescence and earlier cell death 
(Phillips et al. 2008; Guiboileau et al. 2012, 2013). Moving 
forward, it will be very important for the scientific commu-
nity to make a comparable linkage between the senescence 
of fine roots in trees and the capacity of atg mutants to cope 
with premature death.

Conclusions and perspectives

Autophagy is a crucial physiological process and its active 
role can be strictly related to the differentiation of tissues. 
As a result of this coordinated process, differentiated tissues 
are subsequently enabled to perform their proper biological 
function. In this study, the activity of autophagy during root 
ontogenesis was discussed; with a main focus on histogen-
esis, root growth and senescence. The review presents and 
debates multiple aspects of publicly available data. Never-
theless, these molecular processes reported in detail have not 
been understood in full detail at the cellular level in roots. 
We have shown that autophagy is potentially engaged in 
many root developmental processes; however, the limitations 
of the existing design/framework of root studies has resulted 
in a knowledge gap that needs to be filled. Therefore, we 
specifically address three topics that were not directly, or 
were only lightly, considered in previous works. These top-
ics will still require further investigation to narrow down 
this gap: (i) the mechanism regulating the degradation of 
cytoplasmic structures in differentiating root cells has not 
yet fully elucidated, however, it is of particular interest; (ii) 
determining if selective autophagy may be responsible for 
the process of phloemogenesis in roots; (iii) characterization 
of a signal which may determine the abrupt cessation of 
degradative processes when the cell matures (e.g., cortical 
parenchyma cell or phloem conductive element). Scientific 
advancement in each of these areas will undoubtedly pro-
vide an opportunity to reconsider how roots regulate and 
use the autophagic machinery to ensure proper growth and 
functioning at the whole plant level. The research that will 

be necessary to address these questions can be facilitated 
by novel methods; a basis of which can be provided through 
methodological progress for immunolocalization techniques 
such as the use of specific antibodies, in addition to fluo-
rescent fusion proteins (FFP) that can be implemented to 
visualize the subcellular distribution of autophagy-related 
proteins. Taken together, these approaches can ultimately 
provide a powerful tool and possess capacities for creating 
generic knowledge that can be of wider relevance; which 
may ultimately prove to be critical for understanding the role 
of autophagy in developmental processes in plants. There-
fore, it is necessary to perform future investigations, using 
cutting-edge cell biological methods to track, sort and screen 
cells from different root tissues. These approaches can be 
used in addition to tailored strategies at the molecular level 
which will increase our understanding of autophagy function 
within particular zones of roots.
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