
Vol.:(0123456789)

Pflügers Archiv - European Journal of Physiology (2024) 476:445–455 
https://doi.org/10.1007/s00424-024-02919-y

INVITED REVIEW

Recent advances in acid sensing by G protein coupled receptors

Maike D. Glitsch1

Received: 1 December 2023 / Revised: 30 January 2024 / Accepted: 30 January 2024 / Published online: 10 February 2024 
© The Author(s) 2024

Abstract
Changes in extracellular proton concentrations occur in a variety of tissues over a range of timescales under physiological 
conditions and also accompany virtually all pathologies, notably cancers, stroke, inflammation and trauma. Proton-activated, 
G protein coupled receptors are already partially active at physiological extracellular proton concentrations and their activity 
increases with rising proton concentrations. Their ability to monitor and report changes in extracellular proton concentrations 
and hence extracellular pH appears to be involved in a variety of processes, and it is likely to mirror and in some cases promote 
disease progression. Unsurprisingly, therefore, these pH-sensing receptors (pHR) receive increasing attention from researchers 
working in an expanding range of research areas, from cellular neurophysiology to systemic inflammatory processes. This 
review is looking at progress made in the field of pHRs over the past few years and also highlights outstanding issues.
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Introduction

Acids are defined as chemicals that give off protons, and 
acid sensing therefore involves proton sensing. Proton 
concentrations are converted into pH values and generally, 
blood pH in a healthy individual is taken to be pH 7.4 
(equivalent to approximately 40 nM protons). Deviations as 
small as ± 0.05 pH units are considered pathological states 
of acidosis or alkalosis, respectively. For a long time, the 
prevailing dogma was that interstitial tissue pH was equivalent 
to blood pH, and that extracellular pH did not fluctuate in 
any physiologically meaningful manner. Rather, deviations 
from physiological pH values were taken to be long-term 
consequences of pathological events. We now know that 
interstitial tissue pH deviates from and tends to be lower than 
blood pH (e.g. brain, skin, see below) and that interstitial pH 
can fluctuate acutely as well as in the long term.

A number of physiological processes involve acidifica-
tion of the interstitial fluid of the tissue in question. Bone 

metabolism, specifically bone resorption, is contingent on 
extracellular acidification [71], and the respiratory burst 
of immune cells is accompanied by proton extrusion [83], 
leading to acidification of the affected tissue. Other exam-
ples include luminal acidification of the epididymis during 
sperm maturation and storage [79], cyclic changes in extra-
cellular pH for proper enamel formation during tooth devel-
opment [39] and acidification of the synaptic cleft during 
synaptic transmission [80]. This list is not exhaustive and 
just serves to illustrate the variety of distinct physiologi-
cal processes that are contingent on or affected by extracel-
lular acidification. Importantly, extracellular acidification 
occurs to different extents and over a range of distinct time 
scales, depending on the process (ms to days). Finally, it 
is well established that virtually all pathological processes 
(including cancer, inflammatory conditions, trauma, stroke) 
are accompanied by sometimes dramatic changes in tissue 
pH [23]. Changes in extracellular pH are sensed by proteins 
that change their activity in an extracellular pH-dependent 
manner. Such receptors are called proton-sensing receptors 
since their conformational change and thus altered activity 
state is contingent on proton-binding. Whilst physiologi-
cal fluctuations in extracellular pH bring about changes in 
proton-sensing receptor activity (patterns) that are required 
to allow physiological process to go ahead (or do not result 
in activation of proton-sensing receptors, thus effectively 
going about unnoticed by the surrounding cells), atypical 
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proton-sensing receptor activation can be argued to be part 
of pathologies. In fact, it tends to exacerbate disease progres-
sion and symptoms, and in some cases even be a (leading) 
cause of the pathology.

Research into proton-sensing receptors has increased 
dramatically over the past 25 years, though it is still modest 
compared to other fields with an annual maximum (to date) 
of 58 publications in 2021 (PubMed search using the key 
word “proton sensing receptor”). Whilst virtually all proteins 
exhibit allosteric pH sensitivity, proton-sensing receptors are 
activated by extracellular protons and broadly fall into two 
categories: G protein coupled receptors (GPCRs) and ion 
channels. The emphasis of this review will be on GPCRs that 
are activated by extracellular protons because, in 2020 alone, 
these receptors accounted for 62.5% of all publications on 
proton-sensing receptors. This review adopts the view taken 
by Imenez Silva and Wagner and considers GPCRs that are 
activated (as opposed to allosterically modulated) by pro-
tons as proton-activated rather than proton-sensitive recep-
tors [25]. These proton-activated GPCRs, whose activation 
state is, by definition, dependent on extracellular pH, will be 
abbreviated with the acronym pHR.

pHRs are class A GPCRs that consist of three members, 
G protein coupled receptor 4 (GPR4), T cell death-asso-
ciated gene 8 (TDAG8, aka GPR65) and ovarian cancer 
G-protein coupled receptor 1 (OGR1, aka GPR68) [25]. 
They are all at least partially active at pH 7.4 [25], sug-
gesting a basal level of activity even in tissues and cells 
that do not require pH fluctuations for their normal function. 
Importantly, OGR1 has been shown to be co-activated by 
protons and actin polymerisation state of the cells in which 
it is expressed. Hence, an increase in proton concentration is 
not necessarily sufficient to activate this receptor, but both a 
certain extracellular proton concentration as well as a certain 
level of actin polymerisation need to be achieved for OGR1 
to be active [90]. This may have important implications for 
our understanding of its physiological (and pathological) 
roles, as discussed below.

Careful monitoring of extracellular pH is likely impor-
tant for any cell, given the powerful modulatory impact that 
protons can have on protein structure and hence function. 
Furthermore, protons are metabolites that can be extruded 
from cells, for example in a bid to maintain intracellular 
pH at a desired level. pHRs may therefore also play a role 
in sensing overall health and viability of cells and tissues 
whose function does not depend on or is accompanied by 
physiological fluctuations in extracellular pH.

There have been numerous excellent reviews on pHRs in 
recent years [23, 25, 81], which is why this review will focus on 
papers published from 2020 onwards. It will consider notable 
developments in our understanding of physiological and 
pathological roles for pHRs in a tissue- or process-dependent 
manner. The acronyms OGR1, GPR4 and TDAG8 will be used 

throughout this review, even when the original publication uses 
GPR68 (for OGR1) and/or TDAG8 (for GPR65).

Nervous system

Measurements of extracellular pH in the human brain are 
difficult to obtain and most techniques yield values that have 
been averaged over space and time, and which therefore do 
not account for acute fluctuations in small and limited areas 
such as the synaptic cleft. The picture is further complicated 
because the extracellular fluid of the brain is composed of 
cerebrospinal fluid (largely derived from the choroid plexus) 
and interstitial fluid of the brain parenchyma. It is therefore 
likely that different areas of the brain experience different 
extracellular pH values. Nonetheless, it is established that 
extracellular brain pH is lower than blood pH (e.g. [35]), 
which means that pHRs are likely to be active at all times 
and that their activity pattern has the potential to mirror and 
reflect brain activity. Unsurprisingly, therefore, research into 
roles for pHRs in the brain under physiological and patho-
logical conditions has increased over the past few years.

OGR1 is found on all neuronal compartments including 
most spines [95], and it is involved in learning and memory 
formation including emotional learning [95]. Furthermore, 
OGR1 has been implicated in hypothalamic regulation of 
food intake where inhibition of OGR1 function has orexi-
genic effects, suggesting that OGR1 promotes food intake 
[59]. Both findings would suggest a life-promoting role for 
OGR1 in the CNS under physiological conditions.

In cortical slice preparations from OGR1, GPR4 or 
TDAG8 knock-out (ko) mice, acidotic conditions only 
caused significantly increased neuronal damage in OGR1 ko-
derived slices compared to slice preparations from wildtype 
(wt) mice, suggesting a unique role for OGR1 in ischaemia 
[89]. Hence, OGR1 has been investigated in the context of 
stroke by surgically inducing transient middle cerebral artery 
occlusion (tMCAO) in male wt and OGR1 ko mice [87, 89, 
103]. In OGR1-deficient mice, the infarction volume was 
significantly increased and motor performance was more 
compromised than in wt mice [89]. A follow-on study then 
revealed a correlation between OGR1 deletion and infarction 
size under conditions of mild but not severe haemorrhagic 
transformation (a break-down of the blood brain barrier 
that exacerbates the effect of ischaemia) [87]. Finally, RNA 
sequencing found that transient stroke induction increased 
expression levels of GPR4 and TDAG8 but not OGR1, and 
OGR1 deletion did not affect expression levels of GPR4 or 
TDAG8 under control or ischaemic conditions, suggesting 
that OGR1 does not affect GPR4 or TDAG8 expression 
[103]. Results from this study also indicate that OGR1 may 
affect chaperone function and play a role in haemoglobin-
mediated antioxidant mechanisms [103].
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In a murine ischaemia reperfusion model using functional 
TDAG8 ko by employing a transposon approach to disrupt 
TDAG8 function rather than deleting the TDAG8 gene, 
resulted in increased motor deficits and larger infarction 
size compared to wt mice [72]. Importantly, this study com-
pared TDAG8 expression levels in the ipsi- and contralat-
eral brain hemispheres and found a significant increase in 
TDAG8 expression in wt mice following tMCAO, likely due 
to increased microglia activity in the injured hemisphere, 
whilst expression levels of OGR1 and GPR4 remained 
unchanged [72]. Moreover, neither OGR1 nor GPR4 ko 
influenced infarction size compared to wt [72], which is in 
contradiction to results obtained in [89] and [87]. Future 
studies will have to address this apparent conflict, espe-
cially given that genetic background and method of induc-
ing ischaemia were basically identical. Notably, the TDAG8 
study focussed on male mice only and hence sex-dependent 
differences may be important here.

TDAG8 has also been implicated in neuroprotective 
effects of delayed chronic acid postconditioning (DCAP) 
following a stroke event [19]. In a photothrombotic stroke 
model, TDAG8 ko resulted in higher levels of pro-inflamma-
tory microglia and reduced expression of markers for axon 
growth and regeneration despite DCAP, pointing towards 
an involvement of TDAG8 in at least some of the beneficial 
treatment outcomes following DCAP [19].

Finally, TDAG8 has been implicated in freezing 
responses in mice [91]. In contrast to wt, TDAG8 ko mice 
showed decreased freezing and increased explorative 
behaviour in response to low pH stimulation of the 
subfornical organ area, suggesting that TDAG8 may play 
a role in anxiety [91]. The subfornical organ is part of the 
circumventricular organs that lack a blood brain barrier. 
Hence, the subfornical organ is emerging as another central 
structure that elicits behaviours in response to blood pH 
changes, in addition to GPR4-expressing retrotrapezoid 
nuclei that promote breathing under conditions of acidosis 
[38]. This freezing response reflects sympathetic activation 
and may provide a time window in which an individual 
can assess a perceived threat before deciding on the most 
appropriate response [49].

GPR4 has been linked to two neurodegenerative condi-
tions, Alzheimer’s disease and Parkinson’s disease. The link to 
Alzheimer’s disease was established in a transcriptome-wide 
association study that identified GPR4 as a potential predictive 
biomarker, most likely due to pro-inflammatory effects on the 
immune system [102]. In a chemically induced mouse model 
of Parkinson’s disease, lack of GPR4 expression was shown to 
be neuroprotective in dopaminergic neurons, and pharmaco-
logical inhibition of GPR4 not only reduced neuronal apopto-
sis but also improved motor and memory functions [21]. Two 
additional studies link GPR4 to neuronal apoptosis [20, 94]; 
however, it remains unclear whether and how results obtained 

in these studies that were conducted on isolated cells translate 
into tissue context. Hence, GPR4 may be involved in neurode-
generative processes and its activity appears to be detrimental 
to neuronal health.

Vasculature

One of the many distinct roles of vasculature is to ensure 
that carbon dioxide  (CO2), a metabolic byproduct, can be 
transported from tissues to the lung where it can be elimi-
nated from the human body.  CO2 also combines with water 
to produce carbonic acid, and excess acid can be removed 
from the blood stream in the kidneys through excretion of 
protons into the urine. Lack of removal of  CO2 due to com-
promised, insufficient or inadequate vascularisation there-
fore can result in acidification of affected tissues. Unsur-
prisingly, a role for pHRs, specifically GPR4, in regulating 
vessel growth has been described [26, 67, 92]. Intriguing 
new regulatory insight has now been gained regarding 
GPR4, which was shown to be associated with GPCR asso-
ciated sorting protein 1 (GPRASP1) [45]. Loss-of-function 
mutations in GPRASP1 led to activation of GPR4 signalling 
pathways, which in turn promoted aberrant vessel formation 
[45]. Furthermore, loss of GPR4 function has been linked 
to lack of acidosis-mediated growth of new blood vessels 
in patients with coronary artery disease, who display lower 
GPR4 expression levels in endothelial progenitor cells than 
healthy individuals [60].

Whilst an essential component of all blood vessels is 
endothelia, other cell types are also involved in regulating 
vasculature function. Smooth muscle cells surround 
endothelial cells (except in capillaries and pericytic 
venules) and their function is to increase or decrease 
the vessel diameter which in turn adjusts blood pressure 
to the desired level. TDAG8 has been implicated in 
atherosclerosis, a condition in which the blood vessel 
diameter is obstructed by plaque build-up. TDAG8 is 
proposed to accelerate progression of this condition in 
a high-fat diet fed ApoE mouse model, by promoting 
vascular smooth muscle cell proliferation and migration. 
The latter effects were also observed in cultures of human 
vascular smooth muscle cells [9], suggesting that results 
obtained for TDAG8 in the murine atherosclerosis model 
may be translatable into humans.

Lung

Proper lung function requires airways to be covered by sur-
face liquid, the pH of which is tightly regulated in healthy 
individuals and shows aberrant values in several diseases 
including cystic fibrosis and bronchitis [99]. Consider-
able progress has been made in our understanding of PARs 
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in lung function. Expression of TDAG8 and OGR1 was 
increased in a murine model of allergic asthma in bronchial 
smooth muscle cells. Intriguingly, this study also found that 
human bronchial smooth muscle cells only express TDAG8 
and OGR1 whilst murine bronchial smooth muscle cells also 
express GPR4 [10]. Furthermore, TDAG8 was shown to be 
upregulated in lung fibroblasts from patients with idiopathic 
pulmonary fibrosis compared to healthy individuals, whilst 
OGR1 was downregulated in these cells, and GPR4 was not 
detected in primary human lung fibroblasts [65], hence mir-
roring expression patterns of bronchial smooth muscle cells.

OGR1 has been implicated in allergen-induced hyper-
responsiveness and idiopathic pulmonary fibrosis [3, 10, 56, 
57] and was reported to be pro-inflammatory [29, 56]. It is 
expressed in lung fibroblasts [3, 56] and bronchial smooth 
muscle cells [10, 29]. Whilst OGR1 expression is increased 
in bronchial smooth muscle cells in an ovalbumin antigen-
challenged murine asthma model [10], it is downregulated in 
fibroblasts from patients with idiopathic pulmonary fibrosis 
[65], which promotes myofibroblast differentiation, suggest-
ing that OGR1 has anti-fibrotic effects in lung fibroblasts 
[56]. Since inflammation and fibrosis go hand in hand, this 
makes it difficult to assess the impact of targeting OGR1 in 
inflammatory lung disease, especially since the pro-inflam-
matory and anti-fibrotic pathways have both been suggested 
to be mediated by Gs-dependent signalling pathways follow-
ing OGR1 stimulation [3, 57].

Importantly, OGR1 is overexpressed in bronchial smooth 
muscle cells from asthma patients, and mechanical stress 
typical of that occurring in lung tissue during asthma can 
induce disease-specific gene expression patterns [32]. Given 
that OGR1 is a coincidence detector for both extracellular 
protons and mechanical stress [90] and that OGR1 can 
induce gene transcription (e.g. [22]), there may be a pivotal 
role for OGR1 in translating mechanical stresses into gene 
expression, thus exacerbating the disease and its progres-
sion. However, as always, the fact that expression levels of 
a particular protein are changed in certain pathologies is 
not evidence for critical involvement of this protein in the 
development and/or progression of that pathology. Only 
functional studies can reveal causal links between proteins 
and physiological and/or pathological processes.

Skin

Skin pH is well-known to be acidic, and skin pathologies also 
impact skin pH [27]. Alkaline skin pH is observed in chronic 
wounds that are slow to heal, suggesting a link between pH 
and ability for skin to repair itself [28]. A role for pHRs in 
skin is somewhat under-researched but there has been some 
progress over the past few years, in particular for TDAG8. 
 CO2 was shown to inhibit UVB-induced inflammatory 

responses in human neonatal foreskin cells (HEKn cell line) 
by activating TDAG8, suggesting an anti-inflammatory role 
for TDAG8 [74]. Furthermore, of all pHRs, TDAG8 is most 
highly expressed in these cells, with OGR1 having 0.5 expres-
sion of TDAG8 expression at mRNA level and GPR4 levels 
being negligible [74]. TDAG8 ko then confirmed its involve-
ment in combating skin inflammation though it was not shown 
whether or not percutaneous administration of  CO2 resulted in 
pH changes [74]. A follow-on report then found that mild pH 
decreases due to transcutaneous administration of  CO2 gave 
rise to increased extracellular matrix production as well as 
increased TGF-β1 production in normal human dermal fibro-
blasts that was at least in part due to activation of both GPR4 
and TDAG8, suggesting a role for these receptors in wound 
repair [84].

Additionally, genome-wide association studies show that 
TDAG8 intronic SNP rs8005161 variant, which shows reduced 
TDAG8 signalling ability, has a strong association with atopic 
dermatitis (in addition to inflammatory bowel diseases and 
asthma) [93]. Genome-wide TDAG8 ko in an MC903 model 
of atopic dermatitis resulted in stronger disease progression 
than in wt, and  CD4+ T cells from rs8005161 heterozygous 
humans had higher TNFα levels than individuals with refer-
ence TDAG8 sequence [93]. All these findings support a role 
for TDAG8 in reducing skin inflammation and—together with 
GPR4—in promoting skin repair.

Kidneys

One of the many functions of kidneys is blood pH homeosta-
sis, and deviations in blood pH from the physiological range 
can affect kidney functions. Metabolic acidosis is accom-
panied by increased urinary  Ca2+ excretion [1]. OGR1 has 
now been shown to be responsible for this by upregulat-
ing the function of NHE3, a sodium proton exchanger [24]. 
This is the first report providing a mechanistic explanation 
for acidosis-mediated renal  Ca2+ excretion [24]. Subse-
quent experiments demonstrated that, in an oxalate-induced 
murine model of crystalline nephropathy, OGR1 (but not 
GPR4) deficiency led to impaired kidney function due to 
increased  Ca2+ oxalate deposition in kidney tubules [97]. 
Hence, OGR1 is emerging as an important player in renal 
disease and a promising target for treating unwanted effects 
of metabolic acidosis.

Gastrointestinal (GI) tract

An intriguing feature of the GI tract is that its pH milieu 
changes from oral to aboral and from its lumen through the 
mucosal layer [4], with the largest variability observed in 
the small and large intestine, where pH values can range 
between pH 5 and pH 8 [34]. The intestinal pH is influenced 
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by its microbiota [75], which in term is affected by lifestyle 
choices, disease burden and genetic factors of an individual 
[62]. A role for pHRs in inflammatory bowel diseases is well 
established [23, 25, 100], and the past few years have seen 
several papers investigating a role for TDAG8 in GI func-
tion. One study compared three mouse strains for differences 
in genes that may confer susceptibility to chemically induced 
colitis and identified TDAG8 as one of five lead candidates 
[40]. Consistent with TDAG8 polymorphisms influencing 
propensity for GI disease, the TDAG8 I231L polymorphism, 
which reduces TDAG8 cAMP signalling ability [7], ren-
ders mice more susceptible to bacteria-induced colitis by 
increasing pro-inflammatory behaviour of immune cells and 
hence promoting intestinal inflammation [7, 52]. Intrigu-
ingly, TDAG8 expression is reduced in macrophages derived 
from monocytes isolated from patients with acute monocytic 
leukaemia, and this appears to negatively influence bacterial 
phagocytosis by these cells [52].

Furthermore, TDAG8 appears to play a role in regulating 
the gut microbiome since intestinal epithelial cell-specific 
deletion of TDAG8 abolished homeostatic antimicrobial pro-
grams from these cells, thus rendering mice more prone to 
colitis [58]. Finally, TDAG8 ko not only increased intestinal 
inflammation and fibrosis in a chemically induced mouse 
model but also the chances of developing colorectal can-
cer [51]. All these findings suggest that functional TDAG8 
promotes gut health. Yet, one study found that TDAG8 has 
the potential to enhance gut inflammation by promoting 
differentiation of  CD4+ cells into T helper 1 and T helper 
17 cells [46]. Hence, TDAG8 has been allocated pro- and 
anti-inflammatory properties in the GI tract. However, it 
is important to consider that genome-wide knock out of 
TDAG8 or TDAG8 polymorphisms that reduce its signalling 
ability impact all cells in the affected individual. Hence, the 
pro-inflammatory effect of TDAG8 should be as compro-
mised as its anti-inflammatory effects. The fact that under 
conditions of genome-wideTDAG8 impairment individuals 
are still more prone to developing inflammatory intestinal 
diseases may suggest that compromised T helper cell dif-
ferentiation does not play a key role in GI tract inflammation 
development and progression.

Musculoskeletal system

The impact of pHRs in inflammatory diseases other than 
bowel diseases has also been addressed in the past few years, 
and in particular the musculoskeletal system has received 
increased attention. Both osteoarthritis (which arises from 
mechanical wear and tear of joints) and rheumatoid arthritis 
(an autoimmune disease of joints) have been investigated 
with a view to pHR involvement.

GPR4 is an emergent player in osteoarthritis. It is over-
expressed in cartilage of patients affected by this condition 
[43] and upregulated the expression of matrix-degrading 
enzymes and inflammatory factors [43, 47]. Moreover, over-
expression of GPR4 accelerated the development of post-
traumatic and ageing-associated osteoarthritis in mice whilst 
GPR4 ko had the opposite effect [43]. Consistent with a role 
for GPR4 in the development of osteoarthritis is the find-
ing that advanced glycation end products, which have been 
linked to osteoarthritis [73], increase GPR4 expression [47].

Furthermore, consistent with a role for GPR4 in use-
dependent degeneration in the musculoskeletal system, it has 
been implicated in intervertebral disc degeneration, where 
it is proposed to both progress the disease and contribute to 
the ensuing pain [44]. Finally, GPR4 has also been linked 
to rheumatoid arthritis by affecting synovial mast cell func-
tion [42].

In addition to GPR4, TDAG8 has also been implicated in 
rheumatoid arthritis. In a chemically induced mouse model 
of rheumatoid arthritis, TDAG8 deletion was shown to pre-
vent an increase in satellite glial cells and pro-inflammatory 
macrophages observed in the rheumatoid arthritis mouse 
model and appeared to reduce mechanical and thermal 
hyperalgesia and arthritis scores in the affected animals [16]. 
A subsequent study went on to demonstrate that the chemi-
cally induced rheumatoid arthritis mouse model exhibited 
alterations in their gut microbiome that could be reversed 
by TDAG8 inhibition [58]. This finding is very intriguing 
because pathological alterations of the gut microbiome have 
been implicated in immune system dysfunction and could 
therefore be a contributing factor to rheumatoid arthritis 
[13]. It is also the second study to imply TDAG8 in regulat-
ing the gut microbiome. Finally, genome-wide association 
studies have linked TDAG8 with ankylosing spondylitis, a 
type of arthritis that causes inflammation of the joints and 
ligaments of predominantly the spine [2, 15].

Taken together, all results so far point towards a disease-
promoting role of GPR4 and TDAG8 in the musculoskeletal 
system.

Whether or not OGR1 plays a role in bone metabolism 
remains one of the enduring mysteries. Different studies 
using genome-wide OGR1 knockout yield distinct results. 
However, one inherent issue with genome-wide knock-
outs is the potential for compensation, which is generally 
not addressed. Another issue is that effects of loss of gene 
expression may only become apparent when a particular tis-
sue is stressed, either by unfavourable physiological condi-
tions or by inducing pathologies. In this context, two studies 
that address potential roles for OGR1 in bone tissue using 
cell-type specific knockout approaches are of interest. Using 
an osteoclast-specific OGR1 knockout mouse, the impact 
of OGR1 deletion from these cells on bone metabolism 
was investigated under physiological conditions and in the 



450 Pflügers Archiv - European Journal of Physiology (2024) 476:445–455

presence of metabolic acidosis. This study demonstrated 
that OGR1 is essential for osteoclast function and in par-
ticular for bone resorption [36]. These findings were then 
extended in a second study that sought to address potential 
differences in roles for OGR1 in osteoclasts and osteoblasts. 
Using osteoblast- and osteoclast-specific OGR1 knockout, 
this study demonstrated that OGR1 stimulation in osteo-
blasts and osteoclasts resulted in cell-type specific responses 
under conditions of metabolic acidosis (osteoblasts: cox2, 
fgf23 gene expression; osteoclasts: mineralisation and alka-
line phosphatase activity as well as osteoclast-specific gene 
expression) that both contribute different aspects to OGR1-
mediated bone loss under conditions of metabolic acidosis 
[37].

Cancer

Cancer was one of the first diseases in which pHRs were 
implicated. Many different cancers have been investigated in 
different experimental models, from isolated cells to whole 
animal experiments, and it remains difficult to find patterns 
in the role that pHRs play in cancer development and pro-
gression. Research published in the past few years adds to 
the complicated picture. Several studies have investigated 
OGR1 in cancer, specifically in pancreatic, breast, ovar-
ian, skin, liver, head and neck, colorectal and oesophageal 
cancer [5, 6, 14, 18, 30, 33, 48, 54, 63, 77, 78, 88, 96, 98, 
101], ranging from pure expression (e.g. [5, 48]) to func-
tional studies in cells (e.g. [77, 96, 98]) and/or mice (e.g. 
[6, 54, 98]). As before, results do not seem to show any 
clear patterns: OGR1 was found to be involved in processes 
that promote or interfere with cancer progression [6, 14, 
17, 30, 54, 63, 77, 78]. Discrepancies may arise because 
some studies address a role for OGR1 in the host (tissue) 
whilst others look at OGR1 roles in cells making up the 
tumour tissue. A further complication could arise from the 
fact that OGR1 may act in a sex-dependent manner. Mela-
noma growth in response to injecting the murine melanoma 
cell line B16F10 into wildtype and OGR1 ko mice of both 
sexes resulted in reduced tumour growth only in male but 
not female OGR1 ko mice [98]. This was then shown to be 
a consequence of reduced immune cell infiltration in the ko 
male animals [98]. Importantly, results using the same cell 
line and male only mice with a different background had pre-
viously shown that OGR1 ko mice exhibit reduced tumour 
growth due to impaired immune cell function in the host 
animals [6]. In contrast, a study using only female mice and 
the squamous carcinoma cell line 7 (a murine oral cancer 
cell line) found that OGR1 supported cancer progression 
by inhibiting immune cell function [54]. Specifically, it was 
shown that OGR1 (and TDAG8) increased expression of 
programmed cell death protein 1, which anergises T cells, 

thus preventing an immune response and enabling cancer 
growth and progression [54].

There is one important development that has the potential 
to affect many distinct cancers. Whole genome sequencing 
identified 51 rare variant carriers that were significantly 
associated with peripheral neuropathy, a common side 
effect of chemotherapy [31]. Of these, two C-terminal OGR1 
variants were shown to be a risk factor for chemotherapy-
induced peripheral neuropathy, possibly due to alterations in 
arrestin binding and subsequent aberrant activation of OGR1 
in so-called PEP1 neurons, a subgroup of C-fibre nocicep-
tors that express a specific subset of proteins and play a 
key role in pain sensation [31]. This is a significant finding 
because it may enable the identification of patients who are 
more likely to develop neuropathies as well as open up the 
possibility of treating neuropathies in patients by developing 
pharmaceutical inhibitors of this OGR1 variant.

Reproduction

Exciting discoveries have been made in relation of pHR 
involvement in reproduction, an area of research that has 
received very little attention to date. pHRs have now been 
implicated at different levels of the regulation of reproduction, 
from regulation of sex hormone release to placenta function.

GPR4 appears to be involved in hormone release from 
the anterior pituitary. Proton-mediated GPR4 activation in 
a pituitary cell line was shown to increased growth hormone 
and prolactin secretion [55], whilst a transcriptome analysis 
of gonadotropin releasing hormone (GnRH) neurons isolated 
from mice at different stages of their oestrous cycle showed 
a significant downregulation of GPR4 during the first half 
of the reproductive cycle [86]. These findings are intrigu-
ing since GnRH and prolactin have opposite effects on the 
release of luteinizing hormone from the anterior pituitary, 
which is essential for triggering ovulation in cyclic ovulators 
such as humans. These studies suggest that GPR4 activity 
could inhibit luteinizing hormone release from the pituitary, 
thus preventing ovulation.

Two other studies have investigated a role for GPR4 in 
trophoblasts and find that GPR4 expression was upregu-
lated in preeclampsia (PE) placentas compared to healthy 
placentas [64, 66]. This may be a consequence of hypoxic 
and acidic conditions [66] that are characteristic for PE 
placentas [68]. GPR4 inhibited proliferation and migration 
of a trophoblast cell line [64] though given its role in ves-
sel growth, a more pertinent role for GPR4 may lie in the 
abnormal vessel formation observed in PE placentas [68]. 
Given that preeclampsia occurs in 8% of all pregnancies 
with potentially devastating consequences, it seems that 
genetic variants of GPR4 are worthwhile studying in the 
context of preeclampsia.
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GPR4 is not the only pHR that has been implicated in 
placental function. TDAG8 was shown to inhibit trophoblast 
cell adhesion, invasion and growth under acidic conditions, 
suggesting that activation of TDAG8 reduces chances of suc-
cessful implantation of the conceptus [50]. Consistent with 
this, TDAG8 was more highly expressed in villous tissue 
during early pregnancy loss [50]. Finally, TDAG8 is one of 
18 candidate genes in chicken that regulate egg production 
[8]. All these findings suggest that pHRs may have important 
roles to play in various aspects of reproductive function.

Open questions and outstanding issues

There are a number of important and pertinent open ques-
tions and outstanding issues regarding pHRs, many of which 
have already been raised and will therefore not be repeated 
here [25, 81].

One additional exciting question is whether pHRs influ-
ence their own and/or each other’s activity. pHRs can change 
extracellular pH by affecting proton transport across mem-
branes (e.g. [11, 53]). Hence, they have the capacity to self-
regulate and regulate each other. The extent to which this 
happens and whether this affects physiological function and/
or disease progression remains unexplored but may have 
important therapeutic implications.

OGR1 is particularly interesting in this context because 
it requires both an increase in extracellular proton concen-
tration and a certain level of cellular actin polymerisation 
to be active [90]. pHR activation can not only alter extra-
cellular pH but also affect the polymerisation state of the 
actin cytoskeleton of cells directly, by inducing stress fibre 
formation (e.g. [50, 85]), and indirectly, by changing the 
extracellular matrix composition (e.g. [43, 47, 84]). The 
extracellular matrix in turn affects the actin polymerisation 
state of surrounding cells since cells change their shape to 
accommodate altered mechanical properties of their sur-
roundings [12]. Crucially, changes in extracellular matrix 
composition, like changes in extracellular pH, accompany 
virtually all pathologies [23, 41]. Hence, signalling through 
OGR1 can change either when extracellular pH changes or 
when the extracellular matrix changes. Hence, OGR1 is pre-
disposed to measure pathological tissue changes, since its 
activity increases with extracellular acidification and matrix 
stiffening. This would in turn suggest that, conceivably, low 
OGR1 signalling activity is a sign of healthy cells and tis-
sues and that OGR1 may have a surveillance role.

To date, OGR1 is the only pHR for which a natural human 
functional ko has been shown to be causal for a pathology, 
amelogenesis imperfecta. The link between OGR1 and aber-
rant enamel formation was first established in 2016 [61] 
when three families with amelogenesis imperfecta type IIA6 
(i.e. amelogenesis imperfecta caused by hypomineralisation) 

were shown to have homozygous genetic variants of OGR1 
that resulted in loss of function of OGR1 protein. Impor-
tantly, no other abnormalities were reported [61]. More 
recently, a new family has been identified with a homozy-
gous frameshift mutation in OGR1, resulting in a truncated 
OGR1 protein, and again only amelogenesis imperfecta is 
reported [76], and a whole genome sequencing study inves-
tigating natural human kos identified an individual who 
was homozygous for the already reported nonsense variant 
NM_003485.3:c.1006G > T of OGR1 [82].

Intriguingly, however, a different genome-wide association 
study looking into causes for osteoporosis identified OGR1 
as a gene that is “associated with … Mendelian diseases 
with high impact on bone strength, or associated with bone 
mineral density or fracture risk …” [69]. An individual with 
a heterozygous OGR1 exonic deletion was identified, who 
was described as healthy but having suffered a “vertebral 
fracture during light physical activity” [69]. This study 
is a first correlation between OGR1 loss-of-function and 
osteoporosis in humans, and it ties in very nicely with the 
studies investigating impact of osteoclast- and osteoblast-
specific OGR1 knockout discussed above [36, 37]. However, 
neither OGR1 ko mice nor human individuals with functional 
deletion of OGR1 have been reported to have defects in bone 
mineralisation. The main difference here is the allelic extent 
of the OGR1 deletion, which is heterozygous in the case of 
the individual with osteoporosis [69] and homozygous in the 
other cases. Hence, it may be that OGR1 expression relative 
to other proteins is important in bone metabolism, and that 
homozygous, but not heterozygous, loss of function can be 
compensated for in bone. Whether enamel formation was also 
affected in the heterozygous individual is unclear since the 
state of teeth was unreported [69]. It is therefore worthwhile 
investigating whether heterozygous and homozygous OGR1 
loss affect physiological processes differently.

Since loss of function of OGR1 does not appear to inter-
fere with normal body functions (apart from enamel miner-
alisation, which is completed around age seven in humans), 
this makes OGR1 an excellent pharmaceutical target. Off-
target effects would be unlikely or only minor so that only 
few side effects would be expected when inhibiting or stim-
ulating OGR1 to suppress unwanted processes in affected 
cells and tissues.

Finally, it is worth noting that the terminology around 
proton-sensing needs clarification. As stated above, the 
function of any protein is affected by pH because its confor-
mation is in part dependent on hydrogen bonding. Hence, 
it would be helpful to introduce a set of conditions under 
which a protein is considered activated (rather than allos-
terically modulated) by protons. These conditions could 
include the presence of His residues that are demonstrated 
to respond to (extracellular) protons and whose elimina-
tion therefore impacts activation of the receptor. Another 
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criterion could be a low proton concentration requirement 
for activation, to ensure specificity of the response. However, 
problems will arise from these definitions since His residues 
are not the only amino acids capable of proton-sensing (see 
[70]), and because the function of some proton sensors may 
be to report only extreme pH values rather than relatively 
small fluctuations.

pHRs are starting to receive the attention that they 
deserve. They are a fascinating group of receptors whose 
potential is only just being discovered, and the coming years 
will see a great expansion of our knowledge of these recep-
tors and their biological roles.
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