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Abstract Hydrogen peroxide and other reactive oxygen
species are important signaling molecules in diverse physi-
ological processes. Previously, we discovered superoxide
dismutase (SOD) activity in extracellular protein prepara-
tions from Wber-bearing cotton (Gossypium hirsutum L.)
seeds. We show here, based on immunoreactivity, that the
enzyme is a Cu/Zn-SOD (CSD). Immunogold localization
shows that CSD localizes to secondary cell walls of devel-
oping cotton Wbers. Five cotton CSD cDNAs were cloned
from cotton Wber and classiWed into three subfamilies
(Group 1: GhCSD1; Group 2: GhCSD2a and GhCSD2b;
Group 3: GhCSD3 and GhCSD3s). Members of Group 1
and 2 are expressed throughout Wber development, but pre-
dominant during the elongation stage. Group 3 CSDs are

also expressed throughout Wber development, but tran-
siently increase in abundance at the transition period
between cell elongation and secondary cell wall synthesis.
Each of the three GhCSDs also has distinct patterns of
expression in tissues other than Wber. Overexpression of
cotton CSDs fused to green Xuorescent protein in trans-
genic Arabidopsis demonstrated that GhCSD1 localizes to
the cytosol, GhCSD2a localizes to plastids, and GhCSD3 is
translocated to the cell wall. Subcellular fractionation of
proteins from transgenic Arabidopsis seedlings conWrmed
that only c-myc epitope-tagged GhCSD3 co-puriWes with
cell wall proteins. Extracellular CSDs have been suggested
to be involved in lignin formation in secondary cell walls of
other plants. Since cotton Wbers are not ligniWed, we sug-
gest that extracellular CSDs may be involved in other plant
cell wall growth and development processes.
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Introduction

Reactive oxygen species (ROS), including superoxide
(O2

¡), hydrogen peroxide (H2O2), and hydroxyl radical
(·OH) are deleterious to living cells. To detoxify destructive
ROS in the subcellular compartment, all aerobic cells have
an antioxidant defense system (Bowler et al. 1992; Apel
and Hirt 2004). ROS are involved in various physiological
processes such as stomatal closure, root gravitropism, and
allelopathy (Laloi et al. 2004) and function in the defense
response to pathogen infection (Apel and Hirt 2004). In
addition, ROS are involved in secondary cell wall (SCW)
biosynthesis. Superoxide and H2O2 play important roles in
the covalent crosslinking between protein and carbohydrate
cell wall components (Kieliszewski and Lamport 1994) and
in lignin biosynthesis (Pomar et al. 2002), thereby increas-
ing the tensile strength of the wall (Carpita and McCann
2000). H2O2 has also been proposed to be involved in the
induction of SCW cellulose biosynthesis (Potikha et al.
1999) and dimerization of cellulose synthase subunits
(Kurek et al. 2002). In contrast, hydroxyl radical has been
proposed to be a wall loosening agent working in concert
with expansin, xyloglucan endotransglucosylase/hydrolase
(XTH), and cellulase (Cosgrove 2005). Hydroxyl radicals
converted from H2O2 by the non-enzymatic Fenton reaction
can cleave structural polysaccharides and, hence, loosen
cell walls and activate cell elongation (Fry 1998; Chen and
Schopfer 1999; Schweikert et al. 2000). The regulation of
wall loosening and tightening will aVect the Wnal size and
height of plants; therefore, the genes associated with cell
wall loosening and tightening are expected to be highly reg-
ulated (Harmer et al. 2000). If H2O2 is involved in wall
tightening processes that lead to the cessation of cell
enlargement, and ·OH, non-enzymatically generated from
H2O2, is involved in wall loosening processes contributing
to cell enlargement, then antioxidant enzymes regulating
levels of extracellular (EC) H2O2 must aVect plant growth
and development.

Superoxide dismutases (SODs) are important antioxi-
dant enzymes catalyzing the conversion of O2

¡ to H2O2 and
contain diVerent metal cofactors (Fe, Mn, or Cu and Zn) at
the active site (Bowler et al. 1992). Fe-type SODs (FSDs)
are located in chloroplasts, Mn-type SODs (MSDs) in mito-
chondria and peroxisomes, and Cu/Zn-type SODs (CSDs)
in chloroplasts, the cytosol, and the apoplast (Alscher et al.
2002). EC CSDs are well characterized in animal cells but
comparatively little is known about these enzymes in
plants. EC CSDs have been described previously from
spinach (Ogawa et al. 1996), pine needles (Karpinska et al.
2001), and peas (Kasai et al. 2006).

Cotton (Gossypium hirsutum, L.) Wbers are single-cell
trichomes arising from the epidermis of developing cotton
ovules. Cotton Wber development occurs in four overlap-

ping stages: initiation, elongation, SCW deposition, and
maturation (Naithani et al. 1981). In addition to in planta
development, cotton Wbers develop in vitro, providing an
exceptional experimental model for studying plant cell
elongation and cellulose biosynthesis (Kim and Triplett
2001). Unlike multicellular organisms in which diVerent
cell types may be at diVerent developmental or cell division
stages, expression of genes and proteins in cotton Wber can
be monitored independently during either the elongation or
SCW deposition stage in a single cell type.

In an eVort to characterize a cotton Wber cell-wall ger-
min-like protein (GhGLP1) whose orthologs in some plants
have weak Mn-SOD activity, we previously showed that
EC SOD activity from developing cotton Wbers could be
separated from GhGLP1 (Kim et al. 2004). In this paper,
we have further characterized the cotton Wber EC SOD by
immunoblotting, identiWed the putative metal cofactor,
compared EC SOD cDNA with other cotton Wber SOD
cDNAs, proWled transcript levels in Wber and other cotton
tissues, and localized the enzymes by immunological and
epitope tagging techniques.

Materials and methods

Plant materials and growth conditions

Cotton (Gossypium hirsutum, L., TM1) plants were grown
under standard Weld conditions (naturally rain-fed with day-
time high temperatures of »32–36°C and nighttime low
temperatures of 20–30°C) in New Orleans, LA and College
Station, TX during the summers between 2002 and 2006.
Immature seeds were harvested by 9 a.m. and frozen in liq-
uid nitrogen. Fibers were carefully scraped from frozen
seeds using a scalpel. Developing ovaries were collected at
4-day intervals from 8 to 24 DPA. Hypocotyls, roots and
cotyledons were harvested from 10-day old seedlings. Fully
expanded leaves (15 cm in diameter) and young leaves
(5 cm in diameter), petals (DOA), bracts (DOA) were har-
vested from Weld-grown plants. All tissues were frozen in
liquid nitrogen, and stored at ¡80°C.

Protein extraction and immunoblot analysis

EC proteins were eluted by bathing trichome-bearing seeds
in 15 volumes of 1.0 M NaCl (Robertson et al. 1997; Kim
et al. 2004). Tissues were vacuum-inWltrated by three
10 min exposures to 85 kPa, followed by gentle shaking for
16 h at 4°C. Plant material was recovered by Wltration
through two layers of cheesecloth followed by centrifuga-
tion at 10,000£g for 15 min. The supernatant liquid con-
taining EC protein was concentrated with a Centriprep-10
centrifugal Wlter (Amicon, Beverly, MA).
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Total proteins from transgenic Arabidopsis plants
(3-weeks old) were extracted with 6 M urea, 100 mM Tris
(pH 8.0), 0.1% SDS, and 10% �-mercaptoethanol. Soluble
proteins were extracted from Arabidopsis plants (3-weeks
old) with 100 mM Tris (pH 8.0) buVer containing Complete
Tabs, a protease inhibitor (Roche Applied Science, India-
napolis, IN). Cell walls were prepared by washing insoluble
fractions with 70% ethanol and 100% acetone. Cell wall
proteins were extracted from the isolated cell walls with
6 M urea, 100 mM Tris (pH 8.0), 0.1% SDS, and 10%
�-mercaptoethanol.

The extracted proteins were separated on 15% SDS-
polyacrylamide gels, and transferred to nitrocellulose
membranes in 25 mM Tris base–190 mM glycine–20%
methanol at constant voltage (30 V) overnight at room tem-
perature. The Wlters were blocked in 5% (w/v) skim milk–
PBS-T [0.05% (v/v) Tween-20 in phosphate-buVered saline
(PBS)] buVer for 2 h at room temperature, treated with pri-
mary antibodies [anti-plant CSD (1:6,000 dilution), anti-
plant MSD (1:1,000 dilution), anti-polyclonal GFP (1:1,000
dilution) and anti-monoclonal c-myc (1:1,000 dilution)] in
blocking buVer overnight at 4°C, washed three times with
PBS-T, reacted with (1:1,000 dilution) horseradish peroxi-
dase conjugated donkey anti-rabbit IgG or anti-mouse IgG
(Pierce, Rockford, IL). The cross-reacting proteins were
visualized by chemiluminescence using SuperSignal West
Pico Chemiluminescent Substrate (Pierce, Rockford, IL)
according to the manufacturer’s instructions.

Peptide antibodies to conserved and distinct domains of
plant CSDs and plant MSDs were prepared in rabbits
(EnVirtue Biotechnologies, Inc., Winchester, VA). Poly-
clonal GFP antibody was purchased from Invitrogen
(Carlsbad, CA) and monoclonal c-myc antibody was pur-
chased from Sigma-Aldrich (St Louis, MO).

Cloning of GhCSD1, GhCSD2, and GhCSD3

The open reading frame sequence of GhCSD1 was obtained
by RT-PCR from cDNA template synthesized from G. hirsu-
tum TM1 4 DPA ovules with forward primer (5�-CCCTCG
AGAAATGGTGAAAGCCGTTGCCGTCC-3�) and reverse
primer (5�-TCGCTAGCGCCTTGCAGACCAATAATACC
GCA-3�) designed from the sequence of AI727694 encoding
a putative cytosolic CSD. Two full-length clones of GhCSD2
were obtained using 3� RACE PCR following the manufac-
turer’s protocol (Clontech, Palo Alto, CA). A speciWc primer
(5�-AGCCATGGCTGCCCATATTTTCACGACAAC-3�)
for 3� RACE was designed from EST sequences (AI728663)
encoding a putative leucoplastic CSD. To obtain the
sequences of the 5� UTR of GhCSD3, both 5� RACE PCR
(Clontech) and GenomeWalker (BD Biosciences, Palo Alto,
CA) were used. The gene-speciWc primers for 5� RACE and
GenomeWalker were designed from EST sequences

(BM360311). The full-length cDNA of GhCSD3 was
obtained by RT-PCR. All PCR ampliWed products were
cloned into pCR-XL-TOPO (Invitrogen, Carlsbad, CA) and
sequenced by the DNA Sequencing Center, Auburn
University.

Quantitative RT-PCR

SpeciWc primers for GhCSD1 (5�-GGGTGCATGTCAACT
GGACC-3�/5�-ACCATGCTCTTTGCAGCA-3�), GhCSD2
(5�-GGCTGCCCATATTTTCACGA-3�/5�-GGAAAAGG
AAGGAGGTGG-3�), GhCSD3 (5�-CCATGCTGGAG
ATTTGGGTA-3�/5�-TCAGCAACCCATCAGGGC-3�),
and GhCSD3s (5�-GATTTGGGAGTTGCTGAGGTCT-3�/
5�-CTGTCCGCTAAGTGGAATCTGC-3�) were designed
using Primer Express software (version 2.0, Applied Bio-
systems, Foster City, CA). The speciWcity of primer anneal-
ing was examined by monitoring product dissociation.
Cotton 18S rRNA (5�-CGTCCCTGCCCTTTGTACA-3�/
5�-AACCTTCACCGGACCATTCA-3�) was used as a nor-
malizer. All amplicon sizes were designed to be less than
150 bp to make ampliWcation eYciencies equivalent.

Total RNAs from cotton tissues were isolated using a
Spectrum Plant Total RNA kit (Sigma-Aldrich) and treated
with DNase I (Sigma-Aldrich). First-strand complementary
DNA was synthesized using 1 �g of total RNA by priming
with random hexamers at 48°C for 30 min followed by
inactivation of MultiScribe™ Reverse Transcriptase
(Applied Biosystems) at 95°C for 10 min. Q-RT-PCR was
performed using the SYBR® Green PCR Master Mix in the
ABI Prism 7900HT Sequence Detection System (Applied
Biosystems). Thermal cycling conditions were 95°C for
10 min followed by 40 cycles of 95°C for 15 s for denatur-
ation and 60°C for 1 min for annealing and extension. The
transcript levels of GhCSDs were normalized with respect
to the transcript level of 18S ribosomal RNA. Reported val-
ues are the average of triplicate PCR reactions. The experi-
ments were repeated twice independently beginning with
RNA isolation.

AmpliWcation eYciencies among samples varied by less
than 0.01 for each cycle of ampliWcation. Relative tran-
script levels were determined by a comparative CT (thresh-
old cycles) method according to Applied Biosystems’
guidelines. Statistical analyses and construction of graphs
were performed using Prism version 4.00 software (Graph-
Pad Software, Inc., San Diego, CA).

Immunogold localization of CSD in developing cotton 
Wbers

Cotton ovaries were harvested on the DOA, surface-steril-
ized in 95% ethanol, Xamed brieXy, and dissected under
sterile conditions. Ovules were transferred to a liquid cul-
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ture medium in the presence of 5.0 �M indole-3-acetic acid
and 0.5 �M gibberellic acid (Beasley and Ting 1973). Cot-
ton Wbers cultured for 6, 14, and 23 days were Wxed in 1.5%
glutaraldehyde in 0.1 M potassium phosphate buVer (pH
6.8) for 2 h at room temperature, washed in several
exchanges of buVer, and then gradually dehydrated in etha-
nol (30, 50, 70, 100%). Fibers collected from each stage
were gradually inWltrated with LR White resin (33, 66,
100%) (Electron Microscopy Sciences, HatWeld, PA) and
polymerized in a gelatin capsule by UV light for 24 h at
¡18°C, then at room temperature for an additional 24 h.
Ultra-thin sections (75–80 �m) cut with an UltraCut E
microtome (Leica, Germany) were mounted on nickel grids
and washed with PBS buVer for 5 min. The grids were
incubated in a series of solutions in the following order:
blocking solution (1% Aurion BSA, Electron Microscopy
Sciences, in PBS) for 2 h, plant CSD antibody (1:3,000
dilution in blocking solution) for 16 h at 4°C, PBS three
times for 10 min each, donkey anti-rabbit IgG conjugated
with 18 nm gold particles (1:100 dilution in blocking solu-
tion) for 16 h at 4°C. For the control, primary antibody was
omitted and replaced with an equal dilution of pre-immune
serum. After washing in PBS and Milli-Q water (Millipore,
Billerica, MA) three times, 10 min each, the grids were
stained with uranyl acetate and lead citrate and the speci-
mens were observed with a transmission electron micro-
scope (Philips CM 120, FEI Company, Hillsboro, OR) at
80 kV.

Transgenic lines of GhCSDs-GFP and GhCSDs-myc

Translational fusions of Green Fluorescent Protein (mGFP5)
to the C-terminus of GhCSD1, GhCSD2, and GhCSD3 were
generated. The open reading frames of GhCSD1, GhCSD2,
and GhCSD3 were individually subcloned into pRT104-myc
(Töpfer et al. 1987) and veriWed by sequencing. The CaMV
35S promoter and GhCSDs in pRT104-myc were digested
with HindIII and NheI and ligated into the binary vector,
pCAMBIA 1302 (CAMBIA, Canberra City, Australia), pre-
digested with HindIII and SpeI. Translational fusions of
c-myc to the C-terminus of GhCSD1, GhCSD2, and
GhCSD3 were also generated. The 35S promoter and
GhCSDs in pRT104-myc were digested with PstI and NheI
and ligated into the binary vector, pCAMBIA 1391z, pre-
digested with PstI and NheI. The constructs were introduced
into Agrobacterium tumefaciens strain GV3101 (pMP90)
and subsequently transformed into Arabidopsis, Columbia
(Col-0), by the method of Clough and Bent (1998).

Subcellular localization of the GhCSDs-GFP protein

Transgenic Arabidopsis plants were selected on 0.5 X MS
agar plates containing 50 mg/L hygromycin. For GFP

localization in cells, 2-week old transgenic seedlings or
roots were transferred to Petri dishes and observed with a
Leica DM RXA2 upright or a Nikon E800 microscope. To
plasmolyze cells, the tissue samples were pretreated in 1 M
NaCl or 600 mM mannitol for »10 min at room tempera-
ture. Images of diVerential interference contrast (DIC) and
bright Weld were taken by HCX PL APO CS 40X N.A. 1.25
oil immersion objective lenses and SensiCam QE CCD
camera (Cooke Corp., Auburn Hills, MI). The GFP Wlter set
JP1 (exciter 470/20 nm and emitter 510/20 nm, Chroma,
CT) was used to excite GFP. Exposure time was 1.0 s. The
images were composed with ImageJ1.3.7 (http://
rsb.info.nih.gov/ij) and PhotoShop (Adobe, San Jose, CA).
Green color was added in the original black and white
images through the Lookup Tables function in ImageJ (ver-
sion 10.2) software.

Results and discussion

An extracellular SOD in developing cotton seeds 
is an oligomeric CSD

Previously, we puriWed a cotton-Wber cell-wall protein that
was found to be a germin-like protein, GhGLP1 (Kim et al.
2004). Germin-like proteins from other plants have been
reported to have SOD and other enzyme activities; how-
ever, no activity was associated with puriWed GhGLP1
(Kim et al. 2004). Developing cotton seeds1 had strong EC
SOD activity, and partially puriWed GhGLP1 fractions from
anion exchange and gel Wltration chromatography also
showed SOD activity; however, lectin-aYnity chromatog-
raphy separated GhGLP1 from the SOD activity (Kim et al.
2004). As a result, we predicted that the EC protein fraction
from immature cotton seeds contains an unglycosylated
SOD having a similar molecular mass and pI to GhGLP1
(native MW, 108 kDa; pI 5).

To determine which type of SOD is in the cell wall of
cotton seeds, we tested the immunogenicity of immature
cotton seed EC proteins with commercial peptide antibod-
ies to plant CSD and MSD. Immunoblot analyses showed
that immature cotton seed EC proteins contained a CSD,
but not an MSD (Fig. 1a). MSD, an enzyme that localizes
in mitochondria, should be present in soluble protein
extracts. The lack of detectable MSD in the EC protein
extract (Fig. 1a, lane 2) suggests that the EC protein extract
contains little or low levels of contaminating intracellular
proteins.

1 Cotton Wbers (trichomes) cover the cotton seed throughout develop-
ment. Approximately 25–30% of the epidermal cells of the seed
become Wbers.
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Under conditions where the reducing agent was omitted
and the sample was not heated prior to electrophoresis, pro-
tein bands of three diVerent sizes (17, 44, and 110 kDa)
were detected by the plant CSD antibodies (Fig. 1b, lane 1).
Denatured, extracellular GhCSD migrated with an apparent
molecular mass of 17 kDa on 15% SDS-PAGE (Fig. 1b,
lanes 2 and 3). Despite the identical amounts of EC protein
extracts loaded onto lanes 2 and 3 of Fig. 1b, the EC protein
extract denatured by heat alone (Fig. 1b, lane 2) has a less
prominent band than that denatured by heat and in the pres-
ence of dithiothreitol (Fig. 1b, lane 3). The CSD antibodies
used for the blot were produced against a conserved metal-
binding domain of plant CSDs. Crystallographic studies on
CSDs reveal that the metal-binding domain is located in
densely packed interiors of the folded CSD (Tainer et al.
1982; Hough and Hasnain 1999). GhCSD fully denatured
by heat and dithiothreitol (Fig. 1b, lane 3) exposed more
epitopes than the partially denatured GhCSD (Fig. 1b, lane
2). Oligomeric forms found in the absence of dithiothreitol
and heat indicate the formation of disulWde linkages
between the SDS-dissociated subunits. Both HipI-SOD, an
EC CSD from pine needles (Streller and Wingsle 1994;
Karpinska et al. 2001) and SoCSD1, a spinach CSD that
localizes to cell walls (Kanematsu and Asada 1990; Ogawa

et al. 1996, 1997), were reported to be dimers; however,
mammalian EC CSDs are tetrameric enzymes (Cannio
et al. 2000). Further studies using gel Wltration and/or X-ray
diVraction are necessary to determine exactly the oligo-
meric structure of EC GhCSD.

GhCSD is detected in SCWs of cotton Wbers 
by immunogold localization

To determine if EC GhCSD is present in cell walls of
developing cotton Wbers, we Wxed Wbers (G. hirsutum) at 6,
14, and 23 DPA in preparation for immunogold localiza-
tion. The 6 DPA Wbers are in the elongation stage and have
only a thin primary cell wall (PCW); the 14 DPA Wbers are
in the transition from elongation to SCW deposition and
have a thin PCW and some SCW; and the 23 DPA Wbers
are in the SCW deposition stage and have a thin PCW and a
thicker SCW (Fig. 2). Overall, immunogold-labeled
GhCSD was found only in the SCW of 14 and 23 DPA cot-
ton Wbers and was rarely detected in PCWs at any stage of
development. A low level of labeling was found in the
cytosol, and a pre-immune serum control showed little to
no labeling of cell walls (data not shown). The localization
patterns of two proposed EC SODs, SoCSD1 from spinach
and HipI-SOD from pine were similarly found to be only in
the SCW, suggesting a possible involvement in lignin for-
mation (Ogawa et al. 1996, 1997; Karpinska et al. 2001;
Schinkel et al. 2001; Karlsson et al. 2005). Since cotton
Wbers are not ligniWed, there must be other potential func-
tions for this EC enzyme. The localization of EC GhCSD in
SCWs of developing cotton Wbers (Fig. 2) suggests that
hydrogen peroxide produced by EC GhCSDs may be
involved in cotton Wber SCW development. In cotton Wber
cells, hydrogen peroxide was proposed to be involved in
the induction of SCW cellulose biosynthesis (Potikha et al.
1999) and dimerization of cellulose synthase subunits
(Kurek et al. 2002). H2O2 produced by EC GhCSD could
also be used by EC peroxidases to crosslink the wall matrix
(Kieliszewski and Lamport 1994).

There are three groups of GhCSDs in developing cotton 
Wbers

Arabidopsis contains three diVerent types of CSDs: cyto-
solic AtCSD1 (AT1G08830), chloroplastic AtCSD2
(AT2G28190), and a putative peroxisomal form AtCSD3
(AT5G18100). Putative orthologs of all three AtCSD iso-
forms were found in public databases of cotton DNA
sequences. Four cotton Expressed Sequence Tags (ESTs;
AI731179, AI727694, AI727387, and AI730588) isolated
from 6 DPA cotton (G. hirsutum) Wbers were most similar
to cytosolic AtCSD1 (AT1G08830). From the open reading
frame of AI727694, primers were designed and a putative

Fig. 1 IdentiWcation of EC GhCSD protein from Wber-bearing cotton
seeds. a Immunoblot analysis of EC protein separated on a 15% SDS-
polyacrylamide gel and blotted to nitrocellulose. Primary antibodies
were: lane 1 anti-plant CSD (1:6,000 dilution), lane 2 anti-plant MSD
(1:1,000 dilution). Secondary antibody was horseradish peroxidas-
econjugated donkey anti-rabbit IgG (1:2,000 dilution) with detection
by SuperSignal West Pico Chemiluminescent Substrate. b Immunoblot
of EC proteins subjected to diVerent denaturing conditions. EC protein
(8 �g) was denatured, loaded onto a 15% SDS-polyacrylamide gel,
blotted to nitrocellulose, and treated with anti-plant CSD (1:6,000 dilu-
tion). Denaturation conditions were: lane 1 SDS, lane 2 SDS and heat
(100°C) for 20 min, lane 3 SDS and heat (100°C) for 20 min in the
presence of 100 mM dithiothreitol
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ortholog of AtCSD1 was ampliWed by RT-PCR and named
GhCSD1 (Fig. 3). Comparison of deduced amino acids
between GhCSD1 and AtCSD1 shows 85% sequence
similarity. GhCSD1 encodes a deduced protein of 152

amino acids with a pI of 5.47 and a molecular mass of
15,208 Da.

Two 3�-truncated cotton ESTs (AI726214 and
AI728663) isolated from Wbers were 72% similar to chloro-
plastic AtCSD2 (AT2G28190). From AI728663, primers
were designed and two diVerent full-length cDNAs were
obtained and named GhCSD2a and GhCSD2b (Fig. 3).
Both cDNAs encode deduced proteins of 214 amino acids
with pIs of 6.02 and molecular masses of 22,097 Da. The
deduced protein sequences of GhCSD2a and GhCSD2b are
identical except for two amino acids and the 3�-untranslated
region. Since allotetraploid cotton, G. hirsutum contains
two diVerent subgenomes, it is likely that GhCSD2a and
GhCSD2b are homeologous genes. GhCSD2a and
GhCSD2b are expected to translocate into plastids since
both contain a transit peptide of 59 amino acids, predicted
by Chlorop 1.1 (Emanuelsson et al. 1999). After cleavage
of the transit peptide, the estimated pI and molecular mass
are 5.04 and 15,820 Da, respectively.

The sequences of two 5�-truncated ESTs (BG446025
and BM360311) from G. arboreum were 72% similar to the
putative peroxisomal AtCSD3 (AT5G18100), and we
named the full-length cDNA GhCSD3. We were unable to
obtain 5�-terminal sequences of GhCSD3 using 5� RACE
PCR, a technique that had successfully ampliWed GhCSD1
and GhCSD2 with the same cDNA template. We suspect
that lower endogenous transcript levels of GhCSD3 con-
tributed to the failure of its ampliWcation by RACE-PCR.
Much lower levels of AtCSD3 than AtCSD1 and AtCSD2
were also reported in Arabidopsis (Kliebenstein et al.
1998). Using a GenomeWalker kit, we were able to obtain
the 5�-terminal sequences of GhCSD3. From this sequence
information, we designed primers and ampliWed the coding
sequences of GhCSD3 with RT-PCR. Interestingly, the
product ampliWed by RT-PCR contained two bands. The

Fig. 2 Immunogold TEM localization of EC GhCSD in developing
cotton Wbers at 6 (a), 14 (b), and 23 DPA (c). PCW primary cell wall,
SCW secondary cell wall

Fig. 3 Multiple alignment of 
GhCSD proteins. Deduced pro-
tein sequences from cotton 
GhCSD1, GhCSD2a, GhCSD2b, 
GhCSD3, and GhCSD3s. Two 
transit peptides of 59 amino ac-
ids, predicted by Chlorop 1.1 
(Emanuelsson et al. 1999), are 
shown in bold and italicized 
font. Conserved sequences are 
highlighted. The two amino ac-
ids that diVer between GhCSD2a 
and GhCSD2b are underlined

GhCSD1          ------------------------------------------------------- 
GhCSD2a MAAHIFTTTPSHLALSFPSSTNPSNPPVLLSSFRGVSLKLPRQSLSLAATIPKKP 55 
GhCSD2b MAAHIFTTTPSHLALSFPSSTNPSNPPVLLSSFRGVSLKLPRQSLSLAATIPKKP 55 
GhCSD3         ------------------------------------------------------M  1 
GhCSD3s         ------------------------------------------------------M  1 

GhCSD1     ------MVKAVAVLSSNEGVSGTVFFSQEGDGPTTVTGNLSGLKPGLHGFHVHALGDTTN  54 
GhCSD2a FSVFAVTKKAVAVLKGNSEVEGVVTLTQENDGPTTVNVRITGLTPGPHGFHLHEYGDTTN 115 
GhCSD2b FSVFAVTKKAVAVLKGNSEVEGVVTLTQETDGPTTVNVRITGLTPGPHGFHLHEYGDTTN 115 
GhCSD3     ECGSKATLKAVALITGDTNVRGFIHFTQIPNGITHVQGKITGLSPGLHGFHIHALGDTTN  61 
GhCSD3s ECGSKATLKAVALITGDTNVRGFIHFTQIPNGITHVQGKITGLSPGLHGFHIHALGDTTN  61 

GhCSD1     GCMSTGPHFNPAGKEHGAPEDENRHAGDLGNVTVGDDGCASFSITDKQIPLTGPNSIIGR 114 
GhCSD2a    GCMSTGAHFNPNNMTHGAPEDEVRHAGDLGNIIANADGVAEATIVDNQIPLSGPNAVVGR 175 
GhCSD2b    GCMSTGAHFNPNNMTHGAPEDEVRHAGDLGNIIANADGVAEATIVDNQIPLSGPNAVVGR 175 
GhCSD3     GCNSTGPHFNPLKKDHGAPSDGERHAGDLGNIIAGPDGVAEVSIKDWQIPLSGQHSILGR 121 
GhCSD3s    GCNSTGPHFNPLKKDHGAPSDGERHAGDLG--------VAEVSIKDWQIPLSGQHSILGR 121 

GhCSD1     AVVVHADPDDLGKGGHELSKSTGNAGGRVACGIIGLQG------ 152 
GhCSD2a    AFVVHELEDDLGKGGHELSLTTGNAGGRLACGVVGLTPV----- 214 
GhCSD2b    ASVVHELEDDLGKGGHELSLTTGNAGGRLACGVVGLTPV----- 214 
GhCSD3     AVVAHADPDDLGKGGHELSKTTGNAGARVGCGIIGLQSSV---- 161 
Gh  153 CSD3s AVVAHADPDDLGKGGHELSKTTGNAGARVGCGIIGLQSSV----
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larger product was named GhCSD3, and the shorter product
was named GhCSD3s (Fig. 3). GhCSD3 encodes a deduced
protein of 161 amino acids with a pI of 6.22 and a molecu-
lar mass of 16,461 Da. GhCSD3s was identical to GhCSD3
except for eight amino acids in the middle of the open read-
ing frame that were missing in GhCDS3s.

Although it might be questioned whether GhCSD3s is
functional, two cotton Wber ESTs found in DFCI Cotton
Gene Index Release 8.0 (http://compbio.dfci.harvard.edu/
tgi/plant.html) also are lacking the same eight amino acids
as GhCSD3s, suggesting that GhCSD3s is likely to be
expressed in Wbers. Co-production of two closely related
Group 3 CSDs has also been reported in aspen xylem cells
(Srivastava et al. 2007), and a recent proteomic investiga-
tion showed that EC CSDs of two diVerent sizes are ioni-
cally bound to cell walls in the elongation zone of maize
roots (Zhu et al. 2006). Both GhCSD3 and GhCSD3s show
67% amino acid sequence similarity with GhCSD1, have
seven additional amino acids in the N-terminus compared
to GhCSD1, but do not contain signal peptides as shown by
SignalP 3.0 analysis (Emanuelsson et al. 2007). GhCSD3 is
expected to localize in the cytoplasm according to algo-
rithms for predicting protein subcellular localization such
as PSORT (Nakai and Kanehisa 1991), WoLF PSORT
(Horton et al. 2007), Plant-PLoc (Chou and Shen 2007),
and ESLpred (Bhasin and Raghava 2004). Interestingly,
GhCSD3 and GhCSD3s lack a peroxisomal targeting
sequence (Ala-Lys-Leu; Keller et al. 1991) that was found
at the carboxyl terminus of AtCSD3 (Kliebenstein et al.
1998). Thus, unlike AtCSD3, GhCSD3 does not appear to
target to the peroxisome.

Our phylogenetic comparison of cotton GhCSDs with
other CSDs from Arabidopsis (Kliebenstein et al. 1998),
spinach (Ogawa et al. 1995, 1996), pine (Karpinska et al.
2001) and aspen (Schinkel et al. 2001) was performed
using MAFFT (Katoh et al. 2002) and led to the classiWca-
tion of three subfamilies (Fig. 4). GhCSD1 grouped with
AtCSD1 and SoCSD1. AtCSD1 is considered a cytosolic
CSD since the product was found in the soluble fraction of
a total protein extract by immunoblot analysis (Klieben-
stein et al. 1998), whereas SoCSD1 was reported to localize
in the apoplast (44%), nucleus (24%) and tonoplast (23%)
of spinach mesophyll cells (Ogawa et al. 1996). GhCSD2a
and GhCSD2b were classiWed with AtCSD2 and SoCSD2
that contain transit peptides and localize in chloroplasts of
Arabidopsis (Kliebenstein et al. 1998) and spinach (Ogawa
et al. 1995). GhCSD3 grouped with AtCSD3 (Kliebenstein
et al. 1998), pine HipI-SOD (Karpinska et al. 2001), and
aspen HipI-SOD (Schinkel et al. 2001). Although AtCSD3
was assumed to be a peroxisomal CSD due to a peroxi-
somal targeting sequence (Keller et al. 1991), the subcellu-
lar localization of AtCSD3 has not been tested directly
because even aYnity-puriWed AtCSD3 antibody reacts with

other CSDs (Kliebenstein et al. 1998). A contributing factor
to this lack of speciWcity may be the low endogenous levels
of AtCSD3 compared with the other forms of CSD (Klie-
benstein et al. 1998). Immunogold labeling showed that
HipI-SOD is localized in the plasma membrane, Golgi
apparatus, SCW, and intercellular spaces of pine (Kar-
pinska et al. 2001). Immunolocalization of HipI-SOD in
cross-sections of stems of hybrid aspen plants showed that
this CSD localized in the ligniWed SCWs of phloem Wbers
and xylem vessels (Srivastava et al. 2007).

All GhCSDs are developmentally regulated in cotton Wbers 
and preferentially expressed in diVerent tissues

The expression patterns of GhCSDs were determined by
Q-RT-PCR (Fig. 5). SpeciWc primer pairs for GhCSD1,
GhCSD3 and GhCSD3s were designed to amplify unique
cDNAs; however, the primers for GhCSD2 detected both
GhCSD2a and GhCSD2b because their sequences are
almost identical. GhCSD1, 2, 3, and 3s are expressed in
Wbers and exhibit developmentally regulated expression
patterns (Fig. 5a). The expression patterns of GhCSD1 and
GhCSD2 are almost identical to each other, but are very
diVerent from those of GhCSD3 and GhCSD3s. GhCSD1
and GhCSD2 levels peaked during the elongation stage
(8–12 DPA), and declined coincident with the initiation of
SCW synthesis (16 DPA). Many genes involved in cell
elongation or SCW synthesis in cotton Wbers are transcrip-

Fig. 4 Phylogenetic tree and putative subcellular localization of CS-
Ds. Deduced protein sequences of GhCSD1, GhCSD2, and GhCSD3
were analyzed by MAFFT in comparison with the deduced proteins of
AtCSD1 (Arabidopsis thaliana, AT1G08830), AtCSD2 (AT2G28190),
AtCSD3 (AT5G18100), pine HipI-SOD (Pinus sylvestris,
CAA05633), aspen HipI-SOD (Populus tremula £ Populus tremulo-
ides, CAC33847), SoCSD1 (Spinacia oleracea, CAA37866), SoCSD2
(BAA01088). Citations identifying the putative subcellular localiza-
tion of CSDs: AtCSDs (Kliebenstein et al. 1998), SoCSDs (Ogawa
et al. 1995, 1996), pine HipI-SOD (Karpinska et al. 2001), and aspen
HipI-SOD (Srivastava et al. 2007). SCW secondary cell wall, PM plas-
ma membrane
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tionally regulated, and there are multiple developmental
programs controlling gene expression throughout cotton
Wber development (Smart et al. 1998; Haigler et al. 2005).
The expression patterns of GhCSD1 and GhCSD2 are simi-
lar to the patterns of genes expressed primarily during the
cell elongation stage of Wber development (Whittaker and
Triplett 1999; Kim and Triplett 2004). Interestingly, the
patterns and scale of down-regulation of GhCSD1 and
GhCSD2 are almost identical to those of G. hirsutum cellu-
lose synthase catalytic subunits 3 and 5 (GhCesA3 and
GhCesA5) that are involved in cellulose biosynthesis for
the PCW during Wber elongation (Kim and Triplett 2007).
In contrast, GhCSD3 and GhCSD3s transcript abundance
increased at the transition to SCW biosynthesis.

Although it is inappropriate to compare directly the
expression of one gene to another by relative Q-RT-PCR
since genes with diVerent sequences may not be reverse

transcribed with the same eYciency, the number of thresh-
old cycles (CT) can provide an indirect estimation of tran-
script accumulation levels of individual members of a
highly similar gene family. The CT numbers for GhCDS1,
2, and 3 suggested that GhCSD3 was less abundantly
expressed than GhCSD1 or GhCSD2. In 8 DPA Wbers, the
transcript level of GhCSD3 was »73 times lower than
GhCSD1 and 17 times lower than GhCSD2. In 16 DPA
Wbers, the transcript level of GhCSD3 was »15 times lower
than GhCSD1 and 3 times lower than GhCSD2.

To compare the expression patterns of GhCSD1, 2, 3,
and 3s in speciWc tissues, Q-RT-PCR was also performed
using RNA isolated from young leaves, fully expanded
leaves, 1-week old cotyledons and hypocotyls, roots,
bracts, and petals, in addition to 8 DPA elongating Wbers
(Fig. 5b). All four GhCSDs were expressed in the tested tis-
sues with tissue-preferential expression patterns. Both

Fig. 5 Relative transcript abun-
dance of GhCSD genes in Wber 
and other tissues. a Relative 
transcript abundance of GhCSD 
genes in 8–24 DPA Wbers mea-
sured by Q-RT-PCR. The fold 
diVerence is relative to the low-
est transcript level present in 
20 DPA Wbers for GhCSD1 and 
GhCSD2 and 12 DPA Wbers for 
GhCSD3s. b Relative transcript 
abundance of GhCSDs in diVer-
ent cotton tissues measured by 
Q-RT-PCR. RNA was isolated 
from young, small leaves (SL), 
fully expanded big leaves (BL), 
1-week old cotyledons (C), 1-
week old hypocotyls (H), 1-
week old roots (R), DOA bracts 
(B), DOA petals (P), and 8 DPA 
Wbers (F8). The fold diVerence is 
relative to the lowest transcript 
level present in petals for 
GhCSD1 and GhCSD2 and roots 
for GhCSD3 and GhCSD3s
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GhCSD1 and GhCSD2 showed a high level of expression in
elongating tissues such as 1-week old hypocotyls and roots,
8 DPA elongating Wber, and young leaves. Unlike GhCSD2
that is preferentially expressed in expanding young leaves,
GhCSD1 was expressed in both young and fully expanded
leaves. In contrast, GhCSD3 and GhCSD3s are more abun-
dantly expressed in fully expanded leaves than any other
tested tissue. Preferential expression (70–100 times more)
in fully expanded leaves suggests that GhCSD3 and
GhCSD3s may be involved in processes unrelated to cell
enlargement in these tissues.

Localization of GhCSD1-GFP, GhCSD2a-GFP, 
and GhCSD3-GFP

To avoid some of the potential artifacts associated with
immunolocalization of proteins that have great sequence
similarity and very diVerent endogenous levels, we pre-
pared GFP constructs linked to each type of GhCSD and
used them to transform Arabidopsis. Immunoblot analysis
of total proteins from these transgenic plants using a poly-
clonal GFP antibody shows that the fusion proteins of
GhCSD1-GFP, GhCSD2a-GFP, and GhCSD3-GFP are
abundant, but not all at the same level (Fig. 6a).

Since EC GhCSD was found in SCWs of developing
cotton Wbers (Fig. 2), we Wrst tested if GFP signals from the
fusion proteins can be detected in xylem SCW in transgenic
Arabidopsis stems. The high level of lignin autoXuores-
cence in xylem, however, precluded these localization stud-
ies (data not shown). Root cells of untransformed wild-type

showed little autoXuorescence, so we monitored GFP sig-
nals in transgenic plant roots. Without plasmolysis, the
GFP signals from GhCSD1-GFP and GhCSD3-GFP were
almost indistinguishable. After gentle plasmolysis, the GFP
signal of GhCSD1-GFP was found in the cytosol and nuclei
of root cells (Fig. 6b, panels A and B). The signal of
GhCSD2a-GFP containing a transit peptide was speciW-
cally found in organelles that appear to be unpigmented
plastids of root cells (Fig. 6b, panels C and D). The signal
of GhCSD2a-GFP was speciWcally detected in guard cell
chloroplasts (data not shown). The GFP signal of GhCSD3-
GFP in plasmolyzed root cells was found in cell walls in
addition to the cytosol and nuclei (Fig. 6b, panels E and F).
As a result, we conclude that GhCSD3-GFP was translo-
cated to root cell walls in transgenic Arabidopsis, but
GhCSD1-GFP and GhCSD2a-GFP were not.

Although GFPs are routinely used to determine the sub-
cellular localization of proteins, there is the possibility that
erroneous GFP signals can result from overexpressing high
levels GFP or using a pH-sensitive GFP. Other highly over-
expressed GFP constructs that localize to the cytosol have
also resulted in nuclear GFP Xuorescence (Lertpiriyapong
and Sung 2003; Zhou and Li 2005). Fluorescence of some
GFPs is often quenched at acidic pH, such as that found in
plant cell walls (Ashby et al. 2004). Expression of all three
GhCSD-GFPs was under the control of the CaMV35S pro-
moter, and all three fusion proteins were found abundantly
in transgenic plants (Fig. 6a). Notably, the abundance of
GhCSD1-GFP fusion protein was much higher than those
of GhCSD2-GFP or GhCSD3-GFP (Fig. 6a). Since the

Fig. 6 a Immunoblot analysis 
of GhCSDs-GFP with total pro-
teins of transgenic Arabidopsis. 
A non-speciWc band recognized 
by antipolyclonal GFP was used 
as a loading control. b Subcellu-
lar localization of GhCSD1-
GFP, GhCSD2a-GFP, and 
GhCSD3-GFP. To view GFP 
Xuorescence in the cell wall, 
roots of GhCSD1-GFP and 
GhCSD3-GFP were plasmo-
lyzed. GhCSD1-GFP (panels A 
and B), GhCSD2a-GFP (panels 
C and D), GhCSD3-GFP (panels 
E and F), live images (panels A, 
C, and E), Xuorescent images 
(panels B, D, and F). V vacuole, 
PM plasma membrane
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more abundant fusion protein, GhCSD1-GFP failed to
translocate to cell walls (Fig. 6b, panel B) whereas the less
abundant GhCSD3-GFP can translocate to cell walls
(Fig. 6b, panel F), we conclude that abundance of
GhCSD3-GFP did not aVect its localization pattern. To
avoid the quenching of GFP signals in acidic cell walls, we
used mGFP-5 that was engineered for removal of a cryptic
intron and increased thermostability (Siemering et al. 1996)
and was detected in the cell wall when fused with ELD1
(Lertpiriyapong and Sung 2003). The GFP signal of mGFP-
5 fused with GhCSD3 (this paper) was strong enough to be
detected in the cell wall.

GhCSD3-myc co-puriWes with a cell wall fraction

GhCSD1 of Group 1 and GhCSD3 of Group 3 are similar to
each other; there is a high sequence similarity, both
deduced proteins lack signal peptides and are predicted to
localize in the cytoplasm by PSORT (Nakai and Kanehisa
1991). Cytosolic SoCSD1, also of Group 1, was reported to
localize to spinach cell walls (Ogawa et al. 1996), although
there is a possibility that SoCSD1 antibody may crossreact
with other CSDs. Nevertheless, we tested if low levels of
GhCSD1, also belonging to Group 1, can be translocated to
cell walls. Since weak GFP signals of GhCSD1-GFP in the
acidic wall can be quenched and may not be detected, we
decided to discern the subcellular localizations of GhCSD1
and GhCSD3 using a c-myc epitope tag (Jarvik and Telmer
1998).

The short c-myc sequence (ten amino acids) was fused
with the C-terminus of three forms of GhCSD and trans-
formed into Arabidopsis plants. A construct containing myc
alone was used as a negative control. The levels of myc
alone, GhCSD1-myc, GhCSD2a-myc, and GhCSD3-myc
controlled by a CaMV35S promoter in each transgenic line
were estimated by immunoblot analyses of multiple trans-

formants. Subsequently, transgenic lines expressing
approximately equivalent levels of GhCSD1, GhCSD2a,
and GhCSD3 were selected and used for further analyses
(Fig. 7a, b). Monoclonal c-myc antibody detected
GhCSD1-myc (17 kDa), GhCSD2-myc (20 kDa), and
GhCSD3-myc (18 kDa) in total protein preparations from
Arabidopsis plants (Fig. 7b). All three GhCSDs were
detected in soluble proteins extracts (Fig. 7c) and GhCSD3-
myc was speciWcally detected in cell wall extracts (Fig. 7d).
The results of these immunoblot analyses conWrm that
GhCSD3 translocates to the cell wall, but GhCSD1 and
GhCSD2 do not.

Conclusions

Using several complementary approaches, we show here
that a CSD is associated with cell walls. First, a peptide
antibody designed to a conserved domain of plant CSDs
recognized an EC protein extracted from immature cotton
seeds. Secondly, the same antibody labeled Wber SCWs as
shown by immuno-gold labeling. By overexpressing six
diVerent constructs in Arabidopsis, i.e., three GhCSDs
fused to GFP and three GhCSDs fused to c-myc, we show
that only GhCSD3 can translocate to the cell wall. Further-
more, since only GhCSD3 localized to Arabidopsis cell
walls, we propose that GhCSD3 is the wall protein detected
by the peptide CSD antibody.

Cell wall ligniWcation has been suggested as the princi-
ple function of CSDs that localize to plant SCWs (Ogawa
et al. 1996, 1997; Karpinska et al. 2001; Schinkel et al.
2001; Karlsson et al. 2005); however, cotton Wber SCWs
are unique in that they are not ligniWed. Additional evi-
dence for the function of Group 3 CSDs comes from a
recent report of antisense lines of transgenic hybrid aspen
(Srivastava et al. 2007). Reduced expression of HipI-SOD

Fig. 7 Subcellular distribution of GhCSD1-myc, GhCSD2a-myc, and
GhCSD3-myc in transgenic Arabidopsis. a Coomassie blue stained
Arabidopsis soluble proteins (60 �g) in 12% SDS-PAGE gel for a
loading control. b Immunoblot analyses of total proteins (10 �g).
c Immunoblot analyses of soluble proteins (10 �g). d Immunoblot

analyses of cell wall proteins (10 �g). Monoclonal c-myc antibody
(1:1,000 dilution) was the primary antibody for all immunoblots.
Secondary antibody was horseradish peroxidaseconjugated donkey
anti-mouse IgG (1:1,000 dilution) with detection by SuperSignal West
Pico Chemiluminescent Substrate
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resulted in increased levels of ROS with major eVects on
plant development. Antisense-HipI-SOD plants had more
lateral branches and were severely dwarfed due to reduc-
tions in both cell division and expansion; one line was
impaired in apical dominance. The transgenic lines had
only a slight decrease in lignin content relative to wild-
type, but contained elevated levels of phenolic acids.
Microarray analysis indicated that expression of many
genes involved in cell signaling, stress responses, and ligni-
Wcation changed in the transgenic lines. Similarly, the
activity of an EC CSD was found to be responsive to biotic
and abiotic stresses (Kasai et al. 2006; Zhang et al. 2008).
Together, these recent investigations provide additional
support that Group 3 CSDs play important roles in plant
development by regulating the ROS content of cell walls.

The dwarfed phenotype of transgenic aspen in which EC
CSD levels were reduced (Srivastava et al. 2007) raises the
question of whether EC CSDs may be required for wall
elongation and expansion of PCWs. Recent advances in
characterizing the cell wall proteome also suggest potential
involvement of EC CSDs in PCWs of elongating roots (Zhu
et al. 2006, 2007). Our observation that GhCSD3-GFP
translocated to PCW of Arabidopsis root cells also suggest
the potential involvement of EC CSDs in PCW biosynthe-
sis in some plant tissues; however, the precise physiologi-
cal roles of EC CSD in PCW biosynthesis remain to be
discovered.

In summary, we propose that EC H2O2 levels are regu-
lated by redox status-related enzymes including EC
GhCSD3 and that developmentally regulated changes in the
EC levels of GhCSD3 can inXuence plant cell wall growth.
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