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AtCSLD?2 is an integral Golgi membrane protein

with its N-terminus facing the cytosol
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Abstract Cellulose synthase-like proteins in the D family
share high levels of sequence identity with the cellulose syn-
thase proteins and also contain the processive f-glycosyl-
transferase motifs conserved among all members of the
cellulose synthase superfamily. Consequently, it has been
hypothesized that members of the D family function as
either cellulose synthases or glycan synthases involved in
the formation of matrix polysaccharides. As a prelude to
understanding the function of proteins in the D family, we
sought to determine where they are located in the cell. A
polyclonal antibody against a peptide located at the N-termi-
nus of the Arabidopsis D2 cellulose synthase-like protein
was generated and purified. After resolving Golgi vesicles
from plasma membranes using endomembrane purification
techniques including two-phase partitioning and sucrose
density gradient centrifugation, we used antibodies against
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known proteins and marker enzyme assays to characterize
the various membrane preparations. The Arabidopsis cellu-
lose synthase-like D2 protein was found mostly in a fraction
that was enriched with Golgi membranes. In addition, ver-
sions of the Arabidopsis cellulose synthase-like D2 proteins
tagged with a green fluorescent protein was observed to co-
localize with a DsRed-tagged Golgi marker protein, the rat
alpha-2,6-sialyltransferase. Therefore, we postulate that the
majority of Arabidopsis cellulose synthase-like D proteins,
under our experimental conditions, are likely located at the
Golgi membranes. Furthermore, protease digestion of
Golgi-rich vesicles revealed almost complete loss of reac-
tion with the antibodies, even without detergent treatment of
the Golgi vesicles. Therefore, the N-terminus of the Arabid-
opsis cellulose synthase-like D2 protein likely faces the
cytosol. Combining this observation with the transmem-
brane domain predictions, we postulate that the large hydro-
philic domain of this protein also faces the cytosol.

Keywords Arabidopsis - AtCSLD2 - Cell wall - Golgi -
Localization - Topology

Abbreviations

CESA Cellulose synthase

CSLD Cellulose synthase-like protein D
ER Endoplasmic reticulum

FUTase Fucosyltransferase

GSII  fS-Glucan synthase II

PGA  Polygalacturonic acid

PMA2 Plasma membrane H*-ATPase 2
PVC  Pre-vacuolar compartment

ST Alpha-2,6-sialyltransferase
TGN  Trans-Golgi network

XTl1 Xylosyltransferase 1

XyG  Xyloglucan
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Introduction

CSLD proteins constitute a group belonging to the cellulose
synthase superfamily of proteins. Members of this group
have the highest sequence similarity to CESA proteins
within the cellulose synthase superfamily, showing
sequence identities of 40-45% (Richmond and Somerville
2001). CSLD proteins are also similar in size to CESA
proteins and have a similar number and organization of
predicted transmembrane domains (Richmond and Somer-
ville 2001). Moreover, CSLD and CESA proteins share
structural features that may be indicative of processive
glycosyltransferases (Saxena etal. 1995), such as the
D,D,D,Qx xRW motif proposed to define the nucleotide-
sugar binding domain and the catalytic site (Richmond and
Somerville 2000) of the cellulose synthases. Both CSLD
and CESA proteins belong to family 2 of inverting nucleo-
tide-diphospho-sugar glycosyltransferases, which synthe-
size polysaccharides containing repeating f-glycosyl units
(Campbell et al. 1997; Richmond and Somerville 2001).
Pinpointing the localization of CSLD proteins may shine
some light on their putative functions, because efforts to
identify their biochemical function through heterologous
expression and enzymatic activity assays have not been
successful to date (Liepman et al. 2005). If CSLD proteins
are truly cellulose synthase isoforms, they might exhibit a
localization pattern similar to CESA. If CSLD proteins are
involved in the biosynthesis of other matrix polysaccha-
rides, they might be expected to have a different localiza-
tion pattern than CESA proteins and reside on the Golgi
membranes, as other matrix polysaccharides are thought to
be synthesized in Golgi complexes and then transported to
the cell surface via membrane-bound vesicles for incorpo-
ration into the wall matrix (Delmer and Stone 1988).
AtCSLD3 protein was localized to the endoplasmic
reticulum (ER) when Favery et al. transiently expressed a
C-terminal tagged AtCSLD3-GFP fusion protein in Nicoti-
ana benthamiana leaf cells (Favery et al. 2001). This ER
localization of AtCSLD3 protein was seen again by Bernal
etal. when a GFP tag was placed at the C-terminus of
AtCSLD3 or AtCSLDS5 (Bernal etal. 2007). However,
when the GFP tag was placed at the N-terminus of
AtCSLD5 or AtCSLD3, both the fusion proteins were
localized to the Golgi apparatus (Bernal et al. 2007). Fur-
thermore, a proteomic approach using the isotope-tagging
technique to localize organelle proteins also identified
AtCSLD3 in the Golgi apparatus (Dunkley et al. 2006). To
further investigate the localization of AtCSLD proteins, we
used a biochemical approach to fractionate cellular organ-
elles and localized AtCSLD2 proteins to the Golgi fraction
by means of an AtCSLD2-specific antibody. We substituted
the predicted non-transmembrane hydrophilic domain of
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AtCSLD2 with a GFP tag and visualized the fusion proteins
in the Golgi apparatus as well.

The current working model predicts that Golgi-localized
glycosyltransferases involved in wall matrix polysaccha-
ride biosynthesis catalyze their specific reactions inside the
Golgi lumen, with their catalytic domains facing the lumen
and their sugar nucleotide substrates being transported into
the Golgi from the cytosol (Northcote and Pickett-Heaps
1966; Zhang and Stachelin 1992; Norambuena et al.
2002). More recent topology studies of such glycosyl-
transferases include the protection of enzyme activities
from protease treatment by the Golgi membranes, for the
a-1, 4-galacturonosyltransferase involved in the biosynthesis
of homogalacturonan (Sterling et al. 2001), and the f-1,
4-galactosyltransferase involved in the synthesis of -1,
4-galactan side chains in rhamnogalacturonan I (Geshi et al.
2004). On the other hand, the maize mixed linkage (1-3),
(1-4)-p-p-glucan synthase was found to be sensitive to
pretreatments of Golgi membranes with proteinase K
(Urbanowicz et al. 2004). Therefore, the topology of (1-3),
(1-4)- -p-glucan synthase was proposed to be more closely
related to the cellulose synthase than to non-cellulosic glu-
can synthase or glycosyltransferases (Urbanowicz et al.
2004). Generally, cellulose synthases located at the plasma
membrane are predicted to have their active site facing the
cytoplasmic side of the membrane (Kimura et al. 1999) and
use sugar nucleotide substrates from the cytosol, incorpo-
rating them into cellulose on the other side of the plasma
membrane.

Here, using similar proteinase protection assays, we
present evidence that the N-terminus of AtCSLD2 protein
is not protected by the un-solubilized Golgi membranes and
therefore must be facing the cytosol. Combining this obser-
vation with predictions regarding the topology of AtCSLD2
in the membrane leads to the hypothesis that its putative
large hydrophilic loop also faces the cytosol.

Materials and methods
Plant materials

Arabidopsis plants were grown under non-sterile hydro-
ponic conditions (Gibeaut et al. 1997) in growth chambers
in an 18 h/6 h light/dark cycle and light/dark temperature of
22°C/20°C. Arabidopsis (ecotype Columbia) embryonic
suspension cell line T87-C33 (Axelos etal. 1992) was
maintained in the dark at 25°C in suspension culture
medium (20 g L™! sucrose, 4.3 g L™! Murashige-Skoog
salts [GIBCO-BRL], 0.5 g L~! MES, 0.1 g L™! myo-inosi-
tol, 1 mg L™! thiamine-HCI, 1 pM 2,4-D, and 1 mM
K,HPO,, pH 5.7).
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Preparation of total protein fraction and microsomal
membranes from Arabidopsis plants

Tissues from 5-week-old hydroponically grown Arabidop-
sis plants were ground in liquid nitrogen and resuspended
in extraction buffer A (150 mM Tris HCI at pH 6.8, 3%
SDS, 7.5% 2-mercaptoethanol) at 2 ml g~! fresh weight.
The extracts were boiled for 15 min and centrifuged for 15
min at 10,000g. The supernatants were saved as total pro-
tein fractions.

For microsomal membrane preparations, each 20-g sam-
ple of tissue from 5-week-old Arabidopsis plants was cut
into small pieces with a Comfort Food Chopper (Zyliss,
Switzerland) and ground with mortar and pestle on ice in 40
ml extraction buffer B (50 mM Hepes KOH, pH 6.5, 10
mM potassium acetate, 2.5 mM EDTA, 0.4 M sucrose, 1
mM DTT, 0.2 mM PMSF, 1% Protease Inhibitors [Sigma]).
After passage through a double layer of miracloth, extracts
were centrifuged at 10,000g for 10 min at 4°C. The pellet
was resuspended in buffer B as the P10 fraction. The super-
natant S10 fraction was subjected to further centrifugation
at 100,000g for 1 h at 4°C. The supernatant from this step
was the S100 fraction, and the pellet was resuspended in
extraction buffer B, usually of one-tenth of the starting vol-
ume, as the P100 fraction.

Preparation of S10 protein fraction and microsomal
membranes from Arabidopsis cell suspension cultures

Arabidopsis suspension cells, cultured for 4 to 5 days were
collected on miracloth using vacuum filtration. Usually, 20 g
of cells were suspended at a concentration of 1/3 g ml~! of
extraction buffer C (50 mM Hepes KOH, pH 6.5, 2 mM
EDTA, 15% sucrose, 1 mM DTT, 0.2 mM PMSF, 1% Prote-
ase Inhibitors [Sigma]). Cells were disrupted in a blender with
short bursts of 10 s for a total of 1 min on ice. Cell lysate was
filtered through a double layer of miracloth and subjected to
centrifugation at 10,000g for 10 min at 4°C. The supernatant
was saved as the S10 protein fraction, and the pellet was dis-
carded. The supernatant solution was then centrifuged at
100,000g for 1 h at 4°C to yield the S100 fraction, and a mem-
brane pellet was resuspended in extraction buffer C at one-
tenth of the starting volume and labeled as the P100 fraction.

Solubilization of microsomal membrane proteins

P100 microsomal fractions were isolated from either
5-week-old hydroponically grown Arabidopsis above-ground
tissues or from 4- to 5-day-old Arabidopsis suspension-
cultured cells. Equal amounts of P100 microsomal protein
were resuspended in the same amount of extraction buffer C
and incubated with equal volume of the same buffer con-
taining 4 M Urea, 2 M NaCl, 0.2 M Na,CO;, 0.4% Triton

X-100, 0.4% SDS or buffer C alone for 30 min on ice. After
treatment, all solutions were centrifuged at 100,000g again
for 1 h at 4°C. Supernatants were saved and the pellets were
resuspended in the same volume of buffer C. Equal volumes
of each fraction were used for SDS-PAGE and immuno-
blotting.

Sucrose density gradient fractionation of microsomal
membranes

The S10 protein fraction isolated from Arabidopsis suspen-
sion-cultured cells was subjected to a two-step sequential
sucrose gradient fractionation. The first sucrose gradient
was made in an SW28 centrifuge tube with two layers of 10
ml of buffer C, containing 50 and 15% of sucrose, respec-
tively. The S10 protein fraction was loaded on top of the
gradient and subjected to a centrifugation of 100,000g for 1
h at 4°C. The interface between the two sucrose solutions,
which was about 2 ml in volume, was recovered and diluted
with the buffer C lacking sucrose until the sucrose concen-
tration reached between 25 and 30%. This diluted interface
was used for the second centrifugation step. The second
sucrose gradient, made in an SW40 centrifuge tube, was
linear and contained 30-50% sucrose in buffer C. About 2.5
ml of the diluted interface from the first step was laid on top
of the linear gradient and centrifuged at 100,000g for 3 h at
4°C. Fractions of 800 pl each were collected with an Auto
Densi-Flow fractionator (Labconco). Sucrose concentra-
tions were determined with a refractometer (American
Optical Corporation, Buffalo, NY).

Two-phase partitioning

The two-phase partitioning method for the purification of
plasma membranes was modified from a previous protocol
(Larsson et al. 1987). The crude microsomal membranes
from suspension-cultured Arabidopsis cells (P100 pellet)
were resuspended in buffer D (0.33 M sucrose, 3 mM KCl,
5 mM potassium phosphate at pH 7.8, Protease Inhibitors
[1:100, Sigma]) in one-tenth of the starting volume of the
S10 fraction. For every 3 g of this microsome solution, 9 g
of buffer E (buffer D plus 8.4% Dextran T500 and 8.4%
PEG 3350) was added to make a final concentration of
6.3% of both Dextran and PEG. The tubes were inverted 30
times for mixing, and the samples were centrifuged at
1,500g for 5 min at 4°C in a swinging bucket rotor. The
upper phase was collected as the U1 fraction, and the lower
phase as the L1 fraction. Buffer F (buffer D plus 6.3% Dex-
tran T500 and 6.3% PEG 3350) was prepared fresh and
allowed to sit overnight at 4°C to separate the two phases.
The Ul fraction was further extracted twice with equal vol-
umes of the lower phase from buffer F to produce phases
U2, L2', U3, and L3’ sequentially. The L1 fraction was also
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further extracted twice with equal volumes of the upper
phase from buffer F, to produce the U2’, 1.2, U3’ and L3
phases. Equal volumes of each phase or equal amounts of
protein from each phase were used for SDS-PAGE and
enzyme activity assays. Protein concentration was determined
with a Micro BCA kit (Pierce, Rockford, IL, USA).

Preparation of Golgi-rich microsomal membrane fractions

The centrifugation procedure developed by Buckeridge
et al. (1999) for maize was adopted for use with Arabidop-
sis. The S10 protein fraction was prepared from 4- to
5-day-old suspension-cultured cells, as described for other
applications, except that buffer G (84% sucrose [w/v], 20
mM Hepes KOH, pH 7.0, 20 mM KCI, 5 mM EDTA, 5
mM EGTA, 10 mM DTT, Protease Inhibitors [1:100,
Sigma]) was used. The sucrose concentration in the S10
fraction was determined with a refractometer (American
Optical Corporation, Buffalo, NY) and adjusted to around
40% (37-45%) using buffer G containing no sucrose or
84% sucrose, depending on the need. Sucrose gradient was
made in gradient buffer H containing 20 mM Hepes KCl,
pH 7.0, Protease Inhibitors (1:100, Sigma), and various
concentrations of sucrose.

To make a gradient, 10 ml of S10 total protein with
adjusted sucrose concentration was laid on top of 5 ml of
buffer H containing 50% (w/v) sucrose in an SW28 centri-
fuge tube. On top of the sample, we added sequentially
buffer H: 8 ml with 34% (w/v) sucrose, 8 ml of 25% (w/v)
sucrose, and 7 ml of 18% (w/v) sucrose. About 2 ml of
buffer H containing 9.5% (w/v) sucrose was used to fill the
tube completely. This filled tube was centrifuged at
100,000g for 1.5 to 3 h at 4°C. After centrifugation, the
interfaces between layers were collected and designated as
fraction 1, 2, 3, 4, or 5 from the top to the bottom of the gra-
dient. According to the original protocol (Buckeridge et al.
1999), those five fractions are enriched with tonoplast, ER,
Golgi, mitochondria, and plasma membrane, specifically.
Here, only fractions 3, 4, and 5 were further characterized
and used for the localization studies. These three fractions
were diluted in buffer H to sucrose content below 15% and
centrifuged again at 100,000g for 50 min. The pellet frac-
tions were resuspended in buffer H without sucrose. Protein
concentrations were determined using the Micro BCA kit
from PIERCE (Rockford, IL).

Expression of polypeptides P2 and P3 in E. coli cells

The DNA sequence encoding the first 272 amino acids of
AtCSLD2 (fragment P2) was amplified from Arabidopsis
genomic DNA using primers KEE919 (5'-CCTACATATG
GCATCTAATAAG-3") and KEE921 (5'-TCATGAATT
CTTGGGCCTCCAT-3"). The DNA sequence encoding the
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first 188 amino acids of AtCSLD3 (fragment P3) was
amplified from Arabidopsis genomic DNA using primers
KEE920 (5'-TTAGCATATGGCGTCTAATAAT-3") and
KEE922 (5'-CTGCTTGTTGTTCTCGAGCAAA-3"). Puri-
fied PCR products were inserted into pET28a via Ndel and
EcoRI for the DNA fragment encoding P2, and via Ndel
and Xhol for the DNA fragment encoding P3. The identities
of constructs encoding peptides P2 and P3 were confirmed
by restriction digestion and sequencing. Peptide fragments
P2 and P3 were expressed in E. coli BL21 (DE3) cells
according to the manufacturer’s guidelines (pET System
Manual, Novagen, Madison, WI). Total soluble proteins
were extracted from 100 ml of E. coli cultures expressing
each construct after 4 h induction with IPTG.

Generation and purification of polyclonal antibodies
directed against AtCSLD2

AtCSLD2-specific peptide IQEPGRPPAGHSVKFAQ(C),
corresponding to a region near the N-terminus (aa20—aa36),
was synthesized and conjugated with keyhole limpet hema-
cyanin (KLH) for polyclonal antibody production in rabbits
(Alpha Diagnostic International Inc., San Antonio, TX,
USA). The polyclonal antibodies were affinity purified with
the same peptide immobilized on the SulfoLink coupling
gel (PIERCE, Rockford, IL, USA) according to the manu-
facturer’s directions.

SDS-PAGE and immunoblotting

All SDS-PAGE and immunoblotting procedures followed
standard protocols (Harlow and Lane 1988). Antibody
against PMA2 (Morsomme etal. 1998), a Nicotiana
plumbaginifolia plasma membrane H*-ATPase, was a gift
from Dr. Marc Boutry (Université Catholique de Louvain,
Louvain-la-Neuve, Belgium). Antibodies against TGN
marker SYP61 (Sanderfoot etal. 2000), PVC marker
SYP21 (Sanderfoot et al. 1999), TGN-PVC marker ELP
(Ahmed et al. 1997) and ER marker SEC12 (Bar-Peled and
Raikhel 1997) were gifts from Dr. Natasha Raikhel (Uni-
versity of California, Riverside). Antibody against alterna-
tive oxidase, a gift from the late Dr. Lee Mclntosh
(Michigan State University), is a monoclonal antibody
against the Sauromatum guttatum alternative oxidase
located in mitochondria (Elthon et al. 1988). Rabbit anti-
body against XT1 was generated by Dr. Ahmed Faik
(unpublished data) using a 17-kD fragment of the Arabid-
opsis XT1 protein that was expressed in E. coli.

Marker enzyme assays

The assay for -glucan synthase II (callose synthase, GS II)
activity was modified from existing protocols (White et al.
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1993; Konishi et al. 2001). The reaction mixture contained
50 mM Hepes KOH, pH 7.0, 1 mM UDP-Glc, 5 mM CaCl,,
4.36 uM UDP-['*C]Glc (305.9 mCi/mmol). Reactions were
carried out at room temperature for 45 min. XyG carrier (5
pl of a 1% solution) was added to each reaction before 750
pl of 70% ethanol was added to stop the reactions. Reaction
products were precipitated at room temperature for 30 min
and washed three times with 70% ethanol by mixing, fol-
lowed by centrifugation at 12,000g for 5 min. The pellet
was then air dried and resuspended in 200 pl H,O for scin-
tillation counting.

For XyG FUTase activity assays, microsomal mem-
branes were solubilized with 1% Triton X-100 for 15 min
on ice immediately before enzyme assays, unless solubili-
zation of samples was not required. Assay reactions were
carried out in volumes of 50 pl, including 10 pl of solubi-
lized P100 membranes (9 pl P100 sample plus 1 pl 10%
Triton X-100), 20 pl of 2.5x reaction buffer (100 mM
HEPES KOH, pH 6.8, 0.5 M sucrose, 2.5 mM DTT, 2.5
mM MgCl,), 10 pl of 1% tamarind seed XyG and 2.5 pl
(diluted to 10 ul with H,O before use) of GDP '*C-fucose
(10 pCi/ml and 271 mCi/mmol) (NEN Life Science Prod-
ucts, Inc.). Reactions were carried out at room temperature
and stopped by the addition of 1 ml of 70% ethanol. Prod-
ucts of the enzyme assays were precipitated at 4°C or room
temperature for at least 2 h and washed three times with
70% ethanol. After the last washing, the pellet was briefly
air dried and resuspended in 200 pl H,O for scintillation
counting.

Proteinase K protection assay

Membrane vesicles enriched in Golgi were purified from 20
g of suspension-cultured cells according to the protocol
described above, and resuspended in 0.6 ml of buffer H
without the addition of protease inhibitors. Equal amounts
(90 pl) of purified Golgi-rich vesicles were then incubated
with 0, 200, and 400 pg/ml proteinase K (Roche, Penzberg,
Germany) with or without the addition of 1% Triton X-100
for 30 min at 25°C. The reactions were stopped by the addi-
tion of 5 pl of 200 mM PMSF and left on ice. From each
reaction, a 9-pl aliquot was used for a XyG FUTase assay
and a 30-pl aliquot was analyzed by SDS-PAGE and
immunoblotting.

Construction and localization of AtCSLD2-GFP

A DNA fragment c¢D2tmd encoding AtCSLD2 peptide
from aa890 to aal145 (end) containing the predicted C-ter-
minal transmembrane domains was amplified through PCR
reaction using primers D2d (upstream, 5" TTTTCACTAGT
AACAACGCTCTTC 3’', Spel) and D2b (downstream,
5" TCAACGGTACCTGGAAAACTGAA 3', Kpnl). This

fragment was inserted into GFP expression vector GFPc (a
gift from Dr. Shuocheng Zhang, Michigan State Univer-
sity) downstream of the encoded GFP protein via Spel and
Kpnl to make the construct GFP-cD2tmd. A DNA fragment
nD2tmd encoding AtCSLD2 peptide from aal to aa380
containing the predicted N-terminal transmembrane
domains was amplified through RT-PCR reaction using
primers D2e (upstream, 5 AAGTTGGATCCTAACTA
TGGCAT 3’, BamHI) and D2f (downstream, 5" TCCTTGG
ATCCTGAACTCGCCAGAACCAGCAGCGGAGCCAG
CGGAACCGGTGGCACGATTAATCGGGCATAGCTT
3’, BamHI). This fragment was inserted into construct
GFP-cD2tmd in front of the encoded GFP protein via
BamHI, to make the final construct nD2tmd-GFP-cD2tmd.

Plasmid nD2tmd-GFPc-cD2tmd and ST-DsRed (gift
from Dr. Federica Brandizzi, Michigan State University),
or plasmid GFPc plus ST-DsRed were introduced into
onion epidermal cells using biolistic bombardment accord-
ing to Zhang et al. (2001). After being kept in the dark for
16-20 h, the onion peels were observed by means of an
upright laser-scanning confocal microscope (Zeiss LsM510
META; Zeiss) according to Hanton et al. (2007).

Results
Expression of ArCSLD genes

To investigate the localization of proteins encoded by
AtCSLD genes, we chose to start with AtCSLD2 and
AtCSLD3 because of their expression patterns. These two
genes showed higher levels of expression than other mem-
bers of the ArCSLD subfamily and their expression patterns
were similar to each other based on analysis of the EST
database from the GenBank and MPSS database (http:/
mpss.udel.edu/at/). Furthermore, RT-PCR reactions using
RNAs isolated from various tissues of Arabidopsis con-
firmed the conclusion that AtCSLD?2 and -D3 are expressed
at higher levels than other ArCSLD genes and their expres-
sion patterns were similar to each other (Zeng 2004).

Generation, purification, and characterization of antibodies
against AtCSLD2

To explore the location of AtCSLD proteins, we generated
and characterized polyclonal antibodies directed against
peptides derived from AtCSLD2 or -D3. Because the anti-
body against the AtCSLD3-specific peptide did not recog-
nize a specific protein from Arabidopsis extracts under
conditions of the strategy described below, we selected
AtCSLD?2 to represent the AtCSLD family for our studies.
To produce a polyclonal antibody that specifically recog-
nized AtCSLD2, we used as antigen a short peptide of 18
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aa from the N-terminus (the antigen peptide’s position is
indicated in Fig. 1). We performed affinity purification of
the antibodies using immobilized antigenic peptide. To
characterize the purified antibodies, we expressed in Esche-
richia coli a polypeptide fragment, P2, containing the
N-terminal 272 amino acids from AtCSLD2 (Fig. 1); and a
polypeptide fragment, P3, containing a similar region, the
N-terminal 188 aa from AtCSLD3. Neither of the frag-
ments contained any of the predicted transmembrane
domains of the corresponding full-length proteins (see
Fig. 1). The expression of P2 and P3 in E. coli was con-
firmed by SDS-PAGE followed by protein staining
(Fig. 2a) and immunoblotting using antibodies against the
6x His tag (Fig. 2b). When tested on the E. coli extracts
containing fragment P2 or P3, the peptide antibody against
AtCSLD2 recognized only the expressed AtCSLD2 frag-
ment P2 but not P3, which was derived from the equivalent
region of AtCSLD3 (Fig. 2¢). Because the AtCSLD3 pro-
tein is the closest homolog of the AtCSLD2 protein, we
concluded that this antibody is specific for AtCSLD2. Other
smaller proteins that were detected on the immunoblots
were probably degradation products of P2 (Fig. 2c).

Three proteins were detected when the purified anti-D2-
peptide antibodies were used to probe proteins from an
Arabidopsis S10 fraction (Fig. 3a, signals 120, 90, and 30).
All three signals disappeared when the purified antibodies
were incubated with extracts from E. coli cells expressing
fragment P2, before they were used for immunoblotting
against Arabidopsis proteins. E. coli extracts containing
fragment P3 did not show such an effect (data not shown);
therefore, all three proteins (signals 120, 90, and 30)

a

P2: 1-272

AtCsID2: 1-1145

Antigen peptide

Predicted )
transmembrane domains

Fig. 1 AtCSLD?2 protein. a Schematic diagram of the amino acid se-
quence (1-1145 aa) of AtCSLD2 (At5g16910). The filled black boxes
represent the predicted eight transmembrane domains (located at ami-
no acids 288-310, 323-341, 923-945, 952-974, 993-1015, 1046-
1064, 1079-1097, 1110-1128). Peptide 20-36 (small gray striped box)
was the antigen for producing antibodies. Peptide 1-272 (large gray
box underneath) was expressed in E. coli with 6'His tag as P2. b The
predicted topology of AtCSLD2 protein. Transmembrane domains
(bars across the membrane) are predicted by the TMHMM server
(http://www.cbs.dtu.dk/servicess TMHMMY/). The antigen peptide is
depicted by the small bar close to the N-terminus
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Fig. 2 Peptides P2 and P3 expressed in E. coli BL21 (DE3) cells.
Equal amounts of protein extract from cells expressing peptide P2
(lanes 1 and 2) and P3 (lanes 3 and 4) were resolved on 12.5% SDS-
PAGE. Lanes I and 3: total protein extracts before induction; lanes 2
and 4: total protein extracts after 3 h induction. Induced peptides P2
and P3 are indicated by arrowheads. a. Proteins stained with Coomass-
ie Brilliant Blue. b. Immunoblots using antibodies against 6'His tag.
c. Immunoblots using the antibodies against AtCSLD2. Aliquots of
equal amounts were used in all three panels

contained antigenic epitopes that can be recognized by the
anti-peptide antibodies.

When the S10 proteins were further fractionated into
S100 (soluble) and P100 (microsomal membrane) fractions,
signal 90 was mainly associated with the S100 fraction and
therefore likely to be a soluble protein (Fig. 3a). Although
both signals 120 and 30 were associated with the P100 frac-
tion, only signal 120 was of the proper molecular size to
represent AtCSLD2 (about 120 kD) (Fig. 3a). AtCSLD?2 is
predicted to have eight transmembrane domains (Fig. 1),
and therefore should be an integral membrane protein.
Because only signal 120 was associated with microsomal
membranes and had a molecular mass similar to that pre-
dicted for AtCSLD2 (120 kD), we concluded that signal
120 likely represents AtCSLD2 proteins (Fig. 3). Further-
more, when vesicles enriched in Golgi membranes were
prepared from Arabidopsis cell suspension cultures, only
signal 120 was detected with the purified antibody against
AtCSLD2 (Fig. 3b).

To find out what proteins signals 90 and 30 might repre-
sent, we searched the Arabidopsis protein sequence
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Fig. 3 Immunoblots using purified anti-D2-peptide antibodies against
fractions from Arabidopsis extracts (a) and a Golgi complex-enriched
fraction (b). a S10, S100, and P100 were extracted from freshly ground
hydroponic plants. Immunoblot signals are marked as 120, 90, and 30
according to their estimated molecular mass. b Proteins from Arabid-
opsis vesicles enriched for Golgi membrane were used for SDS-PAGE
and immunoblotting with the same antibodies. Golgi samples were
prepared from suspension-cultured cells

database at the National Center for Biotechnology Informa-
tion (NCBI) using program BlastP searching for short
nearly exact matches, with the sequence of the D2-specific
antigen peptide as query. We identified ten proteins as hav-
ing a region of two to six amino acids identical with the
AtCSLD2-specific antigen peptide (data not shown). One
of these ten proteins, which contained five sequential amino
acids identical to the D2-specific antigen peptide, was pre-
dicted to have a molecular mass of 83 kD and no transmem-
brane domain. Another, with a stretch of four identical
amino acids, was predicted to be 36 kD with a single trans-
membrane domain. No other proteins have a predicted
molecular mass closer to that observed for signals 90 or 30.
Although these two predicted proteins may give rise to the
detected signals, we chose not to pursue this issue further.

0.1IM  02% 0.2%

Buffer 2M Urea 1M NaCl Na,CO3; Triton SDS
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Fig. 4 AtCSLD?2 is an integral membrane protein. Equal amounts of
protein from P100 fraction prepared from hydroponically grown Ara-
bidopsis plants were incubated on ice for 30 min with buffer alone, or
with buffers containing 2 M Urea, 1 M NaCl, 0.1 M Na,CO;, 0.2% Tri-
ton X-100, or 0.2% SDS, and separated again as S100 and P100 frac-
tions by centrifugation at 100,000g for 1 h. Pellets were resuspended in
the same volume of buffer as the supernatant. Equal volumes of each
fraction were analyzed by SDS-PAGE and immunoblotting was per-
formed using antibodies against AtCSLD2, plasma membrane marker
PMA2, Golgi markers XT1, TGN marker SYP61, and ER marker
SECI12. S supernatant fractions; P pellet fractions

AtCSLD?2 is an integral membrane protein

As noted above, sequence analysis predicted that AtCSLD2
protein contains eight transmembrane domains (Fig. 1).
After sequential centrifugation at 10,000g and at 100,000g,
the majority of signal 120 was present in the P100 mem-
brane fraction (Fig. 3a), indicating that signal 120, presum-
ably representing AtCSLD2, was associated with
membranes. To investigate whether the putative AtCSLD2
behaved as an integral membrane protein or as a peripheral
membrane protein, we treated microsomal membranes from
the P100 fraction with various reagents that affect the asso-
ciation of peripheral proteins with membranes (Fig. 4). Our
results showed that the antigenic protein could not be
removed from microsomal membranes by 2 M Urea, 1 M
NaCl, 0.1 M Na,COs;, or 0.2% Triton X-100, all of which
can dissociate peripheral membrane proteins. Only 0.2%
SDS completely solubilized the antigenic protein from the
microsomal membranes, indicating that the putative
AtCSLD2 was an integral membrane protein (Fig. 4).

We monitored several control proteins in this experiment
to determine whether the solubilization procedure would
yield the expected results. PMA2 is a plasma membrane
H*-ATPase with multiple transmembrane domains and a
predicted topology similar to AtCSLD2, with four trans-
membrane domains near the N-terminus and six close to the
C-terminus (Morsomme et al. 1998). In our experiment,
PMAZ2 was also removed only by 0.2% SDS and behaved
just like AtCSLD?2 (Fig. 4). Arabidopsis XyG xylosyltrans-
ferase 1 (XT1) is predicted to be a type II integral mem-
brane protein (Faik etal. 2002). XT1 was completely
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solubilized only by 0.2% SDS, but trace amounts were also
solubilized by all the other reagents used, except with the
buffer alone (Fig. 4). Thus, XT1 was also an integral mem-
brane protein but it may not be as tightly associated with
the membranes as are AtCSLD2 and PMA2. Arabidopsis
SECI12 is an ER-associated integral membrane protein that
can be removed from membranes only by ionic or nonionic
detergents but not by other treatments such as urea, salt, or
alkaline conditions (Bar-Peled and Raikhel 1997). The
behavior of SEC12 (Fig.4) was the same as observed
before (Bar-Peled and Raikhel 1997) and this protein
served as a valuable control here. SEC12 also demonstrated
a weaker association with the membranes; in addition to
nearly complete solubilization by 0.2% SDS, SEC12 was
also largely solubilized by 0.2% Triton X-100. SYP61 is a
trans-Golgi network (TGN) protein with a single trans-
membrane domain near its C-terminus (Sanderfoot et al.
2000). It also showed a weaker association with membranes
when compared with AtCSLD2 or PMA2, as SYP61 was
also removed from the membrane by 0.2% Triton X-100
(Fig. 4).

AtCSLD2 was not a plasma membrane protein, as revealed
by two-phase partitioning

To localize AtCSLD2 to a specific cellular compartment,
we used three different fractionation procedures. We first
tried to determine whether AtCSLD2 was located at the
plasma membrane. An aqueous two-phase partitioning
method that enriches the plasma membrane in the upper
phase and most other cellular membranes in the lower
phase was employed with three consecutive partitioning
steps (Fig. 5). The upper and lower phases from the third
partitioning (U3 and L3, respectively) were analyzed for
XyG fucosyltransferase (FUTase) and f-glucan synthase 11
(GS II) activity to confirm the effect of partitioning
(Fig. 5a). U3 showed about fourfold higher specific activity
of GS II than L3 (Fig. 5a), indicating that the upper phase
was enriched for plasma membrane. At the same time,
about three times higher specific activity of XyG FUTase
was detected in L3 than in U3 (Fig. 5a), indicating an
enrichment of Golgi vesicles in L3. All phases were then
analyzed by immunoblotting to locate AtCSLD2 and the
Golgi marker protein XT1, TGN marker protein SYP61,
pre-vacuolar compartment (PVC) marker protein SYP21,
TGN-PVC marker protein ELP, plasma membrane marker
protein PMA2, and ER marker protein SEC12 (Fig. 5b). At
the end of the third partitioning, AtCSLD2 was found pri-
marily in the lower phase, which also contained markers
derived from Golgi, TGN, PVC, and ER. Furthermore, we
examined the marker proteins for mitochondria (alternative
oxidase, AOX) and chloroplast (AtToc75), and found that
they both were associated with the lower phase (data not
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Fig. 5 Two-phase partitioning of Arabidopsis microsomal membranes
(see “Materials and methods”). Ul and L/ fractions are the upper and
lower phases after first partitioning. U2 and L2’, or U2’ and L2 are de-
rived from the second partitioning of fractions Ul or L1, respectively.
U3 and L3’, or U3’ and L3 were derived from the third partitioning of
fractions U2 or L2, respectively. a Relative specific activity of GSII and
XyG FUTase in fractions U3 (white bars) and L3 (gray bars). The
absolute specific activity measurements showed differences between
replicates, but the ratios of specific activity between U3 and L3 were
always very similar. The graph shows the average ratio derived from
three experiments with standard errors. b Aliquots of equal volume
from each fraction were analyzed by SDS-PAGE and immunoblotting
with antibodies against marker proteins PMA2 (plasma membrane),
XTI (Golgi), SYP61 (TGN), ELP (TGN-PVC), SYP21 (PVC) and
SEC12 (ER). Equal amounts of protein were also taken from fractions
U3 and L3 for similar analysis. Data shown here are from a single
experiment with protein samples extracted from suspension-cultured
cells. Two other independent experiments gave similar results

shown). On the other hand, the plasma membrane marker
PMA2, partitioned predominantly into the upper phase
(Fig. 5b). From these observations, we concluded that
AtCSLD2 was not localized in the plasma membrane.

AtCSLD2 migrated differently from the plasma membrane
marker but similar to Golgi markers during linear sucrose
gradient centrifugation

Next we sought to determine which compartment within
the endomembrane system contained AtCSLD2. Because
of the similarity shared between AtCSLD and AtCESA
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Fig. 6 Migration of AtCSLD2 and selected marker proteins on a lin-
ear sucrose density gradient (see “Materials and methods”). a Sucrose
concentration and enzyme activities of XyG FUTase and GS II for each
fraction of the linear sucrose gradient. b Immunodetection of At-
CSLD2 and marker proteins PMA?2 (plasma membrane), XT1 (Golgi),
ELP (TGN-PVC), SEC12 (ER), and SYP21 (PVC). This particular

proteins, we believe that AtCSLD2 proteins are not likely
to be located in mitochondria, plastids, or nuclei. As addi-
tional evidence against a nuclear localization, the elimina-
tion of nuclei during the first step of protein preparation for
all experimental procedures (see “Materials and methods™)
did not significantly reduce the AtCSLD2 signal in subse-
quent immunoblots (Figs. 3, 4, 5, 6, 7, 9). Later on, when
more refined membrane preparations were used and most
plastids were removed due to their high density, a dramatic
decrease or even total loss of signals was observed for chlo-
roplast marker proteins Toc75 and Tic40 (data not shown).
However, AtCSLD2 proteins could still be detected as
before (Figs. 6, 7, 9), indicating that AtCSLD2 proteins are
not likely to be located in plastid membranes.
Sedimentation centrifugation through a linear sucrose
density gradient was employed in an attempt to resolve
different membranes such as the ER, Golgi, PVC, and
plasma membrane. As a first step of enrichment, crude
microsomal membranes from Arabidopsis suspension-

experiment was repeated three times, with similar results each time.
The dip in intensity of the AtCSLD2 protein observed in fractions 6
and 7 was not always seen, but this particular experiment is shown
because the quality of other marker proteins is much better in this
replicate

cultured cells were collected from the interface of a step
gradient containing 15 and 50% sucrose. The membrane
vesicles from the interface were recovered and further frac-
tionated on a density gradient from 30 to 50% sucrose. After
centrifugation, the sucrose density gradient was nearly linear
(Fig. 6a). We analyzed the fractions using enzyme assays
and immunoblots to detect marker enzymes that could help
identify the vesicles derived from various organelles. XyG
FUTase activity, a Golgi marker, peaked in fractions 6 and
7 (Fig. 6a). Immunoblotting demonstrated that XT1, another
Golgi marker, was detected in the same fractions (Fig. 6b),
leading to the conclusion that maximal enrichment of Golgi
membranes was obtained in these fractions. AtCSLD2 was
distributed most abundantly in fractions 4-9 (Fig. 6b),
which overlaps with the Golgi markers XyG FUTase and
XTI, but with a broader distribution. All of the other mark-
ers were significantly different from the pattern shown by
AtCSLD2. The plasma membrane marker, PMA2, was
broadly distributed throughout the gradient with a broad
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Fig. 7 Fractionation of microsomal vesicles by flotation centrifuga-
tion on a sucrose step gradient (see “Materials and methods”). The
membranes present at the interfaces between different sucrose concen-
trations were collected as fractions /-5 (a). Proteins from fractions 3,
4 and 5, as well as from the S70 fraction starting material were assayed
for XyG FUTase and GS 1I activities (b). Protein profiles of fractions
3,4, and 5 were visualized by Coomassie Brilliant Blue staining with
equal loading (13 mg) (¢). Distribution of AtCSLD2 and marker pro-
teins PMA2 (plasma membrane), SYP61 (TGN), SEC12 (ER), XT1
(Golgi), and alternative oxidase (AOX) (mitochondria) (d). Data
shown in b are the average of three replicate experiments. Immunoblot
shown in d is from a single experiment; two other independent repli-
cate experiments gave similar results

peak area from fractions 7 to 14 (Fig. 6b). The distribution
of PMA2 detected by immunoblot coincided relatively well
with the pattern of the GSII activity distribution in the gra-
dient (Fig. 6a). Meanwhile, the TGN-PVC marker ELP had
the highest abundance in fractions 8 and 9, which was
different from the distribution pattern of either AtCSLD2,
or the Golgi markers XyG FUTase and XT1 (Fig. 6b).
Finally, the PVC marker protein SYP21 and the ER marker
SECI12 both had a broader distribution pattern that seemed
to be a smear throughout the gradient (Fig. 6b). Repeated
attempts to detect TGN marker SYP61 in linear sucrose
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gradients failed for reasons that we do not understand (data
not shown). Therefore, it seemed that AtCSLD2 is more
likely to be located at the Golgi instead of other endomem-
branes, but has a different distribution pattern through the
Golgi cisternae than the XyG FUTase or XT1.

AtCSLD2 protein was localized in Golgi-rich vesicles
during floatation sucrose gradient centrifugation

Because efforts to localize AtCSLD2 using linear sucrose
gradients were not conclusive, we sought an independent
approach to this problem. As a third method to investigate
the localization of AtCSLD2, we isolated microsomal mem-
branes from Arabidopsis suspension-cultured cells and frac-
tionated via flotation on a sucrose step gradient (Fig. 7a). We
evaluated the enrichment of Golgi and plasma membrane
vesicles by performing XyG FUTase and GS II activity
assays, respectively (Fig. 7b). The specific activity of XyG
FUTase in the Golgi-rich fraction (fraction 3) was more than
75 times greater than that in the starting material (Fig. 7b).
Fraction 5 was depleted in Golgi membrane; its specific
activity for XyG FUTase was only about 7% of that in frac-
tion 3. On the other hand, the GS 1I specific activity was sim-
ilar in fractions 4 and 5 (Fig.7b). The Golgi enriched
membranes (fraction 3) showed some incorporation of radio-
labeled glucose during GS II activity assays (Fig. 7b). How-
ever, the GSII activity recorded for fraction 3 may not reflect
its true level because when reactions were carried out for 45
versus 15 min, the radiolabel incorporation did not increase
as expected (data not shown). In contrast, during GSII assays
with other fractions, the incorporation of radiolabeled glu-
cose increased significantly when assayed for 45 min instead
of 15 min (data not shown).

When equal amount of proteins from each fraction were
used for immunoblots (Fig. 7c), we noticed that TGN
marker protein SYP61 and Golgi marker protein XT1 were
found almost exclusively in fraction 3 (Fig. 7d), whereas
the plasma membrane marker protein PMA2 was detected
mainly in fraction 5 (Fig. 7d), with small amounts in frac-
tions 3 and 4. Taken together, these results supported the
conclusion that fraction 3 was enriched in Golgi complex
and fraction 5 was enriched in plasma membrane. Fraction
4, on the other hand, not only contained a mixture of these
two membranes, but also was enriched in mitochondria, as
demonstrated by the presence of the marker protein alterna-
tive oxidase (Fig.7d). The majority of AtCSLD2 was
detected in fraction 3 (Fig. 7d), leading us to conclude that
AtCSLD2 was located in the Golgi-rich vesicles. Further-
more, the ER was distributed almost equally among frac-
tions 3, 4 and 5, as revealed by the distribution pattern of
ER marker protein SEC12 (Fig. 7d). From these observa-
tions, we concluded that AtCSLD2 was not likely located at
the ER membrane. However, it was not possible to resolve
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Fig. 8 When transiently ex-
pressed in onion epidermal cells,
AtCSLD2-GFP fusion proteins
are detected in the Golgi vesicles
labeled by ST-DsRed. a Control
coexpression of GFP protein
alone together with ST-DsRed
protein. b An onion epidermal
cell coexpressing AtCSLD2-
GFP fusion protein and
ST-DsRed protein

50 um

Golgi and TGN using this procedure because the Golgi
marker XT1 and the TGN marker SYP61 showed similar
distribution patterns (Fig. 7d).

We noticed that one plasma membrane marker, the GSII
activity, had an almost equal distribution between fractions
4 and 5 (Fig.7b), whereas another plasma membrane
marker, the PMA?2 protein, was detected mainly in fraction
5 by immunoblotting (Fig. 7d). This observation may indi-
cate the presence of multiple enzyme activities that cata-
lyzed the polymerization of UDP-glucose and contributed
to the readings recorded as GSII activity.

AtCSLD2-GFP colocalized with ST-DsRed at Golgi
vesicles when transiently expressed in onion epidermal
cells

To obtain a different line of evidence for the localization of
AtCSLD2 proteins, we constructed a AtCSLD2-GFP
fusion protein by replacing the predicted hydrophilic cata-
Iytic domain of AtCSLD2 (amino acids 381-889, Fig. 1)
with an in-frame GFP protein while retaining all of the
predicted transmembrane domains (“Materials and methods”).
This fusion protein AtCSLD2-GFP was transiently expressed
in onion epidermal cells together with a Golgi marker protein
ST-DsRed (Saint-Jore et al. 2002). Confocal fluorescent
microscopy showed that most of the signals from AtCSLD2-
GFP proteins overlapped with signals from ST-DsRed
located on Golgi vesicles (Fig. 8b). Meanwhile the GFP
protein itself showed a very different localization pattern
when coexpressed with ST-DsRed as control (Fig. 8a).

The AtCSLD2 N-terminus was not protected by the Golgi
membrane during proteinase K treatment

To evaluate the topology of AtCSLD2 within the Golgi
membrane, we used a proteinase K protection assay to

determine availability of the N-terminus of AtCSLD2. Ves-
icles enriched in Golgi complex membranes were subjected
to proteinase K treatment, then assayed for XyG FUTase
activity and resolved on SDS-PAGE for immunoblotting.
XyG FUTase activity is a latent Golgi activity because per-
meabilization of the Golgi membranes by detergent is
required for measurement of its activity (Hanna et al. 1991;
Wulff et al. 2000). Therefore, we used the XyG FUTase
activity as a marker for the inside of the Golgi complex
membrane.

We first used XyG FUTase activity assays to validate the
intactness and orientation of the Golgi vesicle preparation
during the proteinase K treatment protocols. By comparing
the XyG FUTase activity levels from Golgi vesicles with or
without including Triton X-100 in the enzyme activity assay
reactions, we observed that greater than 90% of the activity
was latent and therefore concluded that less than 10% of the
Golgi vesicles were inside out or broken (data not shown).
We determined that under our assay conditions proteinase K
did not penetrate the Golgi membranes because enzyme
treatment destroyed only a very small amount of XyG
FUTase activity when the Golgi vesicles were not treated
with Triton X-100 (Fig. 9a, reactions 2 and 3). On the other
hand, when the Golgi vesicles were permeabilized with
detergent prior to proteinase K treatment, almost all of the
XyG FUTase activity was degraded (Fig. 9a, reactions 5 and
6). In addition to XyG FUTase, many other proteins were
also protected from degradation when Golgi vesicles were
not permeabilized during proteinase K treatment (Fig. 9b,
reactions 2 and 3). Presumably, those proteins also face the
inside of the Golgi vesicles. However, an almost complete
degradation of the proteins was achieved when the Golgi
vesicles were treated with Triton X-100 during proteinase K
treatment (Fig. 9b, reactions 5 and 6).

Using the treatment conditions described above, we exam-
ined the presence of AtCSLD2 and XT1 by immunoblot
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Fig. 9 AtCSLD2 is not protected by Golgi membranes during protein-
ase K treatment, whereas XT1 proteins and XyG FUTase activity are.
The samples and reaction conditions are all the same in a, b, and c.
Equal amounts of Golgi-rich vesicles were treated with 0 pg/ml (reac-
tions / and 4), 200 pg/ml (reactions 2 and 5), or 400 pg/ml (reactions
3 and 6) proteinase K with (reactions 4, 5, and 6) or without (reactions
1, 2, and 3) the presence of 1% Triton X-100. After treatment, equal
amounts of samples were assayed for XyG FUTase activity in the pres-
ence of 1% Triton X-100 (a), visualized on SDS-PAGE with Coomass-
ie Brilliant Blue staining (b), or subjected to immunoblot analysis with
antibodies against XT1 and AtCSLD?2 (c¢). Data shown are from a sin-
gle experiment; two replicate experiments gave similar results. The
percentage of inside-out Golgi complex vesicles is determined by com-
paring the XyG FUTase activity assayed with or without permeabiliza-
tion of the membrane vesicles with 1% Triton X-100. In this case, the
inside-out or unsealed vesicles constitute only 8.8% of the total

assay (Fig. 9c). Our earlier data (Figs. 4, 5, 6, 7) showed
that XT1 was a Golgi-localized integral membrane protein,
and we used this result as a control. XT1 is predicted to be a
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type II transmembrane protein with a single transmembrane
domain near its N-terminus and facing the Golgi lumen
(Faik et al. 2002). The antibody against XT1 used in this
work was generated against the large domain after the N-
terminal transmembrane domain (A. Faik and K. Keegstra,
unpublished data). Therefore, if XT1 is facing the Golgi
lumen, it should be protected from proteinase K when
Golgi vesicles are not permeabilized. Indeed, we saw no
change in signal intensity when Golgi vesicles were treated
with proteinase K without the addition of Triton X-100
(Fig. 9c, reactions 2 and 3). However, when Triton X-100
was added to the Golgi vesicles, XT1 was completely
degraded by proteinase K (Fig. 9c, reactions 5 and 6).

Immunoblot signals for AtCSLD2 showed a different
pattern (Fig. 9c). AtCSLD2 was completely degraded by
proteinase K treatment regardless of whether or not Triton
X-100 was present in the reaction mixture (Fig.9c,
reactions 2, 3, 5, and 6). From this observation, we con-
cluded that the antigenic region (the extreme N-terminus)
of AtCSLD2 was located on the outer surface of the Golgi
membrane, facing the cytosol. Alternatively, if the N-termi-
nus of AtCSLD2 were inside the Golgi lumen, then the
closest cleavage site accessible to proteinase K would have
been right after the first transmembrane domain (Fig. 1). In
this case, an AtCSLD2 peptide from amino acid residues 1
to 287 with a predicted molecular mass of around 32 kD
should have been detected by our antibody as the degrada-
tion product. What we saw from the immunoblot, however,
was a total disappearance of signal for the full-length
AtCSLD2, and no appearance of new signals with smaller
molecular mass (Fig. 9c).

The program TMHMM predicts that AtCSLD2 has eight
transmembrane domains (Fig. 1): two are located between
the N-terminal peptide used as antigen and the large hydro-
philic domain (Fig. 1). If this prediction were correct, our
data supported the conclusion that the large hydrophilic
domain of AtCSLD2 faced the cytosol.

Discussion

Although genetic approaches have been used successfully
to analyze the functions of many ArCESA genes (Arioli
etal. 1998; Taylor etal. 1999, 2000; Fagard et al. 2000;
Scheible et al. 2001; Burn et al. 2002; Desprez et al. 2002;
Zhong et al. 2003) and some genes involved in the biosyn-
thesis of matrix polysaccharides (Bouton et al. 2002; Iwai
et al. 2002; Vanzin et al. 2002; Madson et al. 2003), genetic
studies for CSL genes have not been as successful in deter-
mining their biochemical functions. So far, mutations in
only a few CSL genes have yielded specific phenotypes,
including ArCSLA7 (Goubet etal. 2003), AtCSLA9/rat4
(Zhu et al. 2003), AtCSLD3/kojak (kjk) (Favery et al. 2001;
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Wang etal. 2001), ArCSLD5 (Bernal etal. 2007), and
OsCSLDI(Kim et al. 2007). However, none of the muta-
tions have been linked to changes in specific sugar linkages
within a specific cell wall polysaccharide and therefore the
biochemical functions of these genes could not be deter-
mined from these studies. Furthermore, our attempt to sup-
press multiple AtCSLD genes using an RNAi approach did
not yield changes in any specific sugar linkages (Zeng
2004). Therefore, we conducted localization and topologi-
cal studies of AtCSLD proteins to find out whether this
information would offer some hints about their biochemical
functions.

In our present study, we used three different membrane
fractionation procedures to monitor the behavior of
AtCSLD2 proteins during cell fractionation. In the two-
phase partitioning experiment, AtCSLD2 and the plasma
membrane marker protein PMA2 were partitioned into
different phases, which led us to conclude that AtCSLD?2 is
not located in the plasma membrane, but rather in some
portion of the endomembrane system. Because AtCSLD2’s
distribution pattern in the linear sucrose density gradient is
very different from the PVC marker protein SYP21, the
TGN-PVC marker protein ELP, and the ER marker protein
SEC12, we concluded that AtCSLD2 was not located in
any of these fractions. On the other hand, the distribution
pattern of AtCSLD2 matched best with that of Golgi
marker protein XT1 and marker enzyme activity of XyG
FUTase in all three membrane fractionation procedures
(Figs. 5, 6, 7). Therefore, we concluded that AtCSLD2
most likely resides in the Golgi apparatus. We noted that
the ER marker protein SEC12 was always detected within
multiple membrane fractions (Figs. 5, 6, 7). This character-
istic may indicate a physical closeness of the ER with other
membrane compartments or the difficulty of separating ER
membranes from other endomembranes with the techniques
employed in our studies.

In addition to the cellular membrane fractionation
approaches, the transient expression of AtCSLD2-GFP
fusion protein in onion epidermal cells showed its localiza-
tion in Golgi vesicles more directly. Bioinformatic tools
helped to predict that AtCSLD2 proteins have eight trans-
membrane domains, with two of them located close to the
N-terminus and the other six close to the C-terminus
(Fig. 1). The region between these two groups of trans-
membrane domains of AtCSLD?2 is the predicted catalytic
domain. In our AtCSLD-GFP fusion protein, this catalytic
domain was replaced by the GFP, with all the predicted
transmembrane domains of AtCSLD2 kept intact. This
design of GFP fusion protein therefore kept the relative
positions of all the transmembrane domains similar to the
endogenous AtCSLD2 proteins. The AtCSLD2-GFP fusion
protein showed a localization pattern similar to a Golgi
marker protein ST-DsRed, which has the transmembrane

domain and the short cytoplasmic tail (52 amino acids) of
the rat a-2,6-sialyltransferase (ST) fused with DsRed (BD
Clontech) and was shown to localize at the Golgi apparatus
(Brandizzi etal. 2002; Saint-Jore et al. 2002). Based on
these results, we argue that AtCSLD2 proteins are most
likely located in the Golgi. Our conclusion that AtCSLD2
was localized at the Golgi is consistent with Bernal et al.’s
observation when they studied localization with N-terminal
GFP fusion proteins of AtCSLD5 and AtCSLD3 (Bernal
et al. 2007).

Another important question regarding glycosyltransfer-
ases and glycan synthases concerns their topology within
the membrane. Most glycosyltransferases are thought to be
type II membrane proteins with a single membrane-span-
ning domain and a large hydrophilic domain facing the
lumen of the Golgi (Keegstra and Raikhel 2001). This
topology has been experimentally demonstrated for the
xyloglucan FUTase (Wulff et al. 2000), which was con-
firmed again in the studies reported here (Fig. 9). The sub-
strate nucleotide sugars are proposed to be imported into
the Golgi lumen by specific transporters, with the products
accumulating in the Golgi lumen (Munoz et al. 1996; Nec-
kelmann and Orellana 1998; Wulff et al. 2000; Sterling
et al. 2001).

The topology of glycan synthases is a more complicated
issue because of the presence of multiple transmembrane
domains. It is widely accepted that cellulose synthase con-
tains eight transmembrane domains that span the plasma
membrane, and a large hydrophilic domain residing in the
cytosol that presumably contains the active site (Delmer
1999). In this case, cellulose accumulates on the outside of
the plasma membrane, indicating that cellulose synthase
acts not only as a polymerase, but also as a transporter.
However, the exact topology of the CESA protein has not
yet been confirmed experimentally. Similarly, computer
calculations predict the existence of multiple transmem-
brane domains in all of the CSL proteins (Richmond and
Somerville 2000; Zeng 2004). CSLD, which has extensive
sequence similarity to the CESA proteins, is predicted to
have eight transmembrane domains by most of the on-line
computer-based transmembrane domain prediction algo-
rithms (Fig. 1). However, its topology within the membrane
remains unclear.

The large hydrophilic domain of AtCSLD proteins,
which is proposed to contain the catalytic activity of the
enzyme, may face either the cytosol or the Golgi lumen. If
the first case is true, the enzyme would function like cellu-
lose synthase, using nucleotide sugars directly from the
cytosol; and the polysaccharide product would be deposited
on the other side of the membrane. If the second case is true,
sugar nucleotides would be used in the lumen where the
polysaccharide product accumulates; and transmembrane
transport would be unnecessary (Scheible and Pauly 2004).
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Prior to our studies reported here, the only similar topology
study was carried out on the maize mixed linkage (1-3),
(1-4)-p-glucan synthase (Urbanowicz et al. 2004). In
that study, the pretreatment of Golgi membranes with
increasing concentrations of proteinase K decreased the
(1-3),(1-4)- B-glucan synthase activity accordingly. The
catalytic domain of the (1-3),(1-4)- -glucan synthase was
thus proposed to be on the cytoplasmic face of the Golgi
membranes, with extrusion of the growing polymer into
the lumen of the Golgi. Therefore, topologically, the (1-3),
(1-4)- f-glucan synthase behaves similarly to cellulose
synthase.

In the topological study reported here, the N-terminus of
AtCSLD2 was extremely sensitive to proteinase K treat-
ment, regardless of whether or not Golgi vesicles were pre-
treated with Triton X-100. In contrast, both the XT1 protein
and XyG FUTase activity were resistant to proteinase K
treatment unless the Golgi vesicles were pretreated with
Triton X-100. As noted above, using the program
TMHMM, AtCSLD?2 is predicted to have eight transmem-
brane domains, with two of them close to the N-terminus
and the other six close to the C-terminus (Fig. 1). Based on
these results and the transmembrane domain predictions,
we concluded that the N-terminus of AtCSLD2 faces the
cytosolic side of Golgi complex membranes. Using the
membrane topology model of AtCSLD2 shown in Fig. I,
we deduced that the large hydrophilic loop containing the
D,D,D,Qx xRW motif also faces the cytosol. If correct,
this conclusion would put AtCSLD?2 into the same category
topologically as the maize (1-3),(1-4)- f-glucan synthase
and cellulose synthases, in regard to the mechanisms
involved in the synthesis of respective polysaccharides.

The conclusion that the large hydrophilic loop contain-
ing the putative catalytic domain faces the cytosol is depen-
dent upon a few assumptions that are relatively safe, but
should be noted. The first is that the membrane vesicles are
sealed so that in the absence of detergent, the protease can-
not gain access to the lumen of the vesicles. Because both
the XT1 protein and XyG FUTase activity are resistant to
protease digestion in the absence of detergent, it seems rea-
sonable to assume that the vesicles are sealed. The second
assumption relates to the model that predicts the number
and location of the putative transmembrane domains. The
program used here, TMHMM, is normally very reliable in
predicting the location of transmembrane domains (Krogh
et al. 2001). In addition, when AtCSLD2 was analyzed for
topology prediction by 17 different programs at Aramem-
non (http://aramemnon.botanik.uni-koeln.de/index.ep), 14
of them, including TMHMM and the consensus predic-
tions, gave the same topology as that shown in Fig. 1. Thus,
the assumption regarding the transmembrane domain struc-
ture seems well supported, and it is reasonable to conclude
that the N-terminus and the large hydrophilic domain of
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AtCSLD2 are on the same side of the membrane, i.e., the
cytosolic side.

In summary, our data support the notion that AtCSLD2
is located at the Golgi membrane, but has a topology simi-
lar to cellulose synthase with the catalytic domain facing
the cytoplasmic side of the Golgi. Nevertheless, we are still
not able to predict the biochemical functions of AtCSLD
proteins. On one hand, AtCSLD?2 is located at the Golgi
apparatus, based on the conventional concepts, and so
likely functions as a non-cellulosic glycan synthase. Cellu-
lose is believed to be synthesized at the plasma membrane
and is directly incorporated into the wall, whereas the other
polysaccharides are synthesized at the Golgi apparatus
(Kimura et al. 1999). Likewise, cellulose synthases have
long been thought to be exclusively localized at the plasma
membrane and other glycan synthases and glycosyltransfer-
ases are thought to be located in the Golgi.

On the other hand, very recent localization studies on
KORRIGANTI, an endo-1,4-f-p-glucanase involved in cel-
lulose synthesis, and AtCSLAG, suggest that cellulose syn-
thases might not reside exclusively in the plasma
membranes, but rather commute between the plasma mem-
branes and endomembranes, including Golgi vesicles (Rob-
ert etal. 2005; Paredez etal. 2006). Based on these
observations and the Golgi localization of AtCSLD2 pro-
teins shown by our study, a non-cellulosic function for
AtCSLD proteins seems likely. However, because we did
not explore the possibility of AtCSLD?2 trafficking between
Golgi and plasma membranes, we cannot rule out the possi-
bility that our data represented no more than a small snap-
shot of the cellular distribution of AtCSLD2 proteins.
Given different physiological conditions, AtCSLD2 pro-
teins might distribute differently among different cellular
compartments.
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