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Abstract
Low pH in the gut is associated with severe inflammation, fibrosis, and colorectal cancer (CRC) and is a hallmark of active 
inflammatory bowel disease (IBD). Subsequently, pH-sensing mechanisms are of interest for the understanding of IBD 
pathophysiology. Tissue hypoxia and acidosis—two contributing factors to disease pathophysiology—are linked to IBD, and 
understanding their interplay is highly relevant for the development of new therapeutic options. One member of the proton-
sensing G protein-coupled receptor (GPCR) family, GPR65 (T-cell death-associated gene 8, TDAG8), was identified as a 
susceptibility gene for IBD in a large genome-wide association study. In response to acidic extracellular pH, GPR65 induces 
an anti-inflammatory response, whereas the two other proton-sensing receptors, GPR4 and GPR68 (ovarian cancer G protein-
coupled receptor 1, OGR1), mediate pro-inflammatory responses. Here, we review the current knowledge on the role of these 
proton-sensing receptors in IBD and IBD-associated fibrosis and cancer, as well as colitis-associated cancer (CAC). We 
also describe emerging small molecule modulators of these receptors as therapeutic opportunities for the treatment of IBD.
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Inflammatory bowel disease (IBD) 
is accompanied by low pH in the gut

IBD includes two main phenotypic subgroups: ulcera-
tive colitis (UC) and Crohn’s disease (CD). In 2017, 6.8 
million cases of IBD were documented worldwide [16]. 
Chronic intestinal wall inflammation that results in severe 
and long-lasting mucosal tissue destruction is a defining 
feature of IBD. An expanding body of literature has pro-
vided evidence that the pathophysiology of IBD is associ-
ated with genetic susceptibility [34], intestinal microbiota 
alterations [73], environmental factors [114], and immu-
nological abnormalities [90].

Increased local proton concentration, tissue hypoxia, 
low perfusion, and high levels of glycolytic metabolite 
synthesis (e.g., lactic acid) reduce tissue pH in chronic 
inflammation and inflammation-associated malignan-
cies [5, 29, 69, 94, 105], leading to pro-inflammatory 
cytokine production [69]. An acidic tissue microenvi-
ronment is not only the result of inflammation but also 
influences the degree and outcome of inflammation [8, 
44, 88]. In line with this, the pathogenesis of IBD as well 
as disease flares have been linked to a local decrease of 
the pH in the gut lumen and surrounding mucosa, with 
some reports showing a pH ranging between 2.3 and 3.4 
in the proximal colon of patients with active UC [29, 94]. 
Caprilli et al. also showed that the fecal fluid is character-
ized by low pH and bicarbonate in patients with severe 
UC when compared to healthy controls (pH, 6.06 versus 
6.52; HCO3−, 8.4 versus 34.6 mq/L) [11]. Moreover, an 
early study which monitored changes in lactate levels in 
relation to UC severity reported a progressive increase in 
lactate, from mild colitis (3.0 ± 1.8 mM/L) to severe colitis 
(21.4 ± 18.6 mM/L) [139].

About 20 years ago, a family of G protein-coupled 
receptors (GPCRs) was described to sense extracellu-
lar protons in a narrow and physiologically relevant pH 
range. The G protein-coupled receptor (GPR)4 family 
of proton-sensing receptors consists of three members: 
GPR4, GPR65 (T-cell death-associated gene 8, (TDAG8) 
and GPR68 (ovarian cancer G protein-coupled receptor 1, 
OGR1). They are activated by a decrease in extracellular 
pH (below the physiological level), reaching their maximal 
activation at around pH 6.8. In contrast, they are inactive 
or almost silent at a pH higher than 7.6 [78, 88]. These 
receptors were shown to play important roles in inflam-
mation, bone metabolism, pain-sensing, kidney function, 
and breathing regulation [51, 54, 123].

With respect to IBD, three aspects make research on 
pH-sensing receptors particularly interesting. First: pH-
sensing receptor TDAG8 has been identified as an IBD risk 
gene in genome-wide association studies [34]. Second: 

Specific pH-sensing receptors that are known to play a role 
in inflammatory processes can be detected in the intestine. 
Third: Orally active antagonists that selectively bind to 
pro-inflammatory pH-sensing receptors (OGR1, GPR4) 
have been recently developed.

It should be noted that a fourth receptor, G2A/GPR132, 
was described as pH sensing [89]. However, effects were 
cell-type-dependent, and similar evidence could not be 
obtained by other laboratories [106, 123]. This receptor also 
lacks key amino acid residues required for pH sensing in 
GPR4, OGR1, and TDAG8 [116]. There is strong evidence 
today that G2A/GPR132 is activated by oxidized lipids and 
other related molecules [33]. For these reasons, we do not 
consider G2A/GPR132 as a bona fide pH-sensing receptor, 
and we limit the scope of this review to GPR4, OGR1, and 
TDAG8. We provide here an overview of the association of 
these GPCRs with inflammation, fibrosis, and tumorigenesis 
in the context of IBD.

Proton‑sensing G protein‑coupled receptors 
are linked to IBD

TDAG8

TDAG8 is mainly expressed in cells of the immune system 
[134]. In humans, TDAG8 is expressed predominantly in 
peripheral blood leukocytes and lymphoid tissue, includ-
ing the spleen, lymph nodes, and thymus [67], suggesting 
an important function in innate and adaptive immune reac-
tions. TDAG8 acts as a negative regulator of inflammation 
[95, 131] through the activation of a Gαs-coupled mecha-
nism [88], which augments downstream cyclic adenosine 
monophosphate (cAMP). Upon extracellular acidification, 
TDAG8 activates the adenylyl cyclase (AC)/cAMP/Protein 
Kinase A pathway through Gs proteins [54, 140] and Rho 
signaling via G12/13 [54]. Rho signaling is of major impor-
tance in controlling leukocyte migration and phagocytosis 
in innate immune cells.

Interest in the role of TDAG8 in the gut increased when a 
large-scale meta-analysis identified a single nucleotide vari-
ant in the TDAG8 gene (I231L, rs3742704) as a susceptibil-
ity locus for IBD [56]. Additionally, the minor TDAG8 vari-
ant rs8005161 is associated with UC [130], and IBD patients 
carrying the rs8005161-TT and rs8005161-CT alleles pre-
sent an increased disease severity [130]. Following an extra-
cellular acidic pH shift imposed on CD14+ monocytes from 
IBD patients, an impaired RhoA activation was observed 
irrespective of the rs8005161 allele [130], suggesting a still 
unknown adaptation of this signaling pathway in the disease.

In mice, TDAG8 is found on mast cells in the jejunum 
[154], T cells, macrophages, dendritic cells, and granulo-
cytes in the lamina propria of the colon [131]. In inflamed 
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tissue, the expression of TDAG8 is increased compared to 
non-inflamed areas, likely reflecting increased leukocyte 
influx [131]. The function of TDAG8 has been investigated 
in Tdag8 knock-out mice as well as knock-in mice harboring 
the murine orthologue of the IBD-associated variant GPR65 
I231L. These strategies result in loss of function or dimin-
ished function of TDAG8, respectively. Loss of functional 
TDAG8 in Tdag8 knock-out mice increases the recruitment 
of macrophages and neutrophils to the colon and enhances 
the expression of pro-inflammatory mediators in murine 
models of acute and chronic colitis, such as the DSS model 
of colitis, the T cell transfer model [81, 131], or interleu-
kin (IL)-10-deficient animals [102]. In the latter model, the 
pro-inflammatory effect of TDAG8 deficiency is particu-
larly pronounced and manifests with a significant increase 
in IL-6 levels and an increased presence of F4/80+CD64+ 
macrophages and IL-23+γδT cells in colitis lesions [102]. 
IL-10 is an important immune regulator in the gut, promot-
ing mucosal tolerance and preserving epithelial integrity 
[91]. The available data indicate that TDAG8 signaling 
cooperates with IL-10 signaling to maintain homeostasis. 
A role of TDAG8 beyond the regulation of inflammatory 
mediators and lymphocyte trafficking is found in pathogen 
clearance through lysosomal activity. Deletion of Tdag8 
in mice or knock-in of the IBD-associated variant GPR65 
I231L results in lysosomal dysfunction, which impacts bac-
terial autophagy and pathogen defense, thereby increasing 
the risk of developing colitis [70]. Thus, functional TDAG8 
was shown to play an important role in the clearance of Cit-
robacter rodentium in a murine infection model [70].

Th17 cells and their secreted cytokines play an important 
role in the abnormal immune response in IBD [14]. Activa-
tion of TDAG8 is linked to Th17- and Th22-cell differentia-
tion, and RAG1−/− mice reconstituted with TDAG8-defi-
cient T cells were protected from experimental autoimmune 
encephalitis (EAE) [37]. Impaired TH17 cell differentiation 
in TDAG8-deficient mice was also reported in the T cell 
transfer model of colitis and correlated with elevated IL12 
and IL23 [13]. IL23 and its receptor IL23R play a key role 
in IBD pathogenesis [84], and IL17 may have a protective 
role in IBD rather than a detrimental one as in psoriasis or 
EAE [30]. In addition to IBD, TDAG8 has been identified as 
a risk gene for other inflammatory diseases, such as chronic 
obstructive pulmonary disease, asthma, multiple sclerosis, 
and ankylosing spondylitis [45, 47, 53, 56].

GPR4

Initial reports described an important role of GPR4 in 
endothelial cell (EC) function, and sphingosylphos-
phorylcholine [62] and lysophosphatidylcholine [79] were 
described as ligands of GPR4. Although these molecules 
are no longer considered specific ligands of GPR4, there is 

a high correlation between the transcriptional regulation of 
GPR4 and endothelial function [26, 86, 148]. Open public 
repositories of gene expression data report moderate expres-
sion of GPR4 in the small intestine and colon. IBD patients 
exhibit increased GPR4 mRNA expression compared to 
healthy controls [141], which most likely reflects inflam-
mation accompanied by an angiogenic response. Addition-
ally, single-cell RNA sequencing (scRNA-seq) revealed 
that, in the human colon, GPR4 is expressed in CD36+ ECs 
present in the capillaries and in Duffy antigen/receptor for 
chemokines (DARC)+ cells lining postcapillary venules 
[65].

In mice, Gpr4 mRNA has been detected on ECs in the 
lamina propria of the colon [143]. This was confirmed in 
scRNA-seq profiles where GPR4 was found in the colon 
arteries, arterioles, capillaries, venules, and vein cells [55]. 
Deletion of GPR4 in mouse models of experimental coli-
tis decreased the expression of the endothelial adhesion 
molecules, vascular cell adhesion molecule-1 (VCAM1), 
and E-selectin in the intestinal microvasculature. This was 
associated with decreased mucosal leukocyte infiltration 
and reduced intestinal inflammation [117, 141]. Intestinal 
inflammation in CD is indeed characterized by an increased 
vessel density and angiogenesis [20, 119], associated with 
enhanced production of vascular endothelial growth factor 
(VEGF) in the local microvasculature. These data are in 
agreement with the notion that GPR4 drives VEGF produc-
tion and is required for a full angiogenic response to this 
growth factor [148].

Similar to TDAG8, GPR4 is a Gs-coupled receptor which 
drives the activity of adenylate cyclase to generate the sec-
ond messenger cAMP [78]. Signaling via G13 and Gq/11 has 
also been documented, resulting in the activation of RhoA 
signaling pathway and calcineurin-dependent nuclear factor 
of activated T cell (NFAT)1 promoter-driven transcription, 
respectively [133]. In ECs, Rho family proteins are of par-
ticular importance in regulating endothelial barrier function 
and leukocyte transmigration [125].

While expression of GPR4 appears prominent in ECs, 
there is also evidence for its presence in other cell types. 
Colon tissue scRNA-seq profiling from both murine [55] and 
human [65] cellular communities revealed the presence of 
GPR4 also in stromal cells, including pericytes surrounding 
vessels and fibroblasts. In our own work, we detected GPR4 
mRNA expression in murine and human primary intestinal 
fibroblasts [143]. The increased number of GPR4+ cells in 
intestinal inflammation may not only arise through local 
angiogenesis and recruitment of precursor cells but also 
through mechanisms involving transition from ECs or peri-
cytes and cell de-differentiation [107]. For instance, it is well 
documented that inflammation can result in endothelial-to-
mesenchymal transition (EndoMT) [109] and could contrib-
ute to an increased number of GPR4+ mesenchymal cells. 
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EndoMT may be driven by the pro-inflammatory cytokines 
tumor necrosis factor (TNF)α and IL-1β [12], as well as 
pro-fibrotic transforming growth factor (TGF)-β1 [3, 152], 
a powerful immune mediator upregulated in IBD.

Pericytes surrounding the vascular system also represent 
a cellular reservoir for several mesenchymal cell types dur-
ing tissue repair [38]. These cells can detach from vessels 
and differentiate into collagen-synthesizing fibroblasts, as 
observed in experimental dermal scarring [126]. Impor-
tantly, VEGF signaling stimulates myofibroblast trans-
formation through the induction of TGFβ1, as shown for 
subconjunctival [100] and kidney fibrosis [76]. These data 
indicate that GPR4 could represent a target for the treatment 
of fibrotic diseases. In this context, it is important to note 
that pharmacological tools already exist to inhibit GPR4, 
and these molecules have been successfully tested in several 
animal models, including models of colitis ([86, 118, 143], 
and chapter below.)

OGR1

In contrast to the rather cell type-specific expression of 
TDAG8 and GPR4, predominant in immune system cells 
and in ECs, respectively, OGR1 is expressed in various cell 
types, including monocytes/macrophages, T cells, granulo-
cytes, ECs, and various mesenchymal cell lineages. OGR1 
couples predominantly through Gαq/11 proteins, leading to 
activation of the phospholipase C (PLC)/inositol phosphate 
(IP)/Ca2+/extracellular signal-regulated kinases (ERK) path-
way [78] and the Gα12/13/Rho signaling pathway [77, 134, 
144, 146]. A role of OGR1 in inflammation was described 
early on, and several studies have shown a crucial role for 
OGR1 in the expression of inflammatory and tissue remode-
ling factors under acidic conditions [49, 83]. In IBD patients, 
intestinal tissue shows increased expression of OGR1, espe-
cially in inflamed areas, compared to the intestinal mucosa 
of healthy individuals [22, 25]. Furthermore, the expres-
sion of OGR1 correlates with higher clinical scores in IBD 
patients, suggesting that OGR1 has a clinically relevant 
pro-inflammatory effect that could be targeted for treatment 
[22, 25]. In a murine model of spontaneous colitis, OGR1 
perpetuated intestinal inflammation through the expression 
of IL-6, TNFα, IL-8, and SPARC [22], a collagen-binding 
protein that mediates fibrosis [6, 7], while Ogr1-deficiency 
was protective [22, 25].

The extracellular acidification-induced expression of 
these OGR1-dependent genes was greatly enhanced under 
hypoxic conditions in human intestinal macrophages, and 
this effect was reversed by NF-κB inhibition [23]. OGR1 
has also been implicated in other physiological processes, 
including kidney function and bone metabolism [50, 66]. Of 
particular interest is the recent observation that a homozy-
gous loss of function of OGR1 was described in families 

with amelogenesis imperfecta, suggesting that OGR1 is 
required for dental enamel formation [101]. At present, 
there is no information on the response of these individuals 
to inflammatory challenges, but this observation suggests 
that therapeutic inhibition of OGR1 may be well tolerated 
in adult subjects.

Hypoxia regulates the expression 
and function of pH‑sensing receptors

Accumulating evidence shows that the intestinal mucosa and 
the underlying tissue are deprived of adequate oxygen sup-
ply during inflammation [2, 27, 59]. Hypoxia results from 
increased local metabolic requirements from resident and 
infiltrating inflammatory cells combined with a reduced 
oxygen supply from the bloodstream due to edema, vaso-
constriction, and thrombosis [15, 59, 64].

Adaptive transcriptional responses to oxygen tension 
are mediated through the hydroxylation of the nuclear fac-
tors hypoxia-inducible factor (HIF)-1α and HIF-2α. Oxy-
gen deprivation blocks hydroxylation, allowing HIF-1α 
and HIF-2α to accumulate and translocate to the nucleus 
where the expression of HIF target genes is induced [122]. In 
accordance with the hypoxic conditions in inflamed tissue, 
both HIF-1α and HIF-2α are induced in the mucosa from 
IBD patients and mouse models of colitis [39, 59]. HIFs 
can also be stabilized following the activation of immune 
receptors, such as Toll-like receptors (TLRs) [103], or by 
metabolic by-products, such as succinate [127], which sig-
nals through GPR91. HIFs are also stabilized during infec-
tion with different pathogens under hypoxic conditions [60, 
93, 103, 145] and through hypoxia-independent mechanisms 
[42], including the inhibition of prolyl hydroxylase domain 
proteins through the chelation of Fe2+ ions with bacterial 
siderophores [46]. Thus, tissue hypoxia plays an important 
role in the regulation of innate immunity and inflammatory 
responses. At a mechanistic level, hypoxia activates the 
NF-κB signaling pathway [27, 128] by blocking the hydrox-
ylation of upstream IκB kinase (IKK)-β [19]. Additionally, 
hypoxia triggers the expression of pro-inflammatory TNFα 
and IL-6 in monocytes [23] and supports inflammasome 
activation and production of IL-1β [32].

In accordance with the hypoxic environment and 
increased acidosis observed in IBD [39, 121], low oxygen 
tension promotes the expression of pH-sensor OGR1 via 
HIF-1α in human monocytic cell lines, intestinal epithelial 
cells, and macrophages, suggesting a crucial role of OGR1 
in hypoxia-associated responses [23]. Additionally, TNFα 
induces the expression of OGR1 in cells of human mac-
rophage lineage and primary human monocytes through an 
NF-κB-mediated mechanism [22, 23]. A study using rabbits 
subjected to hypoxia showed that TNFα is able to induce the 
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binding of HIF-1α to the promoter of HIF-1α target genes 
through a NF-κB-mediated mechanism [135]. An in silico 
analysis identified several putative DNA binding sites for 
NF-κB and HIF-1α within the proximal regions of the OGR1 
promoter variants [22]. Accordingly, chromatin precipitation 
analysis showed that hypoxia induced the binding of HIF-1α 
to the OGR1 promoter, confirming that OGR1 is under the 
transcriptional control of HIF-1α.

Recent reports indicate that low oxygen partial pres-
sure experienced during aircraft travel heightens the risk of 
flares in IBD patients [138], and altitude-associated hypoxia 
increases pro-inflammatory gene expression in the duode-
num of healthy subjects [147]. Accordingly, the expression 
of OGR1 is upregulated in the intestinal mucosa of CD and 
UC patients subjected to hypoxic conditions resembling an 
altitude of 4000 m above sea level for 3 h [23]. Consider-
ing that the intestinal epithelium is constantly exposed to 
luminal insults and oxygen deprivation, the interdependence 
between HIF and NF-κB signaling pathways appears most 
important in regulating intestinal epithelial barrier endur-
ance and function [35, 129], and OGR1 may play a crucial 
effector role in inflammation driven by hypoxia and acidosis.

Intestinal fibrosis as a consequence 
of inflammation/acidification

An exquisite balance between multiple pro- and anti-fibrotic 
stimuli on extracellular matrix (ECM)-producing cells is 
necessary for adequate wound healing [61, 98, 136, 137]. 
Rapid wound closure is crucial to reduce the time of an 
impaired barrier function of the intestinal wall. Nevertheless, 
the recurring and sometimes excessive tissue repair caused 
by inflammation leads to fibrosis, which may impair gastro-
intestinal function. Intestinal fibrosis is a common clinical 
problem in patients with CD and UC [21] that leads to stric-
ture formation requiring surgical intervention in 30–50% of 
CD patients [18, 71, 108]. In the context of CD, clinical 
findings have shown that fibrosis only develops in segments 
of the gut where inflammation is present [110].

Fibroblasts are central to tissue fibrosis because they are 
key producers of deposited ECM components and possess 
contractile abilities and the capacity to secrete growth fac-
tors [36]. Fibroblasts in fibrotic tissue can arise in multiple 
ways: Fibroblasts may migrate into the inflamed area, local 
stromal fibroblasts may proliferate, and importantly, ECs 
and epithelial cells may undergo de- and re-differentiation 
processes, namely EndoMT and epithelial to mesenchymal 
transition (EMT), respectively [9, 107]. EMT is a well-
characterized phenomenon that takes place in different 
tissues and diseases [92]. TGF-β1 is a key inducer and an 
important regulator of EMT. Upon exposure to inflamma-
tory stimuli (e.g., cytokines [74, 75], extracellular matrix 

components [10, 75], pathogen-associated molecular pat-
terns [72], and damage-associated molecular patterns [31] 
such as succinate [127, 149]), fibroblasts switch to an acti-
vated state. Of particular interest here, acidification can be 
added to the list of inflammatory stimuli.

OGR1 expression and OGR1-dependent signaling were 
observed in primary human and murine intestinal fibro-
blasts, and proton-activated OGR1-mediated signaling 
increases filamentous actin (F-actin) stress fibers at acidic 
pH in vitro [25]. Gpr4 expression has also been reported in 
primary intestinal fibroblasts [143], and fibroblasts found 
in other organs, e.g., rat kidney [111]. Baseline levels of 
GPR4 may already be sufficient to promote inflammation 
or fibrosis. Interestingly, an increased expression of GPR4 
was determined in primary intestinal fibroblasts follow-
ing an acidic pH shift in vitro [143]. The fact that GPR4 
mRNA expression is detected in human and murine pri-
mary intestinal fibroblasts and that the cells respond to 
acidification with increased activation of RhoA, an impor-
tant mediator of fibrosis [143] suggests that GPR4+ ECs 
are converted to GPR4+ fibroblasts by EndoMT.

During the course of kidney fibrosis in mice, approxi-
mately 14–15% of fibroblasts are derived from the bone 
marrow and about 36% emerge via EMT [58]. Approxi-
mately 30 to 50% of fibroblasts showed co-expression of 
EC and fibroblast markers [153] and may be derived from 
ECs residing within the kidney via EndoMT. The remain-
ing fibroblast populations may arise from resident fibro-
blasts, pericytes [97, 104], and fibrocytes in the circulation 
[1]. It is plausible that fibroblast recruitment in intestinal 
inflammation follows a similar pattern.

In human disease, paired intestinal tissue samples from 
patients with CD undergoing ileocecal resection due to 
stenosis were analyzed. Samples from highly fibrotic areas 
showed an increased expression of GPR4 as compared to 
the non-fibrotic areas [143]. GPR4 and the expression 
of markers involved in different phases of fibrosis, e.g., 
ACTA2, a marker for myofibroblast activation, and the 
pro-collagens COL1A1 and COL3A1, were positively cor-
related [143]. Similarly, samples from fibrotic areas pre-
sented higher expression levels of OGR1 as compared to 
the non-fibrotic resection margin, and the expression of 
fibrotic markers, such as ACTA2 and the pro-collagens 
COL3A1 and TGFβ1 were positively correlated [48]. 
One can speculate that elevated numbers of GPR4+ and 
OGR1+ fibroblasts in intestinal fibrosis may arise through 
EndoMT, with GPR4 being inherited from the parental 
ECs. Increased expression of GPR4 and OGR1 triggered 
by inflammation-associated acidification, and subsequent 
cellular responses, may perpetuate inflammation-induced 
fibrosis in IBD. Similar considerations apply for the devel-
opment of fibrosis in severe asthma and irreversible airway 
obstruction [63, 83].
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In mice, Gpr4-deficiency leads to a decrease in fibro-
genesis in models of intestinal fibrosis [143]. The pres-
ence of shorter vessels and decreased angiogenic factors 
were indicative of lowered vascularization. Additionally, 
mRNA expression levels of Pdgfβ, a potent chemoattract-
ant for fibroblasts and other cells [115], were reduced in 
Gpr4−/− mice. Likewise, decreased fibrosis was observed in 
Ogr1-deficient mice following chronic or spontaneous coli-
tis. Ogr1-deficiency leads to a decrease in mRNA expres-
sion of fibrosis markers, as well as a reduction of collagen 
deposition in models for intestinal fibrosis [48]. In summary, 
the absence of GPR4 or OGR1 is associated with a decrease 
in inflammation [22, 141] and fibrosis [48, 143] in animal 
models of intestinal fibrosis.

Proton‑sensing GPCRs in colorectal cancer 
(CRC)

CRC is the second most diagnosed cancer in women and the 
third in men. Different risk factors contribute to the devel-
opment of CRC, such as the patient’s genetic background, 
age, diet, environmental factors, as well as chronic intestinal 
inflammation as in CD or UC, and colitis-associated cancer 
(CAC). The risk of CAC in patients with IBD is increased 
after a long disease duration, especially in patients with 
chronic active disease [41, 113]. Oncogenic mutations alone 
do not seem sufficient to induce CRC or CAC. Tumorigen-
esis, tumor growth, and the formation of metastases depend 
on additional, non-mutational mechanisms. Such mecha-
nisms involve inflammatory or regenerative programs that 
are either activated in the tumor tissue itself or in cells of 
the surrounding tissue stroma [40]. These programs induce 
phenotypic plasticity in CRC cells such as EMT [40], a pre-
requisite for fistula formation [4] and fibrosis in IBD [120], 
as well as metastasis [87].

Hypoxia, inflammation, fibrosis, and tumor formation in 
the intestine, as in CRC and CAC, are linked on many levels 
and induce each other [27]. Thus, hypoxia may be induced 
by inflammation (inflammatory hypoxia) [27], and it influ-
ences tissue pH in the mucosa [96]. It is well established 
that an acidic environment is not only an epiphenomenon 
that results from tumor formation or inflammation but also 
affects the outcome of the immune response to cancers [8, 
44, 88]. Acidosis modulates EMT [132] and changes the 
expression of EMT cell markers in vitro and in vivo [112].

In tumors, protons (H+) are generated and accumulate due 
to several mechanisms, including increased anaerobic and 
aerobic glycolysis (Warburg effect). As a result, lactic acid 
is released and acidification of the tumor-associated extra-
cellular micro-environment (TME) follows [69, 99, 124].

In the TME, a local pH below 7.0 is not uncommon and 
contributes to the progression of malignancy, tumor growth, 

metastasis, metabolic rewiring, and a decreased immune sur-
veillance [17, 28, 57, 68]. Consequently, restoring normal 
tissue pH has been suggested to reduce tumor growth and to 
improve anti-tumor therapy [142]. However, normalizing the 
pH is difficult to achieve in the cancer tissue microenviron-
ment. It is therefore tempting to consider the pH-sensing 
GPCRs, which mediate at least some effects of low pH on 
cells and tissues, as targets for therapy.

Proton-sensing GPCRs, TDAG8, GPR4, and/or OGR1 
are expressed in a large number of human cancers, includ-
ing stomach cancer [52], prostate cancer [150], and CRC 
[151]. In patients suffering from CRC, GPR4 mRNA and 
protein are increased as compared to non-tumor tissue, and 
high expression correlates with late-stage tumors and poor 
overall survival [151]. In a murine model with subcutane-
ous HCT116 xenografts, tumor progression was reduced 
when xenografts were depleted of GPR4 with shRNA [151]. 
Experiments with GPR4-deficient mice showed reduced 
tumor angiogenesis and tumor growth in an orthotopic tumor 
model using the murine colorectal carcinoma cell line CT26 
[148]. Histological analysis of tumors indicated altered ves-
sel morphology, length, and density. The reduced angio-
genesis is linked to a reduced response of ECs to VEGF, 
a key mediator of the vascular response to hypoxia [148]. 
Similarly, intestinal inflammation, development of CRC, and 
tumor angiogenesis were reduced in GPR4-deficient mice 
compared to WT control [82].

Ogr1 mRNA expression is increased in murine colonic 
tumors compared with normal colonic mucosa [23]. The 
induction of Ogr1 in tumor tissue is in good agreement with 
the known interaction between tumor hypoxia and acidosis 
[85], and several putative DNA binding sites for HIF-1α 
within the proximal regions of the Ogr1 promoter variants 
have been identified [22].

Small molecule modulators of pH‑sensing 
receptors may become a therapeutic 
opportunity for IBD and CRC​

The pharmaceutical industry has started to develop modula-
tors of pH-sensing receptors, and information on a few of 
these molecules is now in the public domain. A group of 
imidazopyridine derivatives were developed by Novartis, 
CH as orally active inhibitors of GPR4 and were evaluated 
for the treatment of inflammatory diseases and pain [86]. 
Derivative 39c showed promising pharmacokinetic proper-
ties (low clearance, good bioavailability, and oral exposure) 
and was therefore chosen for further profiling. This molecule 
was tested in an angiogenesis model in rodents and inhibited 
VEGF-induced angiogenesis in a dose-dependent manner 
[86]. Importantly, GPR4 antagonist 39c also decreased col-
lagen deposition in a murine model of gut fibrosis [143]. 
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These data further corroborate results from Gpr4-deficient 
mice in models of intestinal fibrosis, indicating that colla-
gen deposition is reduced in the absence of GPR4 signal-
ing. The expression of Vegfα mRNA was also decreased 
upon Gpr4 antagonist treatment and the presence of shorter 
vessels and decreased angiogenic factors was indicative 
of less vascularization. The pathophysiological relevance 
of GPR4 inhibition was determined in cultured primary 
human and murine intestinal fibroblasts. An acidic pH shift 
increased mRNA and protein levels of pro-fibrotic factors 
as well as stress fiber formation, which were reversed in 
the presence of the GPR4 antagonist 39c [143]. GPR4 sig-
nals via G12/13 through GTP-RhoA. RhoA activity increased 
following acidification in human fibroblasts and decreased 
upon treatment with the GPR4 antagonist. A close analog of 
derivative 39c, GPR4 inhibitor compound 13 (also known 
as NE-52-QQ57), reduced clinical severity and macroscopic 
disease indicators of intestinal inflammation in a murine 
acute colitis model [118]. Compound 13 reduced EC acti-
vation, leukocyte recruitment into inflamed intestinal tissue, 
and pro-inflammatory gene expression in the distal colon. 
Inhibition of GPR4 activity by pharmacological intervention 
may represent a promising novel approach to reduce inflam-
mation by attenuating vascular EC activation and leukocyte 
infiltration into inflamed tissues [118].

An OGR1 small-molecule inhibitor (OGR1-I) was 
developed by Takeda Pharmaceuticals, San Diego, CA, 
USA. OGR1-I was tested in a murine model of acute coli-
tis and reduced clinical severity [24]. Ameliorated inflam-
mation upon OGR1-I was also demonstrated by endoscopy 
and histology. Moreover, OGR1-I reduced infiltration of T 
cells in acute colitis and macrophage recruitment in chronic 
colitis. OGR-I was also tested in in vitro experiments using 
the human colon carcinoma cell line Caco-2. These studies 
showed that endoplasmic reticulum (ER) stress is induced 
by acidosis-activated OGR1-mediated signaling [80]. ER 
stress was mediated by OGR1-dependent activation of c-Jun 
N-terminal kinase (JNK) signaling, the splicing of X-Box 
binding protein (XBP)1, and the expression of the unfolded 
protein response marker binding immunoglobulin protein 
(BiP). Conversely, JNK signaling, XBP1 splicing, and BiP 
expression were prevented in the presence of the inhibitor 
OGR1-I. This inhibitor also restored late-stage autophagy 
blocked by acidic activation of OGR1 in a human intestinal 
epithelial cell model overexpressing OGR1 [80].

Summary

Research on proton-sensing GPCRs over recent years has 
demonstrated that pH variations in a narrow physiological 
range can actively and specifically influence cell signal-
ing and physiological processes. Progression of IBD is 

accompanied by low pH and acidosis in the gut; conse-
quently, the three pH-sensing GPCRs, TDAG8, GPR4, and 
OGR1 play an important role in IBD-associated inflamma-
tion, fibrosis, and tumorigenesis.

Anti-inflammatory TDAG8 emerged as a receptor of 
particular interest because of its genetic link to IBD and 
other chronic immune pathologies. TDAG8 has a promi-
nent role as a negative regulator of inflammation, due to 
its cAMP-elevating action in immune cells in response to 
low extracellular pH.

Pro-inflammatory GRP4 is predominantly expressed on 
ECs and regulates the expression of endothelial adhesion 
molecules and angiogenic factors, thereby affecting vascu-
larization and mucosal leukocyte infiltration, key factors 
in the progress of inflammation. In IBD patients, GPR4 
expression is elevated compared to healthy controls, likely 
reflecting enhanced local angiogenesis and EndoMT in 
diseased tissue, leading to fibrosis. In patients suffering 
from CRC, high expression levels of GPR4 correlate with 
late-stage cancer and poor overall survival.

Pro-inflammatory OGR1 exhibits a pronounced expres-
sion in monocytes/macrophages, T cells, granulocytes, ECs, 
and mesenchymal cells and perpetuates intestinal inflamma-
tion through the expression of pro-inflammatory mediators. 
Moreover, OGR1 appears to play a crucial effector role in 
inflammation driven by hypoxia and acidosis. As might be 
expected, the expression of OGR1 correlates with clinical 
scores given to IBD patients, and samples from fibrotic areas 
showed increased OGR1 when compared to the non-fibrotic 
resection margin. An OGR1 small-molecule inhibitor 
reduced clinical severity in a murine model of acute colitis. 
Considering the aforementioned, small molecule modula-
tors of pH-sensing receptors constitute a new therapeutic 
opportunity for IBD and CRC therapy.

Currently, it is unclear how pH-sensing by GPCRs con-
nects with other pH-sensing mechanisms such as certain 
ion channels and pH-sensitive intracellular enzymes [43]. 
Work is ongoing to shed more light on this interplay. With 
respect to therapeutic opportunities, it is noteworthy that 
GPCRs are expressed on the cell surface and evolved to 
respond to extracellular cues in very specific ways. For 
these reasons, they constitute a particularly successful 
class of molecular targets for therapeutic intervention.
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