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Abstract
Main conclusion Long non-coding RNAs modulate gene activity in plant development and stress responses by vari-
ous molecular mechanisms.

Abstract Long non-coding RNAs (lncRNAs) are transcripts larger than 200 nucleotides without protein coding potential. Com-
putational approaches have identified numerous lncRNAs in different plant species. Research in the past decade has unveiled that 
plant lncRNAs participate in a wide range of biological processes, including regulation of flowering time and morphogenesis 
of reproductive organs, as well as abiotic and biotic stress responses. LncRNAs execute their functions by interacting with 
DNA, RNA and protein molecules, and by modulating the expression level of their targets through epigenetic, transcriptional, 
post-transcriptional or translational regulation. In this review, we summarize characteristics of plant lncRNAs, discuss recent 
progress on understanding of lncRNA functions, and propose an experimental framework for functional characterization.
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Introduction

Pervasive transcription of genomes contributes to the large 
number of non-coding RNAs. Long non-coding RNAs 
(lncRNAs) are typically defined as transcripts of more 
than 200 nucleotides length and without any protein cod-
ing potential (Quinn and Chang 2016; Budak et al. 2020). 
Since discovery of thousands of lncRNAs based on genome-
wide survey, the functional relevance of lncRNAs has been 
debated. They have been suggested to be ‘transcriptional 
noise’ (Hüttenhofer et al. 2005) rather than having specific 
biological functions (for review, see Kung et al. 2013). It is 

now becoming clear that lncRNAs represent a highly hetero-
geneous class of molecules that can be distinguished based 
on their biogenesis and functions, and by their position rela-
tive to other genomic features such as protein-coding genes 
or transposons (Yu et al. 2019) (Table 1).

Most lncRNAs are located within intergenic regions 
although intronic lncRNAs and natural antisense lncRNAs 
have been reported. Specialized groups of plant lncRNAs 
produced by RNA polymerase IV or V are important scaf-
folding components in the RNA directed DNA methylation 
(RdDM) pathway (Chekanova 2015). Several features of 
lncRNAs, including transcript length, expression level and 
specificity, biogenesis, post-transcriptional processing and 
degradation, are not only different from those of protein-
coding mRNAs, but also heterogeneous among the lncR-
NAs. Even though large numbers of lncRNAs have been 
identified via next generation sequencing (NGS), microarray 
and comparative genomics, only a small portion of lncRNAs 
have been functionally characterized. LncRNAs can regulate 
mRNA expression via cis and/or trans mechanisms, act as 
signals and decoys of miRNAs or RNA binding proteins, 
provide specificity for target molecules such as histone mod-
ifying enzymes, and function as scaffolds stitching together 
large molecular machinery (Wang and Chang 2011). In 
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terms of the layers of regulation, lncRNAs can affect target 
gene activity at almost all levels of regulation, including 
chromatin, transcriptional, post-transcriptional, translational, 
and post-translational levels (Fatica et al. 2014; Lucero et al. 
2020). In plants, lncRNAs have been shown to participate 
in regulation of developmental processes, biotic and abiotic 
stress responses, in addition to acting as modulators of the 
basic cellular machinery. Comparative analysis of lncRNAs 
in many plant species has deepened our understanding of 
conservation and evolution of lncRNAs. Transposable ele-
ments contributed significantly to the origin and diversifi-
cation of lncRNAs in plants (Kapusta and Feschotte 2014). 
Many identified and experimentally verified lncRNAs have 
been curated and deposited into databases, making them 
accessible for functional studies [see, e.g., EVLncRNAs 
(Zhou et al. 2018, 2019), Supplemental table S1]. In this 
review, we summarize the characteristics and recent findings 
on plant lncRNA functions, and document the strategies and 
experimental approaches used in identification and analysis 
of plant lncRNAs.

Discovery and classification of lncRNAs

The first eukaryotic lncRNA, H19 with a length of 2.3 kb, 
was discovered in mouse in 1984 and is highly expressed 
during embryo development (Pachnis et al. 1984). Both 
H19 and its neighboring protein coding gene Igf2 are 
imprinted. H19 and Igf2 are maternally and paternally 
expressed, respectively, and form the H19/IGF2 cluster 
(Fig. 1a) (Keniry et al. 2012; Nordin et al. 2014). Sub-
sequently, many lncRNAs such as Xist, Airn, MALAT1, 
and HOTAIR were discovered and characterized in animals 
through genetic, molecular, and functional studies (Fatica 
et al. 2014). The first identified plant lncRNA, Enod40, 
was isolated as an early marker for nodule organogenesis 
in Medicago plants (Crespi et al. 1994). Enod40 was found 
to trigger changes in subcellular localization of the nuclear 
RNA binding protein MtRBP1 (Crespi et al. 1994; Cam-
palans et al. 2004). Since then, plant lncRNAs have been 
identified as regulators of miRNA activity (Franco-Zorrilla 

et al. 2007), epigenetic regulation (Swiezewski et al. 2009; 
Wu et al. 2020) and modulation of chromatin structure 
(Ariel et al. 2014, 2020; Kim and Sung 2018). Further-
more, the two antisense lncRNAs LAIR (LRK Antisense 
Intergenic RNA) and MAS (MAF4 antisense RNA) were 
found to interact with WDR5 (a component of the COM-
PASS-like complex) thereby regulating flowering time in 
rice and Arabidopsis, respectively (Wang et al. 2018; Zhao 
et al. 2018).

Based on their genomic position and orientation relative 
to their neighboring or overlapping protein coding genes, 
lncRNAs can be classified into intronic lncRNAs, intergenic 
lncRNAs (lincRNAs), natural antisense lncRNAs, and sense 
lncRNAs (Ariel et al. 2015; Fig. 1b). LincRNAs can be fur-
ther classified based on the genomic features with which 
they are associated, such as promoters, enhancers, and trans-
posable elements (Fig. 1b).

Enhancer-associated lncRNAs (eRNAs) are usually 
less than 2000 nt in length and bidirectionally transcribed 
from corresponding enhancers, as shown in animal model 
systems (Shlyueva et al. 2014). These eRNAs often lack 
polyA tails and are degraded by the exosome when they 
are released from RNA polymerase II (RNA pol II, Shly-
ueva et al. 2014). Bidirectional transcripts are not  typi-
cally detected in enhancers or promoters of Arabidopsis 
and other plants, most likely due to rapid degradation (Thi-
effry et al. 2020 and references therein). Most eRNAs are 
functionally uncharacterized. Data from non-plant model 
systems suggest roles of eRNAs in mediating changes in 
chromatin status, though it has also been suggested that they 
represent products of ‘accidental’ RNA pol II activity at 
enhancers (Shlyueva et al. 2014). Transposable element-
associated lncRNAs (TE-lncRNAs) overlap with transpo-
sons that provide lncRNAs with distinct characteristics and 
chromatin environment. Transposons such as ALU elements 
promote nuclear localization of human lncRNAs (Lubelsky 
and Ulitsky 2018; Carlevaro-Fita et al. 2019). The evolu-
tionary origins and functional diversification of lncRNAs 
are also influenced by transposable elements (Kapusta et al. 
2013). Last but not least, many lncRNAs act as precursors 

Table 1  Comparison of typical 
characteristics of mRNAs and 
lncRNAs

Category mRNAs lncRNAs

Length Longer Shorter
Expression specificity More constitutive expression Most specifically expressed
Expression level Higher expression Lower expression
Biogenesis RNA pol II RNA pol II, pol III, pol IV, pol V 

(plant-specific RdDM pathway)
TF binding sites Mostly in promoters, regulatory 

introns, enhancers
Promoters and lncRNA gene body

Processing 5′ caps and 3′ polyA tails Most have, some without polyA tails
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of miRNAs or siRNAs, such as Iw1 involved in the wax 
biogenesis of wheat (Huang et al. 2017).

Altogether, lncRNAs comprise a highly heterogeneous 
class of biomolecules that reflect differences in their bio-
genesis, functionality and turnover. In the following, we aim 
to provide an overview on characteristics of plant lnRNAs, 
pointing toward their distinct origins and mechanisms of 
action.

Characteristics of lncRNAs

Abundance and size of lncRNA transcripts

LncRNAs have been identified in a wide range of plant 
species including Arabidopsis, rice, and maize. The 

number of lncRNAs identified varies depending on the 
technology used for identification in each species, and 
large-scale analyses have reported between 6480 (Liu et al. 
2012) and 6510 (Zhao et al. 2018) lncRNAs in Arabi-
dopsis (Table 2). LncRNAs are usually shorter than pro-
tein-coding mRNAs, and they contain less exons. Some 
lncRNAs contain open reading frames (ORFs) with the 
potential of producing small peptides (Lin et al. 2020). 
While it is not known whether functional peptides are 
formed, small ORFs encoded in lncRNAs have been shown 
to affect growth of human cells (Chen et al. 2020).

1984: H19, first eukaryotic lncRNA

1990 2000 2010 2020

1991: Xist 2002: Airn

2007: HOTAIR
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Fig. 1  Discovery and classification of lncRNAs. a A timeline of lncRNA discovery. b Classification of lincRNAs based on genomic position 
[enhancer, promoter, genomic locus of protein-coding genes, transposon (TE)]
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Expression specificity and functionality

LncRNAs are typically expressed in a more tissue-specific 
manner than mRNAs of protein-coding genes. In Arabidop-
sis, ~ 32% of lncRNAs display organ-specific expression that 
could be verified by experimental methods such as qRT-PCR 
(Liu et al. 2012). High expression specificity of lncRNAs 
makes them potentially suitable as markers for tissues and 
developmental stages. Partly, the apparent specificity could 
also be attributed to the generally low expression level of 
lncRNAs, as well as limitations in detection by standard 
mRNA-sequencing protocols.

Biogenesis, splicing, and regulation of lncRNAs

As protein-coding mRNAs, biogenesis of most lncRNAs 
depends on RNA pol II-mediated transcription and co-
transcriptional splicing. For instance, cold responsive 
lncRNA SVALKA is transcribed by RNA pol II, and it 
tightly regulates expression of C-REPEAT/DRE BINDING 
FACTOR 1 (CBF1) (Kindgren et al. 2018). Additional fac-
tors or other RNA polymerases also contribute to the bio-
genesis of lncRNAs (Liu et al. 2015). Arabidopsis lncRNA 
AtR8 is transcribed by RNA pol III and involved in the 
hypoxic stress response (Wu et al. 2012). A subset of lncR-
NAs are produced by the plant-specific RNA pol IV or pol 
V (Liu et al. 2015). These lncRNAs can play a role in the 
RdDM pathway, in which RNA pol IV-transcribed lncR-
NAs interact with INVOLVED IN DE NOVO 2 (IDN2), 
which then recruits a SWI/SNF chromatin remodelling 
complex to silence the activity of transposable elements 
(TEs) or genes by facilitating access of nucleosomes to 
DNA methylases (Zhu et al. 2013). Additionally, compo-
nents of the miRNA pathway contribute to lncRNA bio-
genesis. For example, processing of a subset of lincRNAs 
requires SERRATE (SE), CAP BINDING PROTEIN20 
(CBP20), and CAP BINDING PROTEIN80 (CBP80) (Liu 
et al. 2012). DICER-like proteins may also play roles in 
processing of plant lincRNAs (Ma et al. 2014). Conse-
quently, these plant lncRNAs are usually processed into 
24 nt het-siRNA by DCLs (e.g., DCL3) to methylate target 
genomic loci (e.g. TEs).

During RNA processing, lncRNAs are typically stabi-
lized by capping and polyadenylation in the nucleus.  A 
subset of lncRNAs in mammalians, such as MALAT1, are 
processed by RNase P, do not possess polyA tails and, 
instead, have a specialized 3′ end structure (Wilusz et al. 
2008). In humans, non-polyadenylated lncRNAs (i.e., 
sno-lncRNAs) that are flanked by snoRNAs and protected 
by RNA binding proteins have also been identified (Yin 
et al. 2012). Among the non-polyadenylated lncRNAs, a 
specialized form of RNAs called circRNAs, such as circ-
SEP3 in Arabidopsis (Conn et al. 2017), join their heads 
with tails covalently in a process called back-splicing that 
is mediated by the spliceosome machinery (Chen 2016). 
CircRNAs may regulate splicing of their cognate mRNAs, 
as was shown for circSEP3 and its target SEPALLATA3 
(SEP3) (Conn et al. 2017). Differential polyadenylation, 
linked with changes in preferential subcellular localiza-
tion, in response to stress has been described for rice and 
Arabidopsis lncRNAs (Di et al. 2014; Yuan et al. 2016, 
2018).

In mammalians, ~ 13% of lncRNAs are transcripts that 
are derived from divergent transcription in promoters of pro-
tein-coding genes (Grzechnik et al. 2014). These divergent 
transcripts are associated with histone modification (e.g. 
H3K56ac), RNA pol II Tyr1 phosphorylation and chroma-
tin remodeling factors (e.g. SWI/SNF). Furthermore, the 
directionality of these divergent lncRNAs is determined by 
the asymmetry of U1 snRNP and polyadenylation signals 
(Quinn and Chang 2016). However, divergent transcription 
does not appear to occur in the majority of genes in Arabi-
dopsis thaliana (Hetzel et al. 2016; Thieffry et al. 2020). 
In addition to the RNA polymerase machinery, transcrip-
tion factors (TFs) and chromatin environment (e.g., histone 
modification and DNA methylation) also contribute to the 
regulation of lncRNA expression (Quinn and Chang 2016).

Data from humans suggest that splicing efficiency of 
lncRNAs is lower than that of mRNAs, possibly due to 
lower binding of splicing factors and the presence of weaker 
splicing-related motifs (Melé et al. 2017). Low sequencing 
depth and limitation of RNA-seq assembly methods may 
also contribute to this observation, since RACE-seq of 
lncRNAs detected as many alternative splicing events in 

Table 2  Example studies 
for systematic lncRNA 
identification in plants

Species Tissues Number of 
lncRNAs

References

Arabidopsis thaliana Seedling, inflorescence 6480 Liu et al. (2012)
Oryza sativa Anther, pistil, seed, shoot 2224 Zhang et al. (2014)
Brassica rapa Pollen 12,051 Huang (2018)
Gossypium hirsutum Root, hypocotyl, leaf, flowers 35,268 Wang et al. (2015)
Zea mays Root, leaf and shoot 20,163 Li et al. (2014)
Solanum lycopersicum Fruits 3679 Zhu et al. (2015)
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lncRNAs as in mRNAs (Lagarde et al. 2016). Systematic 
tissue-specific interrogation of lncRNA transcripts with a 
higher sequencing depth and transcriptomics of specific 
cellular compartments, such as the nucleus, will help us to 
get a better overview on the lnRNA expression/abundance, 
the repertoire of lncRNA splice forms and other aspects of 
lnRNA biogenesis in plants in the future.

Structure of lncRNAs

LncRNAs possess secondary structures which may be nec-
essary for their functionality. There are usually two types 
of functional sites in lncRNAs: interacting sites which are 
necessary for sequence-specific interactions with RNA bind-
ing proteins, and structural sites which confer the identity 
of secondary and/or tertiary structures directing interacting 
partners (Fabbri et al. 2019). For example, COOLAIR par-
ticipating in vernalization has a multi-way junction motif 
and two right-hand turn motifs (Hawkes et al. 2016), which 
are very conserved secondary structures in the Brassicaceae 
family. However, it is still unknown which proteins interact 
specifically with these motifs.

Subcellular localization of lncRNAs

mRNAs are usually exported into cytosol for translation. By 
contrast, after processing lncRNAs can reside in nucleus or 
get exported to cytosol or other subcellular locations and 
organelles, such as mitochondria, as demonstrated by RNA 
FISH and ribosome profiling (Carlevaro-Fita and Johnson 
2019). Data from animal model systems showed that lncR-
NAs are generally prone to be more enriched in the nucleus 
than in the cytoplasm compared to mRNAs (Derrien et al. 
2012). Sequence elements within lncRNAs as well as RNA 
binding proteins contribute to the nuclear or cytosolic locali-
zation of lncRNAs, which reflects their cellular roles and 
functionality (Carlevaro-fita and Johnson 2019). For exam-
ple, human lncRNAs containing ALU repeats are more 
prone to be retained in nucleus because of binding of specific 
splicing factors such as HETEROGENEOUS NUCLEAR 
RIBONUCLEOPROTEIN K (HNRNPK; Lubelsky and 
Ulitsky 2018). Some cytosolic lncRNAs are associated with 
mono- and poly-ribosomal complexes (see, e.g. Bazin et al. 
2017; Hsu et al. 2016), and some of these lncRNAs could 
eventually contribute to biogenesis of small peptides. A set 
of nuclear lncRNAs are bound by chromatin, and this locali-
zation can be stabilized by U1 snRNP (U1 small nuclear 
ribonucleoprotein particle) in mammals (Yin et al. 2020). 
Chromatin-associated lncRNAs potentially influence TF 
binding or the functionality of enhancers (Shlyueva et al. 
2014). While these data from animal model systems indi-
cate intricate mechanisms underlying the subcellular distri-
bution of lncRNAs, less is known on plant lncRNAs. Many 

identified lncRNAs (e.g., COOLAIR, DRIR) in plants are 
localized to and act in nucleus. For example, cold-induced 
COOLAIR coats the FLC locus in nucleus and acts in FLC 
repression by changing the histone modification status (e.g., 
H3K36me3) dynamics (Rosa et al. 2016; Wu et al. 2020). 
On the other hand, there are also cytoplasm localized cis-
Natural Antisense Transcripts (cis-NATs) overlapping with 
protein coding genes and some of them could impact the 
translation of mRNAs (Deforges et al. 2019). In sum, the 
different types of subcellular localization point to various 
molecular mechanisms of action of lncRNAs in transcrip-
tional and posttranscriptional control of gene expression.

Decay of lncRNAs

In terms of turn-over of lncRNAs, the half-lives of lncRNAs 
are typically shorter than those of mRNAs, which reveals 
complex regulation of lncRNA metabolism in plants (Szabo 
et al. 2020). LncRNAs are less efficiently synthesized and 
rapidly degraded (Mukherjee et al. 2017). Like mRNAs, 
plant lncRNAs can be degraded by both 3′–5′ exonucle-
olysis via the nuclear exosome and 5′–3′ exonucleolysis 
via exonucleases such as XRN2 and XRN3 (Kurihara et al. 
2012). In mutants of exosome subunits, a set of specialized 
lncRNAs similar to CUTs (Cryptic unstable transcripts) 
and PROMPTs (Promoter upstream transcripts) emerged 
from TSSs of mRNAs (Chekanova et al. 2007; Chekanova 
2015; Thieffry et al. 2020). Data from humans suggest 
that exosome-regulated lncRNAs modulate the activity of 
enhancers, resolving deleterious R-loop structures by the 
exosome (Pefanis et al. 2015; Nair et al. 2020). Similar to 
mRNAs, the quality of plant lncRNAs is also surveilled by 
the nonsense-mediated mRNA decay (NMD) pathway (Kur-
ihara et al. 2009; Kirn et al. 2009; Drechsel et al. 2013). 
Interestingly, the up-frameshift (upf) mutants, defective in 
a component of the NMD pathway, accumulate high levels 
of transcripts derived from antisense transcription and inter-
genic regions (Kurihara et al. 2009). This suggests extensive 
regulation of lncRNA stability via several molecular regula-
tory pathways.

Functions and molecular mechanisms 
of lncRNAs in plants

The recently established lncRNA database EVLncRNAs 
collected 1543 experimentally validated lncRNAs from 77 
species, including 428 lncRNAs from 44 plant species such 
as Arabidopsis and rice (Zhou et al. 2018, 2019). Despite 
limited functional characterization of most lncRNAs, studies 
so far have uncovered a wide range of possible functions and 
molecular mechanisms mediated by plant lncRNA activities 
(Datta and Paul 2019) (Fig. 2a).
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Regulation of flowering time

Reproductive success in plants is tightly coupled to proper 
timing of the floral transition and to robust flower morpho-
genesis. Flowering time control in plants is regulated via 
internal signals such as plant hormones and environmental 
cues including day length and temperature. For Arabidopsis, 
a prolonged period of cold (winter) downregulates in a pro-
cess called vernalization the expression of the major flow-
ering repressor FLOWERING LOCUS C (FLC) to promote 
flowering in spring. There are several lncRNAs intricately 
and tightly fine-tuning the expression level of FLC, such 
as COOLAIR, COLDAIR, ANTISENSE LONG (ASL), and 
COLDWRAP (Swiezewski et al. 2009; Heo and Sung 2011; 
Castaings et al. 2014; Shin and Chekanova 2014; Csorba 
et al. 2014; Hawkes et al. 2016; Rosa et al. 2016; Kim et al. 
2017; Kim and Sung 2018). COOLAIR, including two short 
and long isoforms with polyA tails, is a class of natural 
antisense transcripts originating from the 3′ end of the FLC 
locus (Swiezewski et al. 2009). COOLAIR activity is regu-
lated by 3′ processing factors FCA, FY, FPA, CstF64, and 
CstF77 (polyadenylation cleavage factors), and PRP8 (the 
spliceosome component) (Liu et al. 2010; Marquardt et al. 
2014). However, detailed molecular mechanisms of COOL-
AIR repressing FLC are still unknown, although the increas-
ing level of histone demethylase FLD has been shown to 
contribute to H3K4me2 demethylation of FLC (for review, 
see Wu et al. 2020). COLDAIR is transcribed from the sec-
ond FLC intron and acts as signal of early vernalization by 
recruiting the H3K27me3 writer CURLY LEAF (CLF), an 
enzymatic component of the PRC2 complex and a homolog 
of EZH2 in animals, to repress FLC (Fig. 2b) (Heo and Sung 
2011; Kim et al. 2017). COLDWRAP is a lncRNA associ-
ated with the promoter of FLC, which also interacts with 
CLF to form an intragenic chromatin loop and to confer FLC 
repression (Kim and Sung 2018). Furthermore, a non-poly-
adenylated antisense transcript (ASL, for Antisense Long) is 
produced from the FLC locus. The function of ASL is still 
unknown but the expression level of ASL is downregulated 
in an rrp6l mutant (one of the exosome components, rrp6l1 

rrp6l2 double mutant) (Shin and Chekanova 2014). MAS 
(NAT-lncRNA_2962) is a natural antisense lncRNA from the 
MADS AFFECTING FLOWERING4 (MAF4) locus involved 
in vernalization, and regulates MAF4 via interacting with 
histone-modifying enzyme WDR5a (Zhao et al. 2018).

Other flowering time-related lncRNAs, including FLOW-
ERING LONG INTERGENIC NON CODING RNA (FLINC), 
CDF5 LONG NONCODING RNA (FLORE), LDMAR, 
PHOTOPERIOD-SENSITIVE GENIC MALE STERILITY 1 
(PMS1T) and Ef-cd, have been recently discovered in Arabi-
dopsis or rice (Ding et al. 2012a, b; Fan et al. 2016; Hen-
riques et al. 2017; Severing et al. 2018; Fang et al. 2019). 
FLINC regulates ambient temperature-mediated flowering. 
T-DNA insertion mutants of FLINC flowered earlier due to 
upregulated FT expression while the underlying mechanism 
is not known (Severing et al. 2018). The circadian-regulated 
FLORE is a lncRNA antisense to CDF5 and is involved in 
promoting of photoperiodic flowering by repression of sev-
eral CDFs and consequently activation of FT (Henriques 
et al. 2017). In sum, the different examples indicate interest-
ing functions for lncRNAs in the environment-dependent 
modulation of flowering time, providing model systems for 
studying how gradual changes in environmental factors trig-
ger a defined developmental decision at the transcriptional 
or posttranscriptional level.

Modulation of reproductive organ development

After floral transition, the inflorescence meristem starts to 
produce floral meristems, which in turn give rise to differ-
ent types of floral organs. Nowadays, a number of lncRNAs 
such as LINC-AP2 (Gao et al. 2016), LONG-DAY SPE-
CIFIC MALE-FERTILITY-ASSOCIATED RNA (LDMAR) 
(Ding et al. 2012a,b), PHOTOPERIOD-SENSITIVE GENIC 
MALE STERILITY T (PMS1T; Fan et al. 2016), and EARLY 
FLOWERING-COMPLETELY DOMINANT (Ef-cd; Fang 
et al. 2019) have been found to regulate diverse aspects of 
flower and reproductive development (see Supplemental 
table S1 for a more comprehensive list of examples). LINC-
AP2 is an intergenic lincRNA close to the flower develop-
mental regulatory TF gene APETALA2 (AP2). While AP2 
is downregulated upon infection with Turnip crinkle virus 
(TCV), the expression of LINC-AP2 is elevated, and strong 
upregulation of LINC-AP2 correlates with abnormal flo-
ral structures (Gao et al. 2016). The long intergenic rice 
lncRNA XLOC_057324 is highly expressed in reproductive 
organs, and T-DNA insertion mutant analysis suggests roles 
in control of flowering and plant fertility (Zhang et al. 2014).

Other functions of lincRNAs include specific processes 
directly related to plant fertility. BcMF11 is specifically 
expressed in pollen and is necessary for male fertility and 
pollen development in Brassica campestris ssp. chinensis 

Fig. 2  Functions of lncRNAs in plants. a LncRNAs participate in 
diverse biological processes, including flowering time control, flower 
development, abiotic and biotic stress responses (lncRNAs of Arabi-
dopsis thaliana and Oryza sativa are highlighted in green and orange, 
respectively). Illustrations of Arabidopsis thaliana and Oryza sativa 
plant are from (Illustrations 2017). b COLDAIR recruits PRC2 com-
plex to deposit H3K27me3 marks at target gene FLC and thereby 
drives repression of FLC. c APOLO recognizes target gene by R-loop 
formation and decoys PRC1 protein. d ASCO can hijack splicing fac-
tor NSR to regulate alternative splicing of target genes. e ELENA1 
evicts FIB2 from the FIB2-MED19a complex and contributes to acti-
vation of PATHOGENESIS-RELATED GENE  1 (PR1). f miR2118 
targets PM1T to produce many phasiRNAs. g MIKKI acts as a target 
mimic to sequester miR171 away from its target

◂
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(Song et al. 2013). SUPPRESSOR OF FEMINIZATION 
(SUF) is a lncRNA antisense to MpFGMYB, an important 
regulator of female sexual tissue differentiation in liver-
wort (Marchantia polymorpha). The suf loss of function 
mutant created by Cas9-based deletion displayed male-to-
female sexual conversion, probably due to failure to repress 
MpFGMYB in male tissues in the absence of SUF (Hisan-
aga et al. 2019). The intronic lncRNA AG-incRNA4 from 
the second intron of the floral homeotic AGAMOUS (AG) 
gene in Arabidopsis is expressed in leaves and interacts with 
the PRC2 complex component CLF to deposit H3K27me3 
histone marks onto the AG locus, thereby contributing to 
repression of AG expression in leaves. Knockdown of AG-
lincRNA4 resulted in AG activation in leaves by lowering 
the H3K27me3 level at the AG locus. Consequently, the 
corresponding mutant showed phenotypes resembling those 
of ectopic AG expression (Wu et al. 2018). LDMAR was 
identified in rice through map-based cloning and regulates 
photoperiod-sensitive male fertility via RdDM (Ding et al. 
2012a, b; Zhou et al. 2012).

Small RNAs, including het-siRNAs, phase-siRNAs, 
and miRNAs, play a critical role in development and 
stress responses. For example, miR396-mediated regu-
lation of HaWRKY6 plays a role in protection of damage 
caused by high temperature in sunflower and affects plant 
growth (Giacomelli et al. 2012). Identification of ncRNA-
W6 (ncW6) in the promoter of HaWRKY6 revealed another 
layer of regulation of the gene by a non-coding RNA. ncW6 
derives from a transposon of the MITE family and is able to 
form a hairpin structure that is processed into 24 nt het-siR-
NAs by DCL3 to trigger DNA methylation in the flanking 
regions of HaWRKY6. DNA methylation changes chromatin 
structure of the HaWRKY6 locus and promotes the forma-
tion of a loop encompassing the whole locus to enhance 
transcription of HaWRKY6. The level of DNA methyla-
tion, and consequently, the formation of the loop and the 
expression level of HaWRKY6 are regulated in a tissue-
specific manner (Gagliardi et al. 2019). Another lncRNA, 
PMS1T, identified by map-based cloning in rice, contrib-
utes to photoperiod-sensitive male sterility by producing 
phase-siRNAs in a miR2118-dependent manner (Fan et al. 
2016) (Fig. 2f). Ef-cd is an antisense RNA in the OsSOC1 
locus and positively regulates OsSOC1 activity by deposi-
tion of H3K36me3, thereby reducing the time-span that is 
needed to reach plant maturity without yield penalty (Fang 
et al. 2019). Together, these findings highlight important 
functions for lncRNAs in reproductive growth via different 
molecular mechanisms. Since many uncharacterized lncR-
NAs are associated with genomic loci that encode develop-
mental control genes, these will provide interesting targets 
of future research.

Response to abiotic and biotic stresses

As sessile organisms, plants must cope with various kinds of 
abiotic and biotic challenges. Plants have evolved intricate 
signaling cascades and molecular networks to combat these 
stresses. Under phosphate starvation conditions, Arabidop-
sis plants express the lncRNA Induced by Phosphate Star-
vation 1 (IPS1). IPS1 acts as an endogenous target mimic 
to sequester and repress miR399, a repressor of PHOS-
PHATE2 (PHO2), which encodes a ubiquitin-conjugating 
E2 enzyme. Repression of PHO2 enhances phosphate uptake 
and accumulation (Fig. 2g) (Franco-Zorrilla et al. 2007). 
ELF18-INDUCED LONG-NONCODING RNA1 (ELENA1) 
is a 589-nt lincRNA conferring immunity of Arabidopsis. 
Plants with a reduced expression level of ELENA1 by an 
artificial miRNA are more sensitive to the bacterial patho-
gen Pseudomonas syringae pv. tomato DC3000 and show 
downregulation of several immunity marker genes, includ-
ing PATHOGENESIS-RELATED GENE 1 (PR1). In con-
trast, overexpression of ELENA1 activates immune genes 
such as PR1. ELENA1 exerts its role via interacting with 
components of Mediator (Fig. 2e) (Seo et al. 2017). The 
lncRNA DROUGHT-INDUCED LNCRNA (DRIR) in Arabi-
dopsis positively regulates salt and drought response. Plants 
overexpressing DRIR showed enhanced salt and drought tol-
erance and displayed higher survival rates under salt and 
drought stress conditions (Qin et al. 2017). Many other stress 
response-related lncRNAs have been identified, but their 
molecular mechanisms of action are yet to be investigated 
(see, e.g. Zhu et al. 2014; Wang et al. 2017).

Functions in other biological processes

LncRNAs have been shown to participate in diverse bio-
logical processes, such as leaf development, auxin signaling, 
and photomorphogenesis. TWISTED LEAF (TL) is a rice 
lncRNA antisense to OsMYB60 and required for maintaining 
leaf blade flattening by regulating the expression of its sense 
mRNA (Liu et al. 2018). The auxin responsive Arabidopsis 
lncRNA APOLO plays a role in fine-tuning the transcription 
of its neighboring PINOID (PID) gene, an important regu-
lator of auxin polar transport, via formation of a chromatin 
loop involving the promoter of PID. The expression level 
of APOLO determines the chromatin environment in the 
promoter region of PID affecting histone modifications and 
the level of DNA methylation, and consequently the forma-
tion of the chromatin loop and the expression level of PID 
(Fig. 2c) (Ariel et al. 2014). In addition to these cis effects, 
APOLO also regulates target loci in trans by formation of 
R-loop (DNA-RNA duplexes) mediated by short sequence 
complementarity and thereby decoying PRC1 to target loci 
to modulate their chromatin status (Ariel et al. 2020). Fur-
thermore, the photomorphogenesis-related lncRNA HID1 
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(HIDDEN TREASURE1) represses the transcriptional activ-
ity of its target gene PHYTOCHROME INTERACTING FAC-
TOR 3 (PIF3). HID1 forms a large nuclear complex with as 
yet unknown proteins and modulates the chromatin structure 
in the PIF3 promoter, consequently repressing hypocotyl 
elongation of Arabidopsis seedlings (Wang et al. 2014).

LncRNAs function in basic nuclear regulatory processes 
by interacting with proteins. For example, nuclear speck-
les are nuclear domains enriched with splicing-related fac-
tors and located in interchromatin regions of nucleoplasm 
(Spector and Lamond 2011). It was shown that Arabidopsis 
ASCO-lncRNA competes for the NUCLEAR SPECKLE 
RNA-binding proteins (NSRs) and sequesters NSRs to mod-
ulate the alternative splicing pattern of target genes (Fig. 2d) 
(Bardou et al. 2014). LncRNAs are also components of the 
telomerase molecular machinery. For example, lncRNA 
AtTR is the RNA subunit of telomerase, which interacts 
with TELOMERASE REVERSE TRANSCRIPTASE (TERT) 
to maintain the integrity and stability of telomeres (Michal 
et al. 2019; Song et al. 2019). This indicates roles of lncR-
NAs in genome integrity and genome functions beyond bio-
logical functions in development or environmental response, 
which emphasize the need for multiscale experimental meth-
odologies to characterize lncRNA functions.

Experimental methodologies for functional 
characterization of lncRNAs

Similar to   protein-coding genes, functions of lncRNAs 
can be investigated using forward and reverse genetics 
approaches. However, functional analysis of lncRNAs 
is hampered by the need to distinguish functions of the 

lncRNA transcript from that of its genomic locus. This is 
because lncRNAs are often produced from DNA genomic 
regions with other functions, e.g., loci of protein coding 
genes (in the case of intronic or antisense lncRNAs) or 
enhancers (e.g., in the case of eRNAs). Also RNAi-based 
knockdown of lincRNA activities can have side effects that 
are not related to the functions of lincRNAs, for instance, 
RNAi-mediated DNA methylation is possible to change the 
functionality of the genomic regions in other aspects (e.g., 
affecting enhancer activity). Finally, not the lincRNA tran-
script itself, but the process of transcription may exert a 
regulatory function (Gowthaman et al. 2020).

In plants, a small set of lncRNAs has been identified by 
map-based cloning and functionally characterized, such as 
LDMAR (Ding et al. 2012a), PMS1T (Fan et al. 2016), Ef-cd 
(Fang et al. 2019) and Iw1 (Huang et al. 2017). However, 
reverse genetics (e.g., based on T-DNA mutagenesis popu-
lations, RNAi, overexpression) is most commonly used for 
studies of lncRNA functions, because the vast majority of 
lncRNAs were identified by high throughput technologies. 
Every method used to perturb lncRNA functions has dis-
advantages. For example, T-DNA insertions or CRISPR/
Cas9-based deletions in intergenic regions may not only 
inhibit lncRNA expression, but also affect other functions 
of the DNA sequences, such as TF binding sites or regu-
latory elements  within lincRNA loci, thereby altering the 
expression of nearby protein coding genes. When studying 
antisense, sense, or intronic lncRNAs, these approaches 
can also have side effects, such as modifying splicing of the 
associated protein-coding genes. The RNAi technology on 
the other hand is known to be prone to off-targeting, and may 
cause RdDM, thereby confounding functional interpreta-
tion of the target lncRNAs. Thus, a combination of different 

Fig. 3  Experimental workflow 
for dissection of lncRNA func-
tions. Details are described in 
the main text
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approaches and proper control experiments are required to 
study lncRNA functions.

Here, we propose a workflow for functional investigation 
of plant lncRNAs (Fig. 3). When a candidate lncRNA is 
identified, the first task to perform a comprehensive inspec-
tion of the sequence and structure of the lncRNA. Rapid 
amplification of cDNA ends (RACE) can be used to obtain 
the full length transcript(s) of the lncRNA. Searching pub-
licly available datasets, such as cap analysis of gene expres-
sion (CAGE) and polyA site sequencing (PAS-seq) (Shepard 
et al. 2011), and performing RNA-seq will give clues about 
the general structure as well as alternative splicing pat-
terns of the lncRNA locus of interest. Northern blotting and 
quantitative RT-PCR (qRT-PCR) are standard approaches 
for investigation of the expression profiles of lncRNAs. 
GREEN FLUORESCENT PROTEIN (GFP) reporter imag-
ing can be used to study dynamic lncRNA promoter activity. 
RNA-FISH allows study of the activity and localization of 
lncRNAs to the level of individual genomic loci (Rosa et al. 
2016). Recent studies showed that some lncRNAs could 
translate into small peptides, and thus it is necessary to dis-
tinguish whether the lncRNA of interest functions as non-
coding RNA or as small peptide. Several bioinformatics and 
experimental approaches can be employed for this purpose, 
such as CPC2 to test for coding potential test (Kang et al. 
2017). Additionally, lncRNAs should be queried in protein 
databases including Pfam (Finn et al. 2016) and Uniprot 
(The UniProt Consortium 2017) to know whether they have 
potential homologous proteins. Ribosome footprints based 
on ribosome profiling are indicative of open reading frames, 
which are used to discriminate lncRNAs from protein cod-
ing genes (Lander 2014; Hsu et al. 2016; Bazin et al. 2017). 
Loss/gain-of-function mutants are generated to investigate 
functionality of the lncRNA. Since every technique has its 
own limitations (see above), it is necessary to use multiple 
different approaches such as T-DNA mutagenesis, RNAi, 
overexpression with constitutive and tissue-specific promot-
ers, and CRISPR/Cas9-based mutagenesis combined with 
mutant complementation. A large number of publicly availa-
ble T-DNA insertion lines are available for both Arabidopsis 
and rice. Analysis of independent mutant alleles and, impor-
tantly, transgenic mutant complementation (in trans) can be 
used to validate the functionality of lncRNAs (see, e.g. Fang 
et al. 2019). When a lncRNA has multiple isoforms, gener-
ating mutants for each isoform can distinguish the roles of 
individual isoforms. CRISPR/Cas9-based mutagenesis usu-
ally creates small indels in the target site (Li et al. 2018), 
which might not influence the functionality of the lncRNA. 
This can be overcome by introducing a pair of single guide 
RNA (sgRNA) to induce a larger indel in the corresponding 
lncRNA locus. Use of multiple such pairs of sgRNAs cover-
ing the entire lncRNA can help to dissect functional regula-
tory sites of the lncRNA. In these experiments, potential 

side effects arise from mutagenizing other functional DNA 
elements that reside within the lncRNA locus. Therefore, 
the target lncRNA locus should be evaluated carefully by 
taking into account existing information on TF binding sites 
or chromatin structure. In all types of mutant analyses, the 
phenotypic analyses should be complemented by monitoring 
changes in expression of the protein-coding genes flanking 
the lncRNA locus of interest. Especially for studying trans 
mechanisms of lncRNAs, (inducible) ectopic expression or 
artificial miRNA technology can be used for validation.

Functional lncRNAs typically interact with DNA, RNA, 
and proteins. The in vivo or in vitro approaches developed 
for investigating the RNA–protein (e.g., RIP and CLIP) (Cao 
et al. 2019), RNA-DNA (e.g., ChIRP) (Chu et al. 2012), 
and RNA-RNA (e.g., RAP-RNA)(Engreitz et  al. 2014) 
interactions can be used to identify the molecular partner(s) 
interacting with lncRNAs. The subcellular localization of 
lncRNAs is also important, since it may provide clues on 
functions. For example, single molecule RNA FISH analysis 
revealed that COOLAIR and FLC transcripts are mutually 
exclusively expressed (Rosa et al. 2016). It is important to 
further develop in vitro and in vivo experimental methods 
to screen and validate the interaction between lncRNAs and 
their partner molecules. For example, a trimolecular fluo-
rescence complementation (TriFC) system has been used 
to demonstrate lncRNA-protein interaction by tagging a 
lncRNA with the MS2 system (MS2 sequence and phage 
MS2 coat protein fused to YFP-N) and co-transfecting it 
together with the YFP-C tagged RNA-binding protein into 
tobacco leaves  via Agrobacterium (Seo et al. 2019). Finally, 
we envision that efficient novel experimental and compu-
tational methods will be developed for investigation of the 
functionality of lncRNAs in plants at the level of single cells 
or subcellular compartments.

Conclusions and perspectives

Mounting evidence shows involvement of lncRNAs in wide 
ranges of biological processes, including development 
and stress responses. Efficient computational methods are 
urgently needed to predict functional lncRNAs for experi-
mental validation. LncRNAs act in cis or in trans to regulate 
the function of their target genes through diverse mecha-
nisms that involve interactions with DNA, RNA or proteins. 
Many plant lncRNAs (e.g., COLDAIR) function epige-
netically to modulate the expression of their target genes 
by modifying histone modification status and chromatin 
organizations. However, despite the diversity of molecular 
mechanisms and functions, our understanding of most plant 
lncRNAs is still elusive and unclear. There are at least a 
couple of reasons. Firstly, the effects of lncRNAs might only 
be observed under specific conditions given that expression 
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of most lncRNAs is highly tissue/condition-specific. Sec-
ondly, lncRNAs represent a heterogeneous group of RNA 
molecules in plants. Several subclasses of lncRNAs (e.g., 
enhancer RNAs) are largely coupled with regulatory DNA 
sequences (e.g., TFBSs), which makes it difficult to assess 
their (if any) specific functions. Development of technolo-
gies is imperative to understand molecular mechanisms of 
lncRNAs (Ariel et al. 2020). Large-scale functional screens 
of lncRNAs by CRISPR/Cas9-based mutagenesis have been 
established in human and flies, although only a small per-
centage of lncRNAs showed context-specific phenotypic 
changes (Liu et al. 2017). A similar system has yet to be 
developed for plant lncRNAs although large-scale mutagen-
esis populations have been created in several plant species by 
transformation of sgRNA libraries targeting protein-coding 
genes (Jacobs et al. 2017; Lu et al. 2017; Meng et al. 2017; 
Zhang et al. 2019; Liu et al. 2020; Bai et al. 2020). Finally, 
we need to investigate how we can effectively utilize the 
knowledge on beneficial lncRNAs in breeding programs to 
develop novel plant germplasm and elite crop varieties. An 
excellent example for this is provided by Ef-cd that promotes 
early maturity without yield penalty probably due to better 
nitrogen utilization and photosynthesis in rice. It functions 
like a dominant gene as plants homozygous or heterozygous 
for Ef-cd showed better agronomic performance compared 
to plants without Ef-cd. It thus is valuable for rice breed-
ing. Fang et al. (2019) have developed molecular markers 
completely linked with Ef-cd, which can be used to identify 
new early maturity rice germplasm containing Ef-cd and to 
introgress Ef-cd into elite rice cultivars to further improve 
their maturity and agronomic performance based on marker-
assisted selection. For LDMAR and PMS1T, base editing can 
be used to change the unfavorable alleles into favorable ones 
as single nucleotide polymorphisms seem to be the cause 
for changes in fertility. These examples show that utilizing 
knowledge on plant lncRNA functions can open new pos-
sibilities for plant breeding research, thereby improving crop 
quality and performance.
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