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Abstract
Chronic obstructive pulmonary disease (COPD) is considered a severe disease mitigating lung physiological functions with 
high mortality outcomes, insufficient therapy, and pathophysiology pathways which is still not fully understood. Mesenchymal 
stem cells (MSCs) derived from bone marrow play an important role in improving the function of organs suffering inflamma-
tion, oxidative stress, and immune reaction. It might also play a role in regenerative medicine, but that is still questionable. 
Additionally, Melatonin with its known antioxidative and anti-inflammatory impact is attracting attention nowadays as a use-
ful treatment. We hypothesized that Melatonin may augment the effect of MSCs at the level of angiogenesis in COPD. In our 
study, the COPD model was established using cigarette smoking and lipopolysaccharide. The COPD rats were divided into 
four groups: COPD group, Melatonin-treated group, MSC-treated group, and combined treated group (Melatonin–MSCs). 
We found that COPD was accompanied by deterioration of pulmonary function tests in response to expiratory parameter 
affection more than inspiratory ones. This was associated with increased Hypoxia inducible factor-1α expression and vascular 
endothelial growth factor level. Consequently, there was increased CD31 expression indicating increased angiogenesis with 
massive enlargement of airspaces and thinning of alveolar septa with decreased mean radial alveolar count, in addition to, 
inflammatory cell infiltration and disruption of the bronchiolar epithelial wall with loss of cilia and blood vessel wall thicken-
ing. These findings were improved significantly when Melatonin and bone marrow-derived MSCs were used as a combined 
treatment proving the hypothesized target that Melatonin might augment MSCs aiming at vascular changes.
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Abbreviations
COPD	� Chronic obstructive lung disease
FEV1	� Forced expiratory volume 1
FVC	� Forced vital capacity

HIF-1α	� Hypoxia-inducible factor-1α
LPS	� Lipopolysaccharide
MSCs	� Mesenchymal stem cells
PEF	� Peak expiratory flow
PIF	� Peak inspiratory flow
Te	� Expiratory time
Ti	� Inspiratory time
VEGF	� Vascular endothelial growth factor
VT	� Tidal volume

Introduction

Chronic obstructive lung disease (COPD) is a common 
disease with high morbidity and mortality with no present 
effective treatment. It occurs due to widespread smoking, 
infection, and pollution. The main pathological features of 
COPD include bronchitis, irreversible damage of airways, 
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and emphysematous changes [15, 60]. It is also identified by 
abnormality of pulmonary vascularization with increased 
microvascular permeability [46]. Forty genes have been 
linked to the signaling and regulation of cell apoptosis and 
angiogenesis [28]. However, the detailed mechanisms con-
cerned in COPD pathogenesis remain vague.

Angiogenesis changes in COPD are a crucial complex 
multiphase process that includes a lot of growth factors, 
cytokines, and chemokines. It is essential in the airway 
remodeling step for irreversible airway obstruction. In addi-
tion, it may be the pass to the development of lung cancer 
as a complication of COPD [44, 59]. Vascular endothelial 
growth factor (VEGF), a potent multifunctional cytokine, 
is one of many proteins that potentially affect angiogenesis. 
In addition, it is widely expressed in highly vascularized 
organs, including the lung. Being crucial for endothelial cell 
maintenance and proliferation in asthma and COPD, VEGF 
absence leads to endothelial cell apoptosis. Nevertheless, its 
expression increased in chronic inflammation and fibrosis 
which might play a role in the pathogenesis of emphysema 
through apoptosis and oxidative stress pathways. It might 
have opposing functions according to the site of action, a 
damaging function in the bronchi and a protective one in 
the alveoli. The exact role of VEGF in the pathogenesis of 
different stages of COPD is still controversial [59].

VEGF is modulated by many factors including nitric 
oxide and fibroblast growth factor. Meanwhile, its expres-
sion is induced primarily by hypoxia-inducible factor-1α 
(HIF-1α) which is a transcription factor activated by 
hypoxia. It plays an important role in oxygen homeostasis in 
which it facilitates oxygen delivery and utilization by affect-
ing vascular remodeling, angiogenesis, redox homeostasis, 
and glucose metabolism [27, 52, 64, 89].

Melatonin, a pineal gland hormone, plays an important 
role as an anti-inflammatory, antioxidant, and antiapoptotic 
agent. Therefore, it has been suggested that Melatonin could 
have a protective effect in a lot of pulmonary diseases such 
as acute lung injury, acute respiratory distress syndrome, 
sepsis-induced lung injury, and COPD [76, 83]. It has been 
reported that Melatonin may suppress angiogenesis through 
depressing the HIF-1α/VEGF pathway [17, 58].

Mesenchymal stem cells (MSCs) have a lot of potential 
to improve tissue repair. They could play a role in the treat-
ment of many diseases due to their anti-inflammatory and 
immune regulatory impact. In addition, they reside in many 
tissues including the lungs. So, they may have a lung tissue 
repair impact through paracrine effect on damaged alveolar 
tissue and endothelial integrity. One of the growth factors 
secreted by MSCs is VEGF which may play a pivotal role in 
lung diseases [9, 25, 62]. A question introduces itself that in 
COPD, VEGF increases in most of the studies while MSCs 
improve COPD even though they secrete VEGF. So, it may 
be a pitfall that needs further investigation.

We hypothesize that using Melatonin could improve 
the internal environment for better action of bone marrow-
derived MSCs by improving angiogenesis through adjusting 
VEGF. In this research experiment, we introduced the first 
step in our project aiming to detect the impact of co-adminis-
tration of Melatonin and MSCs on the expression of HIF-1α/
VEGF in relation to lung functions in COPD.

Materials and methods

Experimental animals

Fifty male Wistar rats with body weights ranging from 160 
to 200 g were used in this study. Animals were purchased 
and kept in the Animal House of Kasr Al-Ainy, Faculty 
of Medicine, Cairo University. All rats were kept in chip-
bedded cages at room temperature under a normal day-
night cycle. All animals were kept under the same environ-
mental conditions and given free access to food and water 
for the entire duration of the study. Experimental animal 
protocols and animal procedures complied with the high-
est International Criteria of Animal Experimentation and 
were approved by the Institutional Animal Care and Use 
Committee (IACUC), Cairo University (Approval number 
CU-III-F-50–21).

Experiment design

The study lasted for 2 months, which started with 50 rats. 
Ten rats were randomly considered the control group, and 
the remaining 40 rats were exposed to cigarette smoking 
and lipopolysaccharides (LPS) administration to induce 
COPD. After inducing COPD, the rats were subdivided 
into further study groups. The following five main groups 
in this study are as follows: Group I, control group (n = 10), 
in which saline was administered instead of LPS; Group 
II, COPD group (n = 10); Group III, Melatonin-treated 
group (Melatonin) (n = 10); Group IV, MSC group bone 
marrow-derived mesenchymal stem cell-treated group 
(MSCs) (n = 10); Group V, combined treated group (Mela-
tonin–MSCs) group (n = 10).

Induction of COPD in adult male rats

COPD was induced as discussed by [71]. Briefly, the rats 
were exposed to cigarette smoke (CS) of 12 cigarettes for 
4 weeks twice daily with 2-h free intervals in a Plexiglas 
tobacco smoke chamber. LPS (Biospes cat# BCS1084) was 
intratracheally (IT) injected on the 1st and 15th days of 
exposure to CS in a dose of 200 µg/200 µL/rat. During LPS 
IT instillation, the rats were anesthetized using ketamine and 
xylazine combination at doses of 80–100 mg/kg and 20 mg/
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kg IP, respectively. Then, they were put on a warming mat-
tress in a 45° position during instillation to maintain body 
temperature at 37 ± 0.5 °C until the rats had recovered from 
anesthesia. After instillation, percussion of the rat chest in 
different positions was done to ensure distribution along the 
lungs.

Isolation of bone marrow‑derived MSCs (BM‑MSCs)

MSCs were obtained from rat bone marrow by washing 
out the cells from femurs and tibias of 6-week-old male 
Wistar rats with Dulbecco’s modified Eagle’s medium 
(DMEM) (Thermo Fisher, cat NO 11960044) containing 
1% penicillin/streptomycin. Then, 30-min centrifugation 
of cell suspension was performed. Followed by resuspen-
sion of the cells, pellet was in DMEM containing 10% 
fetal bovine serum and then plated at a density of 1 × 106 
cells/cm2 and cultured at 37 °C in a 5% CO2 incubator. 
Twenty-four hours later, non-adherent cells were washed 
from the cultured dishes with PBS, and a fresh medium 
was added to be changed every 3–4 days until conflu-
ency was detected. In identifying the BM-MSCs (sup-
plementary Fig. 1 and 2), surface marker antigens were 
identified using flowcytometry. Plastic adherent MSCs 
expressed CD105 and CD90 but did not appear to express 
CD45 and CD34 [69, 70, 72]. Homing was also detected 
by labeling MSCs with PKH26. Labeling of stem cells 
with PKH26, which is a fluorescent dye called Paul Karl 
Horan-26 (Sigma Company, Egypt), was used to label 
MSCs that were obtained from the second passage to trace 
homing of stem cells in the lung. The cells were pelleted, 
washed in a medium devoid of serum, and then labeled. 
Approximately 4 × 106 MSCs were delivered in 500 µL 
of PBS by intratracheal instillation after the induction 
of the disease model [87]. The labeled MSCs were then 
examined in unstained lung sections under a fluorescent 
microscope to visualize and track their presence (sup-
plementary Fig. 3).

Melatonin

Ten-milligram capsules were prepared as described previ-
ously by Hanna et al. [30] and were given with a dose of 30 
mg/kg once daily for 30 days by oral gavage after the induc-
tion of the disease model [66].

Non‑invasive measurement of pulmonary function 
tests

Pulmonary function tests were performed at the end 
of the experimental protocol for all studied groups by 
using the PowerLab spirometry of (AD-Instruments 
spirometer, PowerLab/8SP, ML140) and head-out body 

plethysmography. The rats were placed in body plethysmo-
graphs with their heads protruding through the neck collar 
of a dental latex dam and into a head exposure chamber con-
nected to a bridge amplifier to test lung functions [57]. When 
the rat readings reached a stable level (known as the steady 
state, which takes place after around 5 min for acclimati-
zation), pulmonary function monitoring was initiated. The 
respiratory flow was measured as the flow through a cali-
brated pneumotachograph attached to the plethysmograph 
and produced by the thoracic movements of the rat. The 
flow was measured using a differential pressure transducer 
coupled to the pneumotachograph. The tidal volume (VT) 
of the spontaneously breathing rat in milliliter, and the time 
of inhalation and expiration (TI, TE; time taken to inspire/
exhale) was obtained from the amplified flow signals, and 
the forced expiration, forced vital capacity (FVC), forced 
expiratory volume in 1 s (FEV1), FEV1/FVC ratio, peak 
inspiratory flow (PIF), and peak expiratory flow (PEF) were 
detected [33].

Quantitative real‑time PCR (qPCR) for detection 
of the HIF gene

Lung tissue was collected and homogenized for RNA 
extraction according to the manufacturing protocol. Total 
RNA was extracted using miRNeasy mini kit (Qiagen, 
Valencia, CA, USA). Quantitation and assessment of RNA 
purity assessment were done using the NanoDrop® (ND)-
1000 spectrophotometer (NanoDrop Technologies, Inc. 
Wilmington, USA). cDNA was done in a final volume of 20 
µL RT reactions using the RT kit (Qiagen, Valencia, CA, 
USA). Quantitative real-time PCR (qPCR) for detecting of 
the HIF gene was carried out using SYBR® Green PCR 
kit and protocol for RNA quantitative detection (Qiagen, 
Valencia, CA, USA).

Assessment of VEGF

Lung tissue was weighed and then homogenized in 200 µl 
PBS. After centrifugation at 4000 × g, the supernatant was 
separated and used for determination of VEGF level by 
using an ELISA kit (Bioassay Technology Laboratory (Cat. 
No E2557Hu), Zhejiang, China) according to the manufac-
ture protocol.

Histological examination of lung tissue

Light microscopic examination

The right lung was isolated, and lung specimens were 
fixed intratracheally in 10% formol saline for 24–48 h, 
dehydrated in ascending grades of alcohol (70%, 95%, 
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100%), cleared in xylene, and then embedded in paraffin. 
Serial sections of 7-µm thickness were cut and subjected 
to Hematoxylin & Eosin (H&E) stain for histological 
evaluation [43].

Immunohistochemistry

CD31 staining purified monoclonal mouse anti-rat CD31 
antibody (BD Pharmingen) was used to quantify the micro-
vascular bed using avidin–biotin-peroxidase complex tech-
nique. CD31-positive cells showed a brown membranous 
reaction. Tonsil sections were used as positive control 
specimens, and one of the lung sections was used as a 
negative control skipping the step of applying the primary 
antibody [73].

Morphometry

Data were acquired using the “Leica Qwin 500 C” image 
analyzer computer system Ltd. (Cambridge, England) in the 
Medical Histology and Cell Biology Department, Faculty of 
Medicine, Cairo University. The image analyzer included a 
colored video camera (Olympus), colored monitor, and hard 
disc of an IBM personal computer linked to the microscope 
and processed by the “Leica Qwin 500 C” software. The 
image analyzer was first calibrated to automatically con-
vert the measurement units (pixels) produced by the image 
analyzer program into actual micrometer units. Slides were 
examined under the light microscope, and the following 
parameters were measured:

a.	 Radial alveolar count in H&E-stained slides: measured 
in 200 × H&E-stained fields by drawing a perpendicular 
line from the center of a respiratory bronchiole to the 
nearest definitive alveolar septal wall [56]

b.	 Area % of + ve CD31 immunoreactivity

Statistical methods

Data were coded and entered using the statistical package 
for the Social Sciences (SPSS) version 28 (IBM Corp., 
Armonk, NY, USA). Before the statistical analysis, data 
values were checked for normality using the Shapiro test 
and homogeneity by Levene’s test. The data are presented 
as means ± SD. Comparisons between groups were made 
using Student’s T test or analysis of variance (ANOVA) 
with multiple comparison post hoc test in normally dis-
tributed quantitative variables. In contrast, the non-para-
metric Kruskal–Wallis test and Mann–Whitney test were 
used for non-normally distributed quantitative variables 
[11]. P-values less than 0.05 were considered statistically 
significant.

Results

Co‑administration of MSCs and Melatonin improved 
pulmonary function tests in the COPD Wistar rat 
model

Induction of COPD affected most of the measured pul-
monary function tests in all challenged rats. Relative to 
the control group, Te was significantly increased while 
FVC, FEV1, FEV1/FVC ratio, and PEF were significantly 
decreased in the COPD group (Fig. 1a–e). Interestingly, 
there was no significant difference in Ti, TV, and PIF in 
the COPD group versus in the control group (Table 1 in 
supplementary data). Oral Melatonin for 4 weeks signifi-
cantly lowered the Te and significantly improved FVC, 
FEV1, FEV1/FVC ratio, and PEF compared to the COPD 
group. Apart from FEV1, there was no significant differ-
ence in these parameters compared to the control group 
(Table 2 in supplementary data). The BM-MSC single-
treated group significantly decreased Te relative to the 
COPD group and increased the FEV1/FVC ratio and PEF 
compared to the COPD group, but regarding FVC and 
FEV1, there was no significant improvement in the MSC 
group relative to the COPD group. Additionally, MSCs 
could not normalize the affected parameters as there was 
a significant difference in FEV1 and FEV1/FVC ratio in 
the MSC group compared to the control group, although 
Te, FVC, and PEF showed no significant difference in the 
MSC group compared to the control group (Table 3 in sup-
plementary data). Regarding Te, FVC, FEV1, FEV1/FVC 
ratio, and PEF, the Melatonin group showed significant 
improvement compared to the BM-MSC group. On the 
other hand, the combined treated group significantly low-
ered the Te and significantly improved the effect on FVC, 
FEV1, FEV1/FVC ratio, and PEF compared to the COPD 
group. Compared to the control group, values for Te, FVC, 
FEV1, FEV1/FVC, and PEF showed no significant differ-
ence noticed (Table 4 in supplementary data). In addition, 
the combined treatment significantly improved Te, FVC, 
FEV1, and FEV1/FVC ratio compared to the MSC group. 
It also showed no significant difference in Te, FVC, FEV1, 
FEV1/FVC, and PEF compared to the Melatonin group 
(Table 5 in supplementary data).

MSCs and Melatonin co‑administration improved 
the lung tissue VEGF level

By induction of COPD, there was a significant increase 
in VEGF expression level in lung tissue (Fig. 2a) as com-
pared with the control group (Table 6 in supplementary 
data). The Melatonin-treated group showed a significant 
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decrease in VEGF in lung tissue as compared with the 
COPD group, and there was no significant difference com-
pared to the control group (Table 7 in supplementary data). 
The MSC-treated group showed a significant decrease in 
VEGF, as compared with the COPD group, while relative 
to the control group, there was still a significant difference 
(Table 8 in supplementary data). The combined treated 
group significantly decreased VEGF in lung tissue com-
pared to the COPD group and no significant difference 
relative to the control group (Table 9 in supplementary 
data). Melatonin significantly improved VEGF expression 
compared to the MSC group. In addition, it showed that 
combined treatment had a significantly improving effect on 
VEGF relative to the MSC group. There was no significant 

improvement in VEGF in the combined group versus the 
Melatonin group (Table 10 in supplementary data).

MSCs and Melatonin improved the expression 
of HIF‑1α

The expression of HIF-1a in lung tissues of the COPD 
group was significantly increased (Fig. 2b) as compared 
to the corresponding values in control rats (Table 6 in sup-
plementary data). The Melatonin-treated group showed a 
significant decrease in HIF-1α expression in lung tissue 
as compared with the COPD group. Additionally, com-
pared to the control group, HIF-1α expression showed a 
significant difference in the Melatonin group (Table 7 in 

Fig. 1   a–e The statistical results 
of the pulmonary function 
tests between different treated 
groups. *Statistically significant 
vs control group (P < 0.05). 
#Statistically significant vs 
COPD group (P < 0.05). 
$Statistically vs Melatonin 
group (P < 0.05). @Statisti-
cally significant vs MSC group 
(P < 0.05). Te, time expiratory; 
FVC, functional forced vital 
capacity; FEV1, forced expira-
tory volume one; PEF, peak 
expiratory flow
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supplementary data). The MSC-treated group showed a 
significant decrease in HIF-1α expression as compared 
with the COPD group. At the same time, there was still a 
significant difference in the MSC group relative to the con-
trol group (Table 8 in supplementary data). The combined 
treated group significantly decreased HIF-1α expression in 
lung tissue compared to the COPD group, while HIF-1α 
showed no significant difference in the combined treated 
group relative to the control group (Table 9 in supple-
mentary data). Melatonin significantly improved HIF-1α 
expression compared to the MSC group. On the other 
hand, the combined treated group showed a significant 
improvement in HIF-1α compared to the Melatonin group 
(Table 10 in supplementary group).

Co‑administration of MSCs and Melatonin alleviated 
histopathological changes of lung tissue

The COPD-induced group showed lung tissue destruction in 
the form of massive enlargement of airspaces and thinning 
of alveolar septa. In addition, there was inflammatory cell 
infiltration and disruption of the bronchiolar epithelial wall 
with loss of cilia with blood vessel wall thickening. The 
MSC-treated group showed relatively well-formed alveoli, 
some thickened blood vessels, and bronchioles surrounded 
by some inflammatory cells with loss of some of their cilia. 
The Melatonin-treated group showed improved histologi-
cal architecture in which well-formed alveoli, alveolar sacs, 
and bronchioles were seen. The combined treated group 
showed almost normal histological architecture with nor-
mally appearing alveoli, bronchiole, and some alveolar sacs 
(Fig. 3a–e).

There was a significant decrease in the mean radial 
alveolar count in the COPD group as compared to the 

control group. The Melatonin-treated group showed a 
significant increase compared to the MSC group. The 
combined treated group showed a significant increase in 
this value compared to single-treated therapy by either 
melatonin or MSCs. Both the MSC-treated group and the 
Melatonin-treated group showed a significant decrease in 
radial alveolar count compared to the control group, while 
the combined treated group showed no significant differ-
ence in this value compared to the control group (Table 11 
and Fig. 5a).

Co‑administration of MSCs and Melatonin improved 
the vascularity of lung tissue by adjusting 
the expression of CD31

The quantitative morphometric analysis of the mean area 
percent of positive CD31 immunoreactivity in CD31 
stained lung sections showed that there was a signifi-
cant increase in the mean area % of CD31 immunore-
activity in the COPD group as compared to the control 
group. The Melatonin-treated group showed a significant 
decrease in the mean area % of CD31 immunoreactiv-
ity compared to the MSC group. The combined treated 
group showed a significant decrease in the mean area % 
of CD31 immunoreactivity compared to single-treated 
therapy by either Melatonin or MSCs. Both the MSC-
treated group and the Melatonin-treated group showed a 
significant increase in mean area % of CD31 immunore-
activity compared to the control group. In comparison, 
the combined treated group showed no significant differ-
ence in mean area % of CD31 immuno-reactivity com-
pared to the control group (Figs. 4a–e and 5b; Table 12 
in supplementary data).

Fig. 2   a, b The statistical results of VEGF and HIF between different 
treated groups. a Comparison of VEGF among the studied groups. b 
Comparison of HIF among the studied groups. *Statistically signifi-
cant vs control group (P < 0.05). #Statistically significant vs COPD 

group (P < 0.05). $Statistically vs Melatonin group (P < 0.05). @
Statistically significant vs MSC group (P < 0.05). VEGF, vascular 
endothelial growth factor; HIF-1α, Hypoxia inducible factor 1 alfa
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Discussion

In our study, we found that COPD was accompanied by dete-
rioration of pulmonary function tests in response to expira-
tory parameter affection more than inspiratory ones. This 
was detected by the significant decrease in FEV1 and the 
prolonged time of expiration together with decreased FEV1/
FVC ratio. This could be attributed to the fact that COPD is 
an obstructive lung disease that is usually accompanied by 
increased resistance to expiratory airflow that might have 
elongated the time of expiration and decreased volume of 
air expired during the first second. This could be due to 
airway narrowing or obliteration caused by mucus overpro-
duction and chronic bronchial inflammation. In addition, 
accompanied emphysematous changes due to parenchymal 
destruction with reduced ability for gas exchange and refrac-
tory asthma might have a share in the expiratory functional 
deterioration [10, 47]. Previous studies were also in sup-
port of our study indicating airflow limitation mainly dur-
ing the expiration demonstrated the same results showing 

that the expiratory lung function indices were affected in 
the COPD group [19, 55, 79, 82]. However, Xiao et al. [82] 
showed significant changes in inspiratory parameters as well, 
but they used different methods of induction and measure-
ment techniques so as they induced COPD using cigarette 
smoking only for 28 weeks and stated that the inspiratory 
changes occurred after 14 weeks. Accordingly, we assumed 
that inspiratory functions would be affected more after pro-
longed exposure to cigarette smoking that may be due to 
exaggerated emphysematous changes.

Our results regarding HIF-1α and VEGF in lung tissues 
showed a significant increase in the COPD group compared 
to the control group [12, 18, 20]. Hypoxia, through HIF-1α, 
is the inducible factor that increases VEGF trying to main-
tain endothelial cells and alveolar epithelium and scaveng-
ing against apoptosis and severe emphysematous changes. 
Still, the persistence of the irritating factor which is smoking 
leads to overexpression of VEGF due to inflammation. On 
the other hand, one of the suggested causes of emphysema-
tous changes is the decreased VEGF or its receptor blockade 

Fig. 3   a–e Photomicrograph of lung section of the control group 
(a) showed air-filled spaces (alveoli) (A) separated by inter-alveolar 
septa (arrowheads) and alveolar sac (asterisk) and a bronchiole (B) 
surrounded by circularly arranged smooth muscles (arrow). Note 
the presence of a blood vessel (BV). The COPD group (b) showed 
massive enlargement of airspaces (red stars) and thinning of alveo-
lar septa (curved arrows), in addition to, inflammatory cell infiltration 
(blue arrows) and disruption of the bronchiolar epithelial wall (B) 
with loss of cilia and blood vessel wall thickening (BV). The MSC-

treated group (c) showed alveoli (A), some thickened blood vessels 
(Bv), and bronchiole (B) surrounded by some inflammatory cells 
(blue arrows) with loss of some of its cilia. The Melatonin-treated 
group (d) showed improved histological architecture. Alveoli (A), 
alveolar sacs (asterisk), and a bronchiole (B) were seen. The com-
bined group (e) showed almost normal histological architecture with 
normally appearing alveoli (A), bronchiole (B), and some alveolar 
sacs (asterisk)
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leading to apoptosis. It is suggested that the survival of lung 
endothelial cells depends chiefly on VEGF, so their apop-
tosis leads to the loss of capillaries that may consequently 
lead to emphysema [20, 48]. However, it was reported that 
VEGF levels were raised in the airways of both asympto-
matic and COPD smokers. Moreover, there was a close cor-
relation observed between VEGF levels in the airways and 
markers of airway inflammation [59]. In addition, there was 

a correlation in patients suffering from asthma who showed 
elevated levels of VEGF-A in bronchial biopsies, induced 
sputum, and bronchoalveolar lavage fluid with increased 
total airway vascular area and smaller airway caliber [5, 59]. 
The key between the increased VEGF level in case of COPD 
in addition to emphysematous change may be answered by 
further investigation of the types of its receptors’ expression 
and contribution to the pathway of the diseases.

Fig. 4   a–e A photomicrograph of the lung section of a the control 
group that showed positive CD31 immunoreactivity of endothe-
lial cells of some alveoli, b the diseased group (COPD) that showed 
increased positive CD31 immunoreactivity of endothelial cells, c the 

MSC-treated group that showed moderate CD31 immunoreactivity, d 
the Melatonin-treated group that showed mild CD31 immunoreactiv-
ity, and e the combined treated (Melatonin and MSC-treated) group 
that showed minimal CD31 immunoreactivity

Fig. 5   a, b The statistical comparison of mean radial alveolar count 
(a) and mean area % of CD31 (b) among the studied groups. Values 
are presented as mean ± SD. *Statistically significant vs control group 

(P < 0.05). #Statistically significant vs COPD group (P < 0.05). $Sta-
tistically vs Melatonin group (P < 0.05). @Statistically significant vs 
MSC group (P < 0.05)
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The increased HIF-1α in our study could be attributed to 
that tissue hypoxia resulted from chronic inflammation. Con-
sequently, tissue remodeling occurred because of declined 
O2 diffusion through thickened mucus, edematous tissues, 
and airways or through vascular shunting and diminished O2 
delivery to the epithelium. Additionally, increased oxygen 
demand because of excessive O2 consumption by the epithe-
lial cells leads to activation of the HIF-1α pathway. It was 
also stated that the activity of HIF-1 could be stimulated by 
hypoxia through the changes in the expression of HIF-1α 
mRNA and protein [18, 64].

Lung tissue of the COPD rats in the present study showed 
massive enlargement of the airspaces, thinning of alveolar 
septa, inflammatory cell infiltration, and disruption of the 
bronchiolar epithelial wall with loss of cilia and blood ves-
sel wall thickening in addition to decreased radial alveolar 
count [50, 82]. Besides, there was a significant increase in 
positive CD31 immunoreactivity compared to the control 
group. Previous studies reported that CD31, the marker of 
angiogenesis, was released from pulmonary microvascular 
endothelial cells mainly in response to apoptosis induced by 
cigarette smoke [40, 74, 78]. The changes in the structure 
of alveolo-vascular unit that accompany COPD might be 
underlying the basic pathology as ventilation/perfusion ratio 
would have been distorted affecting lung functions. In addi-
tion, bronchial inflammation and hypertrophy together with 
vascular remodeling and angiogenesis shared the pathology 
[10, 22, 29, 80]. Kato et al. [38] demonstrated that increased 
expression of the genes related to vascular endothelial 
cells in blood cells from smokers was associated with the 
development of COPD. Also, CD 31 expression fluctuated 
throughout the disease course in which it decreased in mod-
erate COPD and increased in severe COPD patients. They 
showed that its expression increased generally in smokers.

Melatonin and MSCs together acquired more impact 
on improving pulmonary function in COPD in the present 
study. Our results showed significant improvement in the 
pulmonary function parameters compared to the COPD 
group. Even more, there was no significant difference 
between these parameters in the Melatonin group compared 
to the control group indicating nearly adequate recovery. 
Melatonin administration has a better effect than MSC 
injection on expiratory parameters of the pulmonary func-
tion tests in COPD rats. Some studies showed the protec-
tive role of Melatonin in COPD tackling anti-inflammatory 
mechanisms. This could be related to that COPD was asso-
ciated with inflammatory response, excessive accumulation 
of ROS, and abnormal excessive angiogenesis. Therefore, 
Melatonin improved the disease through its effect as potent 
antioxidant, anti-inflammatory, and anti-angiogenic [31, 66, 
85]. Also, it has been investigated that in COPD patients 
with acute exacerbation, there was decreased serum Mela-
tonin level with positive correlations with the deterioration 

of expiratory parameters which suggested the protective role 
of Melatonin [51].

In the present study, intratracheal injection of MSCs in 
COPD rats showed a significant improvement in expira-
tory parameters relative to the non-treated COPD group. 
However, this improvement showed a significant difference 
compared to the control group which indicates that in the 
internal environmental conditions of COPD, MSCs could 
not completely revert pulmonary functions.

The reported improvement in our results might be related 
to that using MSC treatment in COPD could contribute to 
tissue maintenance, regeneration, and modulation of immune 
responses through their known paracrine effect, induction of 
the release of anti-inflammatory molecules as showed by 
some studies [6, 35, 42, 54, 81]. In addition, it suppresses 
the production of pro-inflammatory mediators such as 
TNF-α, IL-1β, IL-6, and monocyte chemotactic peptide-1 
and down-regulate cyclooxygenase-2 [3, 24, 36]. Through 
their exosomes’ secretion, MSCs promote also macrophage 
polarization from M1 macrophages with pro-inflammatory 
activity toward M2b macrophages with more phagocytic and 
anti-inflammatory activity which are essential for the resolu-
tion of inflammation and regenerative procedures [4], while 
the pulmonary function could not reach the control value 
because it was reported that oxidative stress could induce 
premature senescence of MSCs [93].

Most of the studies related to lung diseases checked the 
effect of MSC administration from histological and bio-
chemical assessment without checking the pulmonary func-
tion effect [21, 24, 34, 63, 90, 91]. In addition, there are 
a lot of factors controlling the therapeutic effect of MSCs 
such as the source of MSCs, administration route, dosage, 
dose intervals, and the stage of the disease [14, 42, 72]. In a 
study done by Karaoz et al. [37], they illustrated that MSCs 
alleviated the severity of symptoms in patients suffering 
from COPD and markedly improved the pulmonary func-
tion parameters using four doses of MSCs in which FEV1/
FVC ratios raised to normal levels. It also should be noted 
that high doses of MSCs might be tumorigenic as reported 
by Chen research group [13] that MSCs have strong prolif-
erative properties; therefore, they recommended a strictly 
controlled number of MSCs for treatment of COPD [49]. 
Moreover, the results of clinical trials of MSC injection in 
COPD patients also support the idea that MSCs alone may 
be insufficient or may lead to transient improvement and 
failure of engagements [14, 26, 32, 72].

In the present study, the combined treated group showed 
significant improvement in expiratory pulmonary function 
parameters compared to the COPD group and showed no 
significant difference compared to the control group indi-
cating adequate recovery. It was reported that precondi-
tioning of MSCs with Melatonin could powerfully serve as 
an antioxidant and guard MSCs from oxidation injury by 
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biologically eradicating free radicals and that in turn could 
protect the injected MSCs against premature senescence or 
early apoptosis after transplantation and inflate their thera-
peutic role in diseased tissues [61]. Despite that combined 
treatment significantly improved expiratory pulmonary func-
tion tests compared to the MSC group, there was no signifi-
cant difference between it and the Melatonin group. So, it 
was suggested that the co-treatment of Melatonin and MSCs 
may have a better effect by improving the internal environ-
ment to which MSCs were subjected. Also, we assumed that 
Melatonin and MSCs might need longer duration for better 
effect on the physiological level or Melatonin should have 
been administrated earlier to augment the role of MSCs. 
Shigematsu et al. [65] reported in their study that proper 
improvement in expiratory parameters of pulmonary func-
tions occurred after 2 months of MSC injection.

In addition, Melatonin in the present study showed a sig-
nificant decrease in VEGF and HIF-1α expression in lung 
tissue compared to the COPD group. Inhibition of HIF-1α 
and VEGF, whether at the transcriptional level or HIF-1α 
degradation, is the main target of Melatonin for inhibition of 
angiogenesis and oxidative stress especially under hypoxic 
conditions [45, 68, 75, 86, 88]. Other studies showed that 
depending on the surrounding microenvironment, Mela-
tonin either stimulates or inhibits neovascularization by 
various mechanisms, producing different biological effects. 
In gastric ulcers and skin lesions, Melatonin prevented the 
lesions by encouraging angiogenesis through upregulation 
of angiogenetic inducers [8], while Melatonin treatment was 
efficient in inhibiting angiogenesis through destructing the 
development of vessels inside the tumor tissue [39] by direct 
and indirect effects. As through the direct effect, Melatonin 
prevents the function of VEGF, while it indirectly hinders 
other growth factors and may undermine HIF-1α through its 
antioxidant activity [23].

Moreover, in this study, injected MSCs showed a sig-
nificant decrease in VEGF level and HIF-1α expression in 
lung tissue compared to the COPD group but not accessing 
control values. MSCs could reduce HIF-1α expression in 
hypoxic tissue through increasing the activity of antioxi-
dant enzymes and decreasing ROS accumulation [7]. So, this 
in turn could decrease VEGF expression. However, it was 
reported that injection of MSCs could accelerate angiogen-
esis by secreting numbers of growth factors such as VEGF, 
platelet-derived growth factor (PDGF), fibroblast growth 
factor (FGF), and transforming growth factor-β (TGF-β) [2]. 
Double contradictory effects of MSCs on VEGF have been 
reported. They found that MSCs could inhibit the inflam-
matory response and oxidative stress through the inhibi-
tion of HIF-1α and VEGF, but on the other hand, MSCs 
could promote angiogenesis and increase VEGF expression. 
So, MSCs slightly inhibit VEGF expression [2, 41]. In the 
current study, the Melatonin group showed a significant 

lowering effect on the expression of VEGF and HIF-1α in 
lung tissues relative to the MSC group.

The combined treated group showed a significant 
decrease in VEGF and HIF-1α expression relative to the 
COPD group. The co-treatment with Melatonin might have 
balanced that angiogenic effect. In accordance with our 
results, it was reported that injection of MSCs precondi-
tioned by Melatonin in rats resulted in a significant decrease 
in the levels of HIF-1α mRNA and VEGF expression [1]. 
In contrast to our results, Zheng and his colleagues [92] 
demonstrated that bone marrow-derived MSCs treated 
with Melatonin in vitro and treated ovariectomized rats 
with osteoporosis in vivo showed higher expression levels 
of osteogenesis- and angiogenesis-related markers includ-
ing VEGF compared to the untreated group. However, the 
high-dose-treated group was more effective than the low-
dose treated suggesting that Melatonin therapy may display 
a dose-dependent manner especially in vivo.

Although our combined treated group showed improve-
ment in the level of VEGF and HIF-1α expression compared 
to the Melatonin group, the improvement of VEGF level 
was not significant. This might be attributed to the mecha-
nism used to assess HIF-1α that was PCR genetic expression 
assessment while that of VEGF was protein level assessment 
by ELIZA in which the last method may need more time to 
reach a significant level. Also, the dose-dependent impact 
of MSCs might have played a role in the discrepancy of the 
results of HIF and VEGF. Moreover, Melatonin is known 
to inhibit the pathway of cell senescence and preserve the 
expression of genes governing stemness as it is a potent anti-
oxidant and anti-angiogenic factor. So, Melatonin could limit 
the pro-angiogenic effect of MSCs. Thus, Melatonin not only 
prepared a better environment for MSC action, but they both 
acted synergistically as anti-inflammatory and antioxidant 
agents resulting in a better improving effect [67].

In this study, consequently, to the previous biochemical 
results, the co-treatment of Melatonin and MSCs showed 
almost normal histological architecture with normally 
appearing alveoli and bronchioles, mean radial alveolar 
count, and a significant decrease in the mean area percent 
of CD31 compared to both Melatonin and MSC groups. 
Depending on the previously discussed role of Melatonin 
[51, 84], the Melatonin-treated group showed marked 
improvement in the histological architecture including 
alveoli and bronchioles in addition to a significant decrease 
in the mean area percent of CD31 [77] relative to the COPD 
group and the MSC group. While the combined treated 
group showed significant improvement compared to the 
Melatonin group, the MSC-treated group revealed that there 
was improvement [90]. However, the alveoli and bronchi-
oles were still surrounded by some inflammatory cells and 
thickened blood vessels with minimal decrease in the mean 
area percent of CD31, and these changes indicated the effect 
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of microenvironmental conditions on hindering MSC role. 
MSC supplementation could enhance the CD31 expression 
due to its pro-angiogenic effect [16, 53]. However, the dys-
function of injected MSCs under disease conditions was 
reported in relation to oxidative stress, thermal injury, and 
hypoxia [61].

The better improvement was detected in the Melatonin-
treated group compared to the MSC-treated group; in addi-
tion to that, the Melatonin group showed less significant 
improvement when compared to the combined treated group. 
This supports our hypothesis that Melatonin administration 
together with MSCs might have a better effect on lung tissue 
in the COPD model and enhance the MSC effect. Along the 
same line, it has been reported that Melatonin administration 
could efficiently preserve self-renewal and differentiation 
properties of MSCs in culture dish after long-term passag-
ing, and Melatonin allowed better regenerative function of 
MSCs through improving the surrounding microenviron-
ment [67].

Conclusion

COPD is a severe disease that needs more studies of patho-
physiological pathways to reach a definitive therapeutic tool. 
Co-administration of Melatonin together with bone marrow-
derived MSCs improved the outcome of expiratory pulmo-
nary functions through improving angiogenesis at the level 
of vascular-alveolar unit by adjusting VEGF level together 
with HIF-1α expression.
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