Skip to main content
Log in

Abscisic acid regulates pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol–lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

GUS:

β-Glucuronidase

HMG:

Hydroxyl methylglutaryl

PLR:

Pinoresinol–lariciresinol reductase

RT-PCR:

Reverse transcription-polymerase chain reaction

SDG:

Secoisolariciresinol diglucoside

SECO:

Secoisolariciresinol

X-Gluc:

5-Bromo-4-chloro-3-indolyl-β-d-glucuronic acid

References

  • Abe H, Yamaguchi-Shinozaki k, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Adlercreutz H, Mazur W (1997) Phytoestrogens and Western diseases. Ann Med (Helsinki) 29:95–120

    CAS  Google Scholar 

  • Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol 125:1248–1257

    Article  PubMed  CAS  Google Scholar 

  • Attoumbre J, Hano C, Mesnard F, Lamblin F, Bensaddek L, Raynaud-Le Grandic S, Laine E, Fliniaux MA, Baltora-Rosset S (2006) Identification by NMR and accumulation of a neolignan, the dehydrodiconiferyl alcohol-4-β-d-glucoside, in Linum usitatissimum cell cultures. C R Chimie 9:420–425

    Article  CAS  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380

    Article  PubMed  CAS  Google Scholar 

  • Bayindir U, Alfermann AW, Fuss E (2008) Hinokinin biosynthesis in Linum corymbulosum Reichenb. Plant J 55:810–820

    Article  PubMed  CAS  Google Scholar 

  • Busk PK, Pages M (1998) Regulation of abscisic acid-induced transcription. Plant Mol Biol 37:425–435

    Article  PubMed  CAS  Google Scholar 

  • Davin LB, Lewis NG (2003) An historical perspective on lignan biosynthesis: monolignol, allyphenol and hydroxycinnamic acid coupling and downstream metabolism. Phytochem Rev 2:257–288

    Article  CAS  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed  CAS  Google Scholar 

  • Ford JD, Huang KS, Wang HB, Davin LB, Lewis NG (2001) Biosynthetic pathway to the cancer chemopreventive secoisolariciresinol diglucoside-hydroxymethyl glutaryl ester-linked lignan oligomers in flax (Linum usitatissimum) seed. J Nat Prod 64:1388–1397

    Article  PubMed  CAS  Google Scholar 

  • Frey A, Boutin JP, Sotta B, Mercier R, Marion-Poll A (2004) Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds. Planta 224:622–632

    Article  Google Scholar 

  • Gutierrez L, Conejero G, Castelain M, Guénin S, Verdeil JL, Thomasset B, Van Wuytswinkel O (2006) Identification of new gene expression regulators specifically expressed during plant seed maturation. J Exp Bot 57:1919–1932

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez L, Van Wuytswinkel O, Castelain M, Bellini C (2007) Combined networks regulating seed maturation. Trends Plant Sci 12:294–300

    Article  PubMed  CAS  Google Scholar 

  • Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L, Arroo RRJ, Mesnard F, Lamblin F, Lainé E (2006a) Pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224:1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Hano C, Addi M, Bensaddek L, Crônier D, Baltora-Rosset S, Doussot J, Maury S, Mesnard F, Chabbert B, Hawkins SW, Lainé E, Lamblin F (2006b) Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. Planta 223:975–989

    Article  PubMed  CAS  Google Scholar 

  • Hano C, Addi M, Fliniaux O, Bensaddek L, Duverger E, Mesnard F, Lamblin F, Lainé E (2008) Molecular characterization of cell death induced by a compatible interaction between Fusarium oxysporum f. sp. linii and flax (Linum usitatissimum) cells. Plant Physiol Biochem 46:590–600

    Article  PubMed  CAS  Google Scholar 

  • Harmatha J, Nawrot J (2002) Insect feeding deterrent activity of lignans and related phenylpropanoids with a methylenedioxyphenyl (piperonyl) structure moiety. Entomol Exp Appl 104:51–60

    Article  CAS  Google Scholar 

  • Hattori T, Terada T, Hamasuna S (1995) Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J 7:913–925

    Article  PubMed  CAS  Google Scholar 

  • Haughn G, Chaudhury A (2005) Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci 10:472–477

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Harada K, Fujiwara T, Kitamura K (1998) Characterization of a 7S globulin-deficient mutant of soybean (Glycine max (L.) Merrill). Mol Gen Genet 258:208–214

    Article  PubMed  CAS  Google Scholar 

  • Hemmati S, Schmidt TJ, Fuss E (2007) (+)-Pinoresinol/(−)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett 581:603–610

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Ithal N, Reddy AR (2004) Rice flavonoid pathway genes, OsDfr and OsAns, are induced by dehydration, high salt and ABA, and contain stress responsive promoter elements that interact with the transcription activator, OsC1-MYB. Plant Sci 166:1505–1513

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jiang Y, Deyholos MK (2010) Transcriptome analysis of secondary-wall-enriched seed coat tissues of canola (Brassica napus L.). Plant Cell Rep 29:327–342

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Bae JM, Huh GH (2010) Transcriptional regulation of the cinnamyl alcohol dehydrogenase gene from sweet potato in response to plant developmental stage and environmental stress. Plant Cell Rep 29:779–791

    Article  PubMed  CAS  Google Scholar 

  • Kitts DD, Yuan YV, Wijewickreme AN, Thompson LU (1999) Antioxidant activity of the flax seed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Mol Cell Biochem 202:91–100

    Article  PubMed  CAS  Google Scholar 

  • Kogushi S, Ohashi Y, Nakajima K, Arai Y (1990) An improved assay for β-glucuronidase in transformed cells: methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Sci 70:133–140

    Article  Google Scholar 

  • Lacoux J, Klein D, Domon JM, Dauchel H, Lamblin F, Alexandre F, Roger D, Balangé AP, David A, Morvan C, Lainé E (2003) Study of a pectin methylesterase using transgenesis with antisens construct and promoter-reporter fusion. In: Visser R (ed) Pectins and pectinases. Kluwers Academic Publishers, Dordrecht, pp 183–200

    Google Scholar 

  • Lainé E, Hano C, Lamblin F (2009) Lignans. In: Knasmüller S, DeMarini DM, Johnson IT, Gerhäuser C (eds) Chemoprevention of cancer and DNA damage by dietary factors. Wiley-VCH, Weinheim, pp 555–577

    Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Déhais P, Moreau Y, De Moor B, Rouzé P, Rombauts S (2002) PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res Database Issue 30:325–327

    Article  CAS  Google Scholar 

  • Lessard PA, Allen RD, Bernier F, Crispino JD, Fujiwara T, Beachy RN (1991) Multiple nuclear factors interact with upstream sequences of differentially regulated beta-conglycinin genes. Plant Mol Biol 16:397–413

    Article  PubMed  CAS  Google Scholar 

  • Lin PC, Hwang SG, Endo A, Okamoto M, Koshiba T, Cheng WH (2007) Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiol 143:745–758

    Article  PubMed  CAS  Google Scholar 

  • Moïse JA, Han S, Gudynaite-Savitch L, Johnson DA, Miki BLA (2005) Seed coats: structure, development, composition and biotechnology. In Vitro Cell Dev Biol Plant 41:620–644

    Google Scholar 

  • Moss GP (2000) Nomenclature of lignans and neolignans (IUPAC recommendations 2000). Pure Appl Chem 72:1493–1523

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol 60:51–68

    Article  PubMed  CAS  Google Scholar 

  • Nakatsubo T, Mizutani M, Suzuki S, Hattori T, Umezawa T (2008) Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J Biol Chem 283:15550–15557

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2003) ABA action and interactions in seeds. Trends Plant Sci 8:195–244

    Article  Google Scholar 

  • Nishiuchi T, Shinshi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J Biol Chem 279:55355–55361

    Article  PubMed  CAS  Google Scholar 

  • North H, Baud S, Debeaujon I, Dubos C, Dubreucq B, Grappin P, Jullien M, Lepiniec L, Marion-Poll A, Miquel M, Rajjou L, Routaboul JM, Caboche M (2010) Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research. Plant J 61:971–981

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo TA, Mochizuki Y, Toyoda T, Kamiya Y, Shinozaki K, Nambara E, Seki M (2010) Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J 62:39–51

    Article  PubMed  CAS  Google Scholar 

  • Penfield S, Meissner RC, Shoue DA, Carpita NC, Bevan MW (2001) MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell 13:2777–2791

    Article  PubMed  CAS  Google Scholar 

  • Ralph S, Park JY, Bohlmann J, Mansfield SD (2006) Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol Biol 60:21–40

    Article  PubMed  CAS  Google Scholar 

  • Renouard S, Hano C, Corbin C, Fliniaux O, Lopez T, Montguillon J, Barakzoy E, Mesnard F, Lamblin F, Lainé E (2010) Cellulase-assisted release of secoisolariciresinol from extracts of flax (Linum usitatissimum) hulls and whole seeds. Food Chem 122:679–687

    Article  CAS  Google Scholar 

  • Sablowski RWM, Moyano E, Culianez-Macia FA, Schuch W, Martin C, Bevan M (1994) A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J 13:128–137

    PubMed  CAS  Google Scholar 

  • Sharma SB, Dixon RA (2005) Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant Cell 44:62–75

    CAS  Google Scholar 

  • Sjödahl S, Gustavsson HO, Rödin J, Rask L (1995) Deletion analysis of the Brassica napus cruciferin gene cru1 promoter in transformed tobacco: promoter activity during early and late stages of embryogenesis is influenced by cis-acting elements in partially separate regions. Planta 197:264–271

    Article  PubMed  Google Scholar 

  • Somssich IE, Schmelzer E, Kawalleck P, Hahlbrock K (1988) Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Mol Gen Genet 21:93–98

    Article  Google Scholar 

  • Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C (1998) The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10:135–154

    Article  PubMed  CAS  Google Scholar 

  • Torres P, Marin JC, Becerra J, Aranda E, Silva M, Cespedes CL (2005) Antioxidant, insecticidal and insect growth regulatory activities of lignans from Araucaria araucana against Spodoptera frugiperda. In: PSNA Annual Meeting. July 30–August 3, La Jolla, CA, USA

  • Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2:371–390

    Article  CAS  Google Scholar 

  • Yi J, Derynck MR, Chen L, Dhaubhadel S (2010) Differential expression of CHS7 and CHS8 genes in soybean. Planta 231:741–753

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Sullivan Renouard obtained a grant from the French Ministry of Research and Technology. This project was supported by the “Conseil Général d’Eure et Loir” and the “Ligue Contre le Cancer, Comité d’Eure et Loir”. We thank Michel Bonora (University of Orléans) for English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Hano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renouard, S., Corbin, C., Lopez, T. et al. Abscisic acid regulates pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds. Planta 235, 85–98 (2012). https://doi.org/10.1007/s00425-011-1492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1492-y

Keywords

Navigation