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Abstract
The transport of bicarbonate across the enterocyte cell membrane regulates the intracellular as well as the luminal pH and is an 
essential part of directional fluid movement in the gut. Since the first description of “active” transport of  HCO3

− ions against a 
concentration gradient in the 1970s, the fundamental role of  HCO3

− transport for multiple intestinal functions has been recognized. 
The ion transport proteins have been identified and molecularly characterized, and knockout mouse models have given insight 
into their individual role in a variety of functions. This review describes the progress made in the last decade regarding novel 
techniques and new findings in the molecular regulation of intestinal  HCO3

− transport in the different segments of the gut. We 
discuss human diseases with defects in intestinal  HCO3

− secretion and potential treatment strategies to increase luminal alkalinity. 
In the last part of the review, the cellular and organismal mechanisms for acid/base sensing in the intestinal tract are highlighted.
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Abbreviations
AE2  Anion exchanger isoform 2
ASIC  Acid-sensitive ion channel
CA  Carbonic anhydrase
CF  Cystic fibrosis
CFTR  Cystic fibrosis transmembrane conductance 

regulator
CCD  Congenital chloride diarrhea
CLD  Chloride-losing diarrhea
DIDS  4,4′-Diisothiocyano-2,2′-stilbenedisulfonic acid
DRA  Downregulated in adenoma (SLC26A3)
ENaC  Epithelial sodium channel
GI  Gastrointestinal
GPCR  G-protein-coupled receptor
IBD  Inflammatory bowel disease
MCT1  Monocarboxylate transporter isoform 1
NBCe1  Electrogenic  Na+/HCO3

− cotransporter iso-
form 1

NBCn1  Electroneutral  Na+/HCO3
− cotransporter 

isoform 1
NHE  Sodium/proton exchanger
NKCC1  Na–K–Cl cotransporter
OSR1  Odd-skipped-related 1
sAC  Soluble adenylyl cyclase
SCFA  Short-chain fatty acids
SLC26  Solute carrier family 26
SPAK  Ste20-related proline alanine-rich kinase
sMCT1  Sodium-coupled monocarboxylate trans-

porter isoform 1
TASK  Two-pore domain potassium channel
TMEM16a  Transmembrane member 16A
TRP  Transient receptor potential cation channel
WNK  With no lysine kinase
wt  Wild type

Historical perspective

Scientists recognized more than a century ago that the 
gastric mucosa does secrete not just acidic but also alka-
line fluids, both of which could be stimulated [125]. The 
interrelatedness of high gastric acidity and a protective 
alkaline “Verdünnungsflüssigkeit,” an alkaline diluent, 
was also recognized and its origins were hotly debated 
at the beginning of the last century [14]. More detailed 
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studies of gastrointestinal bicarbonate transport started in 
the 1970s, after the development of a technique that com-
bined electrophysiological investigations of epithelia in 
Ussing chambers with pH–stat microtitration techniques 
to record the rates of proton or base output into the lumi-
nal fluid [46, 47, 62]. Another groundbreaking technique 
was the intestinal perfusion technique, which permitted 
the perfusion of a segment of the intestine with defined 
solutions via separate inflow and outflow catheters, iso-
lated from the other parts of the bowel by inflatable bal-
loons, both in laboratory animals and in man [48]. This 
technique allowed the formulation of the hypotheses that 
the human jejunum combines fluid absorption with bicar-
bonate absorption by a parallel operation of electroneu-
tral  Na+/H+ exchange with  Cl−/HCO3

− exchange in the 
brush border membrane [175]. Regional differences in the 
ratios of the activities of the two types of exchangers could 
explain proton secretion in the jejunum, in which the rate 
of  Na+/H+ exchange exceeds that of  Cl−/HCO3

− exchange, 
and bicarbonate secretion in the ileum, in which the rate 
of  Cl−/HCO3

− exchange exceeds that of rate of  Na+/H+ 
exchange [10].

A similar technique was used to study the response of the 
human duodenum upon contact of the mucosa with luminal 
acid. It was shown that patients who had developed duodenal 
ulcer disease displayed a reduced  HCO3

− secretory response 
to a contact of the duodenal mucosa with acid, even after 
the ulcers had been healed by pharmacological inhibition 
of gastric acid secretion [74]. Although these results were 
under debate at a time when it became clear that a very high 
percentage of patients with duodenal ulcer disease harbored 
a chronic infection with Helicobacter pylori in their antrum 
[69, 109], it is now clear that the findings were likely due to 
the gastric metaplasia in the duodenum [16]. This metaplasia 
is caused by chronic hypersecretion of gastric acid, second-
ary to the destruction of the complex and finely regulated 
feedback inhibition of high gastric acidity in the antrum by 
the Helicobacter pylori–induced low-grade antral inflam-
mation [16]. Indeed, the same group showed a decade later 
that after pH eradication and mucosal healing, the duodenal 
 HCO3

− secretory response to acid was normalized in former 
duodenal ulcer patients [63].

In the last century, the study of molecular mechanisms 
and physiological regulation of intestinal  HCO3

− secre-
tion focused on the upper gastrointestinal (GI) tract, while 
mechanisms of fluid secretion and absorption were studied 
in the lower GI tract. Only a few studies addressed the 
role of an alkaline micromilieu for the restitution of the 
colonic mucosa after injury [45, 130]. Therefore, it was 
not realized for a long time that the rates of  HCO3

− output 
in the colon are far higher than those in the duodenum 
[12]. The physiological significance of these high colonic 
 HCO3

− output rates is not limited to  Cl− reabsorption from 

the lumen but also plays an important role in the luminal 
pH-maintenance during bacterial fermentation, because 
the generated fermentation products (short-chain fatty 
acids (SCFA), ammonia/ammonium ions, and carbonic 
acid/CO2) need to be neutralized [11, 163]. Because of 
the decreasing incidence and better manageability of gas-
tric and duodenal ulcer disease, in parallel to an increased 
incidence and severity, as well as more treatment resist-
ance, of inflammatory bowel diseases (IBD), the interest 
has recently shifted and more studies on alkaline output 
and the involved transport and regulatory mechanisms 
have been performed in the ileocolon, which will be dis-
cussed later. Another area of intense research became the 
defective  HCO3

− transport in the epithelia of patients with 
cystic fibrosis [98].

Classic techniques and recent technological 
advances for the study of intestinal  HCO3

− 
transport

More than 10 years ago, a review has carefully described the 
techniques which were then available to measure cystic fibro-
sis transmembrane conductance regulator (CFTR)–depend-
ent  HCO3

− transport, which was the most interesting aspect 
of alkaline output for scientists involved in research related 
to cystic fibrosis [72]. Another review published at that time 
addressed the novel techniques that had increased the arma-
mentarium to study  HCO3

− transport in transgenic mice. 
Major advances have been made in the assessment of sur-
face epithelial function using video-imaging and two-photon 
techniques to assess the intracellular and juxtamucosal pH in 
anesthetized rodents and isolated tissues using dye methods, 
and combine microelectrode techniques, laser Doppler flow, 
and optical techniques to simultaneously assess blood flow, 
pH, and mucus layer buildup. In addition, the techniques 
to determine alkalinization rates of different segments of 
the murine gastrointestinal tract and of organs that secrete 
alkaline fluids into the digestive tract have become more 
sophisticated, in part due to miniaturization of equipment to 
keep a perfect systemic blood pressure and acid/base control 
in anesthetized transgenic mice [144].

During the last decade, three novel developments have 
revolutionized the way how we are studying  HCO3

− trans-
port processes: The first is an ability to preserve the intes-
tinal stem cells that are present in the cryptal region, to 
generate intestinal epithelium from these stem cells, and 
to differentiate the epithelium in a segmental organotypic 
fashion [34, 140, 169]. The second is the elucidation of all 
components of the “gene scissor” CRISPR-Cas9 prokaryote 
immune defense system [83] and to optimize its applicabil-
ity for the use in mammalian cells [31, 84, 107]. The third 
technical advance is the ability to continuously measure the 
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pH directly at the apical surface of a cell monolayer and thus 
investigate acid/base flux via the apical membrane (although 
flux rates cannot be exactly quantitated) [135]. A combina-
tion of these techniques may allow a much better delineation 
of the importance, transport mode, and regulation of the 
individual  HCO3

− transporters expressed along the crypt-
villus axis, particularly in the human GI tract.

Current understanding of bicarbonate 
transport in the different segments 
of the gastrointestinal tract

To the knowledge of the authors, no previously unrecog-
nized  HCO3

− transporters have been described in intesti-
nal tissues in the last decade. Since a number of excellent 
recent reviews have recently been published that describe 
the transport mode of individual  HCO3

− transport proteins 
in detail, we will focus on the physiological significance of 
individual  HCO3

− transporters, on their interplay with other 
transporters, and on intervention strategies to improve patho-
logical  HCO3

− transport dysfunction. Because of the multi-
tude of investigations, this review will focus on information 
obtained in mice and where available in human tissue.

Basal luminal alkalinization rates in the different 
intestinal segments

The alkalinization rates of different segments of isolated and 
chambered murine intestinal mucosa are very different, with 
particularly low rates in the jejunum and proximal colon and 
particularly high rates in the cecum and mid-distal colon 
[89, 196]. The same pattern is observed when the different 
segments are perfused with an unbuffered electrolyte solu-
tion of neutral pH in anesthetized mice. In the distal intes-
tine, the basal alkalinization rates in the different segments 
correspond well with the expression levels of the luminal 
 Cl−/HCO3

− exchanger Slc26a3 [165] and are only minimally 
reduced in the absence of CFTR [196]. In the proximal intes-
tine, basal alkalinization rates are 3–fourfold lower than in 
the mid-distal intestine and are reduced in the absence of 
CFTR [146, 196], Slc26a3 (DRA) [157, 182], and to a lesser 
extent of Slc26a6 (PAT-1) [185]. These results are similar 
in vitro and in vivo, and they only apply for a situation with 
unbuffered luminal saline or Ringer’s solution.

Effect of nutrients on basal alkalinization

The situation changes when nutrients are present in the lumi-
nal perfusate. The addition of glucose to the luminal bath 
of chambered small intestine results not only in a strong 
increase of  Na+ and fluid absorption but also in a decrease in 

alkalinization rates in vitro [146], as well as a decrease in the 
jejunal pH-microclimate in vivo. Among other mechanisms, 
the intracellular utilization of glucose generates acidic moie-
ties that leave the cell via luminal  Na+/H+ exchangers [33, 
102]. The addition of short-chain fatty acids (SCFA), which 
are important nutrients for the colonocyte, to the colonic 
mucosa is associated with an increase in  HCO3

− output [7, 
176]. The explanations for this phenomenon varied widely, 
including the postulation of a SCFA/HCO3

− exchanger in 
the luminal membrane [178]. We now know that mono-
carboxylate transporters which are either proton coupled 
(MCT1) or sodium coupled (SMCT1) are expressed in the 
apical membranes of colonocytes and that SCFA can also 
transverse the apical membrane in a non-dissociated form 
when the luminal pH is low [160]. The cotransport of SCFA 
with  H+ via MCT1 (likely the predominant transport protein 
for SCFA [115]) will result in a removal of protons from 
the lumen, which is equivalent with an alkalinization. In 
addition, MCT1-mediated SCFA absorption will acidify the 
colonocyte, resulting in a stimulation of the apical NHE3 
and thus  Na+ and fluid absorption. However, because SCFA 
anions are cotransported with protons via MCT1 and MCT4 
in the basolateral membrane into the blood stream, the apical 
proton recycling via NHE3 does not match the rate of proton 
disappearance from the lumen, and a luminal alkalinization 
is observed. In line with the predominant site of microbi-
ome-mediated SCFA production in the proximal colon, both 
MCT1 and NHE3 are strongly expressed in the mucosa of 
the proximal colon, both in mice and humans, whereas 
Slc26a3 is weakly expressed [145, 160]. This results in low 
alkalinization rates in the presence of luminal saline but high 
rates in the presence of luminal SCFA anions [178]. These 
are just two examples how the presence of nutrients in the 
lumen may completely change the alkalinization rates both 
in vivo and in vitro.

Secretagogue‑stimulated intestinal  HCO3
− secretion

In the intestine, the CFTR anion channel remains the 
most important, if not the only, conductive pathway for 
 HCO3

− exit under agonist-stimulated conditions. If heter-
ologously expressed, the  HCO3

− conductivity of CFTR is 
only approximately one-fifth of that for  Cl− under maxi-
mal electrochemical gradients [126, 168]. Recent data 
have shown how the CFTR channel may switch from a 
predominantly  Cl−-conductive to an  HCO3

−-conductive 
channel through the activation of WNK (with-no-lysine) 
kinase and the phosphorylation of the downstream kinases 
SPAK and OSR1 in pancreatic ducts cells [123]. WNK 
signaling is activated when the intracellular  Cl− concen-
tration falls to low levels [91]. In the distal pancreatic 
ducts of guinea pigs (and possibly humans as well), this 
is a likely scenario during secretin-stimulated pancreatic 
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juice secretion, because the ductal cells express low lev-
els of basolateral NKCC1, which is a major  Cl− importer 
during stimulated anion secretion [200]. In murine duode-
num, phosphorylated SPAK and OSR1 are very abundant 
[196], which may be one reason why, even without exog-
enous stimulation, the percentage of  HCO3

− secretion that 
is dependent on luminal  Cl− (and therefore presumably 
mediated by  Cl−/HCO3

− exchange) is much lower than in 
the murine colon, and the percentage that is dependent on 
CFTR expression is high [155]. A capsule pH-metry in CF 
patients displayed a strong difference in the neutralization 
capacity of the proximal but not the distal intestine [53]. 
A CFTR-targeted therapy significantly improved the acid-
neutralizing capacity of the proximal intestine [54]. The 
regulation of the CFTR channel by hormonal, neural, and 
luminal agonists and endogenous inhibitors is complex 
and not the topic of this review.

Another mode of CFTR-dependent, agonist-stimulated 
 HCO3

− secretion is a functional interaction between the 
agonist-activated CFTR  Cl− conductance and an api-
cal  Cl−/HCO3

− exchanger, which recycles the luminal 
 Cl− in exchange for  HCO3

− [44, 71, 101]. For this cou-
pling mechanism to become operative, the two transport-
ers need to be coexpressed in the apical membrane of the 
same cell type, a requirement for apical  Cl− recycling, 
rather than rapid import of  Cl− via the basolateral mem-
brane needs to exist, and an ample supply of  HCO3

− to the 
cell needs to be present. All these requirements appear to 
be met in the proximal pancreatic duct cells, which coex-
press CFTR and SLC26a6 in the apical membrane [76, 
186] and have high expression levels for the basolateral 
 Na+/HCO3

− cotransporter NBCe1 [201] and low expres-
sion of the basolateral AE2, which would export  HCO3

− in 
exchange for  Cl− and therefore lower the availability of 
intracellular  HCO3

− for apical exchange [133].
In the intestine, the situation is different, because the 

expression of CFTR and NKCC1 is strongly crypt pre-
dominant, and that of NBCe1 and the apical SLC26 anion 
exchangers is villus/surface predominant [78, 79, 152, 
185]. An area of overlapping expression along the crypt/
villus (surface) axis is necessary for CFTR-dependent 
 HCO3

− secretion via apical  Cl− recycling. Because of 
insecurities with antibody specificity, technical issues, 
and species differences, the literature is equivocal regard-
ing the expression pattern and the relevance for agonist-
induced  HCO3

− secretion for either of the three SLC26 
members expressed in the duodenum, namely, SLC26A3 
(DRA), SLC26A6 (PAT-1), and SLC26A9 as well as of 
CFTR. While most publications report a crucial role for a 
functional CFTR in cAMP-, cGMP-, and  Ca2+-dependent 
stimulation of duodenal  HCO3

− secretion in vitro [30, 64, 
146] and in vivo [64, 65, 155], some reports found only 

a minor or minimal role [139, 149]. The reason for these 
discrepancies might be due to technical issues. There is 
indeed an agonist-mediated pathway of luminal alkalini-
zation that is independent of CFTR expression and oper-
ates in murine as well as human intestine: The agonist-
induced inhibition of apical proton extrusion mechanisms 
such as the  Na+/H+ exchanger isoform NHE3, which is 
highly expressed in the brush border membrane of most 
intestinal segments except the distal colon, or of the dis-
tally expressed colonic  H+/K+ ATPase will result in a 
CFTR-independent increase in luminal alkalinization in 
the presence of a highly expressed and cAMP-insensitive 
SLC26A3 [145, 166]. It has also been suggested that 
SLC26A3 may traffic to the brush border membrane in a 
cAMP-dependent but CFTR-independent fashion [172].

Role of SLC26A6 in intestinal  HCO3
− secretion

Slc26a6 is strongly expressed in the proximal intestinal tract, 
with a gradient towards much lower expression in the colon 
[184]. If the expression levels are compared in the same 
sample of laser-dissected mucosal cells, mRNA expres-
sion of Slc26a6 is somewhat higher in the adult murine 
villous area from the duodenum than that of SLC26a3 
expression, and both transporters are expressed in a villous-
predominant fashion [103]. In the suckling murine intesti-
nal mucosa, Slc26a6 mRNA expression levels were lower 
than for Slc26a3 in all small intestinal segments [205]. 
Slc26a6 is discussed as an electrogenic transporter, export-
ing two  HCO3

− ions and importing one  Cl− ion [75, 82, 
119, 131]. Other reports find evidence for an electroneutral 
 Cl−/HCO3

− exchange [4, 26, 183].
When slc26a6−/− and WT chambered duodenal mucosae 

were compared in Ussing chambers and the  HCO3
− secre-

tion rate into a  CO2/HCO3
− free luminal electrolyte solu-

tion was measured (which offers a perfect driving force for 
a 2  HCO3

−
out/1  Cl−

in exchange), a contribution of Slc26a6 
for luminal alkalinization was observed, but the relative 
importance was less than expected, since the majority of 
basal and cAMP-dependent  HCO3

− secretion was pre-
served in the absence of Slc26a6 expression [173, 185]. 
Interestingly, Slc26a6 is involved in fluid absorption in 
isolated jejunal mucosa [148] and in anesthetized mice 
[156, 195]. In addition, Slc26a6 was shown to mediate 
 HCO3

− import during PEPT-1 mediated enterocyte acidi-
fication [153]. Another study demonstrated that the role 
Slc26a6 in basal and stimulated duodenal  HCO3

− secre-
tion was dependent on the systemic acid/base status of 
the anesthetized mice [155]. Therefore, while the role of 
Slc26a6 in small intestinal oxalate secretion is well estab-
lished [49, 50, 94], its exact physiological function as an 
intestinal  HCO3

− transporter is less clear.
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Role of SLC26A3 in intestinal  HCO3
− transport

SLC26A3 was one of the first members of the gene family 
whose molecular sequence was identified during a screening 
of a subtraction cDNA library constructed from colonic nor-
mal epithelium and adenomatous and cancer tissue and named 
downregulated in adenoma (DRA) [142]. A group of Finnish 
geneticists had narrowed the chromosomal location of the pre-
sumed gene that was defective in the rare hereditary chloride-
losing diarrhea (CLD) to a narrow locus [90], and this enabled 
them to rapidly identify the DRA gene locus as the locus for 
all mutations know so far known in CLD [66]. This quickly 
established its potential role as the gene encoding for a luminal 
 Cl−/HCO3

− exchanger, hypothesized to be defective in CLD 
[174]. However, it took several more years until the transporter 
was functionally identified to be a bona fide  Cl−/HCO3

− trans-
porter [100, 113, 114]. Its stoichiometry is still debated: Some 
reports suggest an electrogenic 2  Cl−i/1  HCO3

−
o exchange 

[151], while others suggest an electroneutral exchange [5, 100].
A slc26a3−/− mouse model was established, which reca-

pitulated many features of CLD in humans [143]. Mas-
sive hyperaldosteronism and its sequelae were reported, 
namely, the strong upregulation of the  Na+/H+ exchanger 
NHE3 and the epithelial  Na+ channel ENaC in the colon of 
slc26a3−/− mice. However, this rescue mechanism may be 
less effective than originally thought, because the mid-distal 
colon of these mice did not absorb fluid [198]. The likely rea-
son is that the acidic luminal and stool pH of these mice [92] 
inhibits apical  Na+

i/H+
o exchange due to the high affinity of 

protons to the external binding site of the transporter. When 
the luminal pH is buffered to 7.4, the slc26a3−/− mid-distal 
colon is able to absorb fluid at approx. 50% of the rate seen in 
WT littermates ([166] and unpublished observations).

The slc26a3−/− mice have extremely low colonic luminal 
alkalinization rates [198] and a very acidic surface pH and 
develop a mild distal colitis over time [92]. This feature is 
interesting because CLD patients also have a high incidence 
of inflammatory bowel disease [117, 189]. A search for poten-
tial underlying mechanisms included a lack of an adherent 
mucus layer [198] as well as alterations in mucus formation 
and release [92], a dysbiotic microbiome [92, 93], a recipro-
cal cellular expression and action of TNFα and SLC26A3 
[41], and disturbances of tight junction regulation [97, 207]. 
An interesting recent finding was a very strong upregulation 
of the expression of several classes of antimicrobial peptides in 
the slc26a3−/− colonic mucosa, which may in part explain the 
surprisingly mild inflammation in the slc26a3−/− colon, which 
occurs late in life, despite mucus abnormalities and dysbiosis 
from shortly after birth [92, 93]. However, a recent investiga-
tion reported a proinflammatory effect of an overproduction of 
Reg3, one of the antimicrobial proteins strongly upregulated 
in slc26a3−/− colonic mucosa [93], via a reduction in Ente-
rococcus species that were protective in C57B/6 mice against 

DSS-induced colonic inflammation [80]. Enterococcus species 
were not abundant, and not different between genotypes, in 
the microbiota in our slc26a3−/− and WT mouse cohort (also 
C57B/6 background). This demonstrates how mouse house-
associated factors may impact the outcome of research related to 
the highly complex pathophysiology of intestinal inflammation.

Effect of basolateral  HCO3
− transporting 

mechanisms on basal and stimulated alkalinization 
rates

Early studies in chambered amphibian duodenum noticed that 
luminal alkalinization required the presence of physiological con-
centrations of  Na+ and  HCO3

− in the serosal bath [154]. In the 
rabbit duodenum, neither the specific inhibition of the basolat-
eral  Na+/H+ exchanger NHE1 nor of a  Na+/HCO3

− cotransporter 
had a significant effect on basal or stimulated  HCO3

− secre-
tion, but the combined inhibition of both pathways effectively 
reduced the alkalinization rate [77]. The contribution of the 
electroneutral  Na+/HCO3

− cotransporter NBCn1 (SLC4A7) to 
duodenal  HCO3

− secretion was confirmed by studying cAMP-
dependent duodenal  HCO3

− secretion in vitro [24] as well as 
luminal acid–induced  HCO3

− secretory response in vivo [158] 
in slc4a7−/− mice. NBCn1 is relatively DIDS-insensitive [27, 
132] and was found to be expressed in the murine and human 
duodenum [13, 32]. To study an involvement of the electrogenic 
NBCe1 in intestinal  HCO3

− secretion proved very difficult, 
because the mice die during weaning [52]. Although they dis-
play reduced  HCO3

− import into enterocytes in response to nutri-
ent- or electrolyte transport–induced acid loads and a decreased 
basal alkalinization rate in the small, but not the large intestine, 
as well as a reduced anion and fluid secretory response to cAMP 
stimulation, the cAMP-induced  HCO3

− secretory response was 
not different between the small intestinal and colonic mucosa of 
the suckling slc4a4−/− and WT littermates [205]. It was noticed 
in that study that the  HCO3

− uptake rates into the surface colo-
nocytes, but not into colonocytes in the cryptal base, were sig-
nificantly reduced in slc4a4−/− compared to WT mice, whereas 
the opposite was found for surface and cryptal base colonocytes 
of slc4a7−/− mice. This suggested that there may a differential 
expression of the two NBCs along the cryptal axis and therefore 
a differential effect of their deletion on basal vs cAMP-induced 
 HCO3

− secretion. A recent study in human colonic organoids 
confirmed the strong expression of the electroneutral NBCn1, 
together with other components of the anion secretory machin-
ery, namely, CFTR, NKCC1, TMEM16a, and AE2, in the non-
differentiated, proliferative enteroids, with a strong downregula-
tion of their expression during differentiation [136]. In contrast, 
the electrogenic NBCe1 was upregulated during differentiation. 
This also makes sense functionally, because a cAMP-induced 
opening of basolateral  K+ channels, which increases the elec-
trochemical gradient for apical anion secretion, at the same 
time, reduces the electrochemical gradient for NBCe1-mediated 
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 HCO3
− import, while it does not affect that for NBCn1. Thus, 

NBCn1 may play an important role for agonist-induced CFTR-
dependent  HCO3

− secretion and may augment the NKCC1-inde-
pendent AE2-dependent  Cl− import into colonic crypts [141]. 
In contrast, the cellular acidification mediated by  H+-coupled 
dipeptide, by  H+-coupled short-chain fatty acid anion import, or 
by apical  Cl−/HCO3

− exchange in the surface cells either depo-
larizes the membrane potential or does not affect it, permitting 
electrogenic 1  Na+/2  HCO3

− import (Fig. 1).

Strategies to influence luminal alkalinity 
in patients with defects in intestinal  HCO3

− 
transport

Cystic fibrosis

Patients with cystic fibrosis have traditionally been treated 
with laxatives to prevent recurrent obstructive episodes 
and with agents that inhibit acid secretion to mitigate 
reflux symptoms and optimize digestion. These suboptimal 

strategies to improve CF-associated intestinal disease are 
now being successfully replaced by CFTR targeted ther-
apy which improves not only the pulmonary but also the 
intestinal symptoms [54, 88, 112]. Preliminary results sug-
gest that this improvement is not reached via an alteration 
of the dysbiotic gut microbiota seen in patients with CF 
[108]. Recent studies in CFTR null mice aimed to explore 
strategies to increase the alkalinity and fluidity in an intes-
tine that expressed no functional CFTR protein at all and 
therefore is not a candidate for CFTR-targeted therapy. 
Indeed, several FDA-approved agents were identified that 
increased the luminal alkalinity and reduced small and in 
part also large intestinal fluid absorptive rate [166, 167] or 
reduced the CF-associated delayed small intestinal transit 
time [111]. Other experimental drugs also carry the poten-
tial to increase gut fluidity, but have not yet been tested in 
CFTR-deficient mice [28, 59]. Two agents, one of them 
a TMEM16a/SLC26A3 inhibitor [181] and the other one 
an intestine-specific, selective, and FDA-approved NHE3 
inhibitor [167], were able to significantly reduce the fre-
quency of intestinal obstructions in CFTR null mice. Both 

Fig. 1  Differential expression of the acid/base transporters 
along the human colonic cryptal axis. As deduced from stud-
ies in proliferating and differentiated human colonic enteroids, 
in  situ hybridization, immunohistochemical staining, and fluo-
rometric  pHi-measurements, the acid/base transporters are dif-
ferentially expressed along the cryptal axis. The ion transport 
machinery for electrogenic anion secretion, with the lead com-
ponents CFTR and NKCC1, is coexpressed with AE2, NBCn1, 

and TMEM16a in the highly proliferative lower cryptal region 
and strongly downregulated during enterocyte differentiation. In 
contrast, the acid/base transporters SLC26a3, NHE3, and NBCe1 
and the colonic  H+/K+ ATPase, together with the ENaC subunits, 
are upregulated in the differentiated absorptive enterocytes. The 
intracellular pH is more acidic in the cryptal region than in the 
surface enterocytes. The full names of the abbreviations can be 
found in the manuscript
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agents also reduced the mucus impactions in the intestine 
The latter study demonstrated a reversal of several of the 
“CF gut” features within the short 3-week period of the 
application period, including a decrease in cryptal hyper-
proliferation, mucus accumulation, and mucosal mast 
cell number. Figure 2 schematically explains the mode of 
action of NHE3 and SLC26A3/A6 inhibitors may increase 
luminal fluidity in the CF gut. Only NHE3 inhibition will 
result in both an increase in fluidity and alkalinity in the 
CF gut. These studies raise hope that pharmacological 
therapies will soon be available to ameliorate the intestinal 
symptoms in all patients with cystic fibrosis.

Congenital chloride diarrhea CCD (chloride‑losing 
diarrhea, CLD)

Early intestinal perfusion studies in CLD patients local-
ized the defective transport to the ileocolon [174]. There-
fore, compensatory mechanisms, such as the expression 
of SLC26a6, passive  Cl− absorption, or the predominant 
role of nutrient-coupled electrolyte absorptive mecha-
nisms, may mitigate the effects of a defective SLC26a3 
in the small intestine of patients with CLD. In the large 
intestine, alternative fluid and electrolyte uptake systems 
are available, but their efficacy may be compromised by 

the low luminal pH [92, 93, 198] and by the dysbiosis 
with a strong reduction of SCFA-producing bacteria [93]. 
Indeed, the luminal application of SCFA in the concentra-
tions that are present in the healthy colon increased the 
alkaline output into the luminal solution in isolated cham-
bered slc26a3−/− mucosa [60], and it resulted in a strong 
increase in fluid absorptive rates in the slc26a3−/− cecum 
and colon in anesthetized mice (Tan, Qinghai. 2021, 
unpublished observations). However, an oral applica-
tion of butyrate salt or of tributyrin did not significantly 
increase the cecal and colonic SCFA levels and did not 
reverse the diarrhea in slc26a3−/− mice (Ye, Zhenghao 
and Kini, Archana, unpublished observations), demon-
strating that even high doses of butyrate, taken orally, 
are completely absorbed in the small intestine of mice. 
Consistent with these observations, the oral application 
of butyrate to patients did not result in an improvement 
of the CLD biomarkers [190].

However, one pediatric center was able to apply sur-
prisingly high doses of oral butyrate to CLD children 
and normalize their stool and serum parameters [18, 40]. 
Since oral butyrate salts firstly smell very bad even in a 
microencapsulated form, need to be applied in high doses, 
and are absorbed in the small intestine, the challenge will 
be to deliver the high millimolar concentrations required 

Fig. 2  Schematic diagram of pharmacological strategies to increase 
the luminal fluidity in the CFTR-deficient intestine. In the left panel, 
the situation in the villous/surface enterocytes of the CFTR-deficient 
intestine is depicted. The ongoing absorptive activity of the absorp-
tive enterocytes, together with the lack of fluid/alkaline secretion 
from the CFTR-expressing cryptal region, results in an acidic, dehy-
drated gut lumen. Left-middle panel: Oral inhibition of the apical 
Na/H exchanger isoform NHE3 with the intestine-specific selective 

NHE3 inhibitor tenapanor results in an increase in luminal fluidity 
and alkalinity in the intestine of CFTR null or F508del mutant mice 
[141, 149]. Middle-right and right panel: The inhibitors for SLC26A3 
[112] and SLCA6 [108] are also able to inhibit fluid absorption and 
may be beneficial to alleviate constipation and obstructive episodes in 
patients with CF. They are not expected to increase the luminal alka-
linity, however. The full names for the abbreviations can be found in 
the manuscript
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for effective SCFA-dependent fluid absorption to the 
colon. Possibly, a strategy will be developed to replenish 
the missing colonic microbiota and thereby enhance local 
production of SCFA in the colon of CLD patients.

Inflammatory bowel disease

Many studies have been conducted to explore the elec-
trolyte transport abnormalities in the inflamed mucosa 
of IBD patients of animal models of intestinal inflamma-
tion, summarized in reviews that have been published in 
the last decades [6, 106, 110, 147, 204]. One prominent 
feature of IBD is a strong decrease in the expression of 
SCL26a3 in the inflamed colonic epithelium, resulting 
not only in reduced electrolyte and fluid absorption but 
also in a reduction in luminal alkalinization [197]. How-
ever, the paracellular leakage of  HCO3

− through the tight 
junctional pathway with a loss of cation selectivity may 
offset the reduced SLC26A3-mediated luminal alkaliniza-
tion, in particular in the ileum and proximal colon, where 
SLC26A3 expression is much lower than in the mid-distal 
colon [86]. This may be a reason why pH capsule inves-
tigations of patients with IBD gave mixed results [118, 
127, 202]. Polymorphisms in SLC26A3 have been asso-
ciated with either an increased incidence of IBD [9, 51, 
150] or have been associated with response to therapy [8, 
17, 188]. Therefore, intense research has been ongoing 
to elucidate the potential role of SLC26A3 in mucosal 
protection, as mentioned above, and in the maintenance 
of barrier properties [19, 81]. The hope is to somehow 
restore Slc26a3 function in IBD [58, 128, 199]. How-
ever, recent evidence suggests that the downregulation 
of SLC26A3 observed in the inflamed mucosa of IBD 
patients is just one component of a dysregulated differen-
tiation process in the inflamed mucosa which prevents the 
full differentiation of absorptive enterocytes [116]. There-
fore, the only effective strategy to improve the expression 
and function of the absorptive ion transporters may be an 
effective anti-inflammatory treatment.

Acid/base sensing in the intestine

As already described in the previous chapters, luminal pH 
has to be tightly controlled to provide adequate defense 
of the intestinal epithelium against luminal acid and to 
maintain homeostasis. Therefore, the concentration of 
acid/base equivalents is tightly monitored by a sophisti-
cated network of proton- and bicarbonate-sensing proteins, 
which are situated in epithelial cells and sensory neurons 
along the gastrointestinal tract. These acid/base-sensing 
proteins comprise acid-sensitive ion channels (ASICs) and 

transient receptor potential cation channels (TRPs) [67, 
124, 164, 206]. But also, other acid/base-sensitive pro-
teins like soluble adenylyl cyclase (sAC), two-pore domain 
potassium (TASK) channels,  H+-sensing G-protein-cou-
pled receptors (GPCRs), P2X receptors, and inward recti-
fier potassium (Kir) channels could play a role in gastro-
intestinal pH sensing [55, 57, 68, 70]. Besides pH-sensing 
proteins, efficient acid/base sensing also requires acid/base 
transporters and carbonic anhydrases (CAs) [3].

Luminal acid/base sensing requires catalytic 
function of carbonic anhydrases

CAs catalyze the reversible hydration of  CO2 to 
 HCO3

− and  H+. Due to the fast interconversion,  CO2, 
 HCO3

−, and  H+ form a “trinity,” which allows both  H+ 
and  HCO3

− sensors to monitor changes in pH, bicarbonate 
concentration, and  CO2 partial pressure at the same time.

A good example of how CAs, acid/base transporters, 
and acid receptors work together to monitor luminal pH is 
acid sensing by afferent neurons in the duodenum, as first 
proposed by Akiba and colleagues [2, 3] (Fig. 3): Luminal 
pH in the duodenum can rapidly change between 2 and 7, 
due to bursts of acid from the stomach. Therefore, the duo-
denal mucosa has to be able to rapidly adjust its defense 
mechanism against luminal acid. The acid is neutralized by 
 HCO3

−, which is secreted from duodenal epithelial cells 
by bicarbonate transporters from the SLC26 family and 
the cystic fibrosis transmembrane conductance regula-
tor (CFTR). In the mucous layer,  H+ and  HCO3

− react to 
 CO2, catalyzed by extracellular CAs, which are situated 
at the apical site of the membrane. The  CO2 diffuses from 
the mucus layer into the cell, where it is hydrated to  H+ 
and  HCO3

−, catalyzed by cytosolic CA. While  HCO3
− is 

again secreted at the apical site to support neutralization 
of luminal acid,  H+ is exported into the interstitial space 
via  Na+/H+ exchanger 1 (NHE1) at the basolateral site of 
the epithelial cell. The  H+ activates proton receptors, situ-
ated on adjacent neurons of afferent nerves, which in turn 
stimulate secretion of  HCO3

− and mucus to protect the 
mucosa from further acidosis. Through this cascade, lumi-
nal pH can be precisely monitored by neuronal acid sen-
sors, even if these nerve fibers have no direct access to the 
lumen [2, 3]. This hypothesis has been tested by assess-
ing the intracellular pH  (pHi) of the duodenal villi during 
acid exposure in vivo by two-photon microscopy in mice 
that were deficient for the major intracellular CA isoform 
in the duodenocytes, namely, CAII, and their WT litter-
mates [161]. The authors found that in WT mice, a 5-min 
exposure of the duodenal mucosa to a pH of 2.2 resulted 
in strong decrease of the duodenocyte  pHi in the villus tip 
and mid-villus region, which was strongly blunted in the 
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absence of CAII. In parallel, the acid-induced bicarbonate 
secretory response was virtually ablated in the CAII-defi-
cient duodenum, but only mildly reduced during perfusion 
with a membrane-impermeable CA inhibitor. Thus, the 
conduction of an “acid” signal through the duodenocyte to 
the acid-sensing receptors on neuronal structures requires 
both luminal and intracellular CAs. However, the CAII 
was not essential for the  HCO3

− stimulatory response of 
the epithelium to secretagogues such as forskolin or the 
stable PGE2 analogue 16,16,-dimethyl PGE2.

Role of acid‑sensing ion channels in gastrointestinal 
acid/base sensing

Acid sensing in afferent nerve fibers of the gastrointestinal 
tract is mainly mediated by the transient receptor potential 
cation channel subfamily V member 1 (TRPV1), also termed 
capsaicin receptor or vanilloid receptor 1. TRPV1 belongs 

to the transient receptor potential (TRP) channels. TRPs 
comprise six families, five of which (TRPV, TRPM, TRPA, 
TRPP, TRPC) are relevant for chemo-, thermo-, or mecha-
nosensation [29]. Out of these five subfamilies, only TRPV1 
has been attributed a function in gastrointestinal acid sens-
ing. TRPV1 is a non-selective cation channel with a high 
 Ca2+ permeability, but can also function as proton channel at 
low pH [61, 68]. The channel is opened at acidic pH values 
below 6; however, mild acidity can sensitize TRPV1 to other 
stimuli like heat [68, 85, 170].

Acid-induced secretion of bicarbonate in the duodenum 
can also be mediated by acid-sensitive ion channels (ASICs), 
which are expressed in intestinal epithelial cells [42, 208]. 
ASICs are proton-gated cation channels, which are activated 
by protonation of the extracellular loop and therefore serve 
as detectors for extracellular acidification [96, 180, 193]. 
ASICs have a high permeability for  Na+ ions; however, some 
isoforms also show substantial conductance for other cations 

Fig. 3  Acid sensing by afferent 
neurons in the duodenum is 
mediated by the collaboration 
between carbonic anhydrases, 
acid/base transporters, and 
acid receptors. Protons, which 
enter the mucus gel layer, are 
neutralized by  HCO3

−, which 
is exported from the duodenal 
mucosal cell via  Cl−/HCO3

− 
exchangers and CFTR. The 
reaction of  H+ and  HCO3

− to 
 CO2 is catalyzed by extracel-
lular CA.  CO2 diffuses into the 
cell, where it is again hydrated 
by intracellular CAs. While 
 HCO3

− is again exported on the 
apical side to neutralize acid, 
 H+ is exported from the cell on 
the basolateral side via NHE1. 
 H+ can then activate  H+ recep-
tors like TRPV1 on the surface 
of neurons of afferent nerves, to 
induce neuronal activity. Figure 
modified from [2, 68]
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like  Ca2+ or  K+ [68, 208]. In mammals, ASICs are encoded 
by three different genes (ACCN1, ACCN2, and ACCN3). 
These three genes produce the five protein isoforms ASIC1a, 
ASIC1b, ASIC2b, and ASIC3 by alternative splicing, which 
can form homo- and heterodimers [68]. ASICs have been 
attributed various physiological and pathophysiological 
functions, including gastrointestinal mechanoreception 
[121], learning and memory [191, 203], olfaction [177], 
pain sensation and fear [38, 39, 192], heart failure [56], 
and neuronal disorders like epilepsy, mood disorders, and 
Alzheimer’8520/s disease [162]. Furthermore, ASICs play a 
role in gastrointestinal pain, gastroesophageal reflux disease, 
and gastric cancer, where expression of ASIC1a correlates 
with cancer progression and formation of metastasis [25, 
208]. In the duodenum, ASIC1a is thought to be involved in 
the regulation of bicarbonate secretion [42]: By performing 
measurements in mouse duodenal epithelial cells and the 
human intestinal epithelial cell line HT29, the authors could 
show that extracellular acidification induces an increase in 
intracellular  Ca2+ concentration and secretion of  HCO3

−. 
Both  Ca2+ increase and  HCO3

− secretion were inhibited by 
inhibition of ASICs with amiloride. From this, it was con-
cluded that ASICs, expressed in duodenal epithelial cells, 
can induce duodenal  HCO3

− secretion via a  Ca2+-dependent 
pathway [42].

Proton‑sensing G‑protein coupled receptors 
in the gastrointestinal tract and their role in IBD

Proton-sensing G-protein coupled receptors (GPRs) serve 
as detectors for extracellular acidification in almost every 
tissue.  H+-sensitive GPRs comprise of the four members 
GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 
(G2A) [104, 159]. GPR132, however, displays only weak 
proton-sensitivity and was not found to have pH-sensi-
tive functions [129]. GPR4 and GPR68 are ubiquitously 
expressed, including the GI tract, while expression of 
GPR65 is restricted to lymphoid tissue [159]. GPR4 and 
GPR65 have both been attributed functions in inflammatory 
bowel disease (IBD).

Inflammation promotes glycolytic energy production, 
which is attributed to the increased demand for energy 
by infiltrating immune cells and to local hypoxia of the 
mucosal tissue, which results in increased formation of 
lactate and protons [37, 95, 122]. The acidification acti-
vates GPR4 and GPR65 with severe consequences. Acti-
vation of GPR4 results in increased expression of vari-
ous inflammatory genes, including different chemokines 
and cytokines, adhesion molecules, and COX-2. Further-
more, it activated stress-response genes, such as ATF3 
and CHOP, and increased cell adhesion though the cAMP/
Epac pathway [23, 43]. Thereby, GPR4 can exacerbate 
inflammation, which results in a positive feedback loop 

that again activates GPR4 and drives further inflammation 
[187]. Indeed, it was shown that absence of GPR4 or phar-
macological inhibition attenuates colitis in an IBD mouse 
model, including less severe inflammation [137, 138]. It 
was therefore concluded that GPR4 might serve as a poten-
tial drug target for the treatment of IBD.

GPR68 does also play a role in IBD, mainly by regula-
tion of the intestinal barrier function [35, 36]. GPR68 is 
coupled via the G-protein  Gq11 and activates an intracel-
lular signaling cascade with phospholipase C (PLCβ), 
inositol phosphate 3 (IP3), elevation of  Ca2+, and extra-
cellular signal-regulated kinase (ERK) [104], but it was 
also shown to couple via Gα12/13 and the Rho pathway 
[36].

GPR68 was found to be increased in the mucosa of 
patients with IBD and inflamed segments showed higher 
abundance of GPR68 than uninflamed mucosa [37]. Short-
term expression of GPR68 is induced by the proinflamma-
tory cytokine TNF, which was also shown to function as a 
major mediator for IBD-associated inflammation. GPR68 
is expressed in endothelial cells, macrophages, granulo-
cytes, and fibroblasts. In fibroblasts, activation of GPR68 
by extraocular acidification induced formation of inositol 
phosphate, Rho activation, and formation of F-actin and 
stress fibers and does therefore increases epithelial bar-
rier function [36]. In IBD patients, expression of GPR68 
positively correlates with the expression of the profibrotic 
genes Vim, Col3a1, Tgfb1, and Ctgf and cellular deposition 
of collagen [73]. In the CaCo-2 cell line, an acidic pH shift 
from 7.8 to 6.6 improved barrier function and stimulated 
the reorganization of F-actin and formation of stress fib-
ers. Furthermore, acidic pH inhibited proliferation and cell 
migration within a wound healing assay [35]. It was also 
shown that GPR68 deficiency protects from inflammation 
in an IL-10 knockout mouse model of IBD [35]. GPR68 
also contributed a role in the regulation of ER stress via 
the IRE1α-JNK pathway, as well as blockage of late stage 
autophagy [105].

IBD is usually associated with local acidification which 
can result in severe alterations in epithelial barrier function. 
Therefore, it would seem that strengthening of intestinal 
barrier function should be beneficial. However, cell prolif-
eration and migration are required to regain homeostasis. 
Therefore, chronic activation of GPR68 could exacerbate 
tissue damage in IBD [36].

Soluble adenylate cyclase is a bicarbonate sensor 
in the gastrointestinal tract

A bona fide bicarbonate sensor, which is also expressed in 
the gastrointestinal tract, is soluble adenylyl cyclase (sAC). 
Adenylyl clyclases catalyze the conversion of ATP to AMP, 
which functions as second messenger, either by promoting 
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protein phosphorylation via cAMP-dependent protein kinase 
or by direct activation of cAMP-regulated proteins [134]. 
Mammals express ten isoforms of adenylyl clyclases. How-
ever, out of these ten isoforms, nine are membrane-bound and 
activated by the G protein α subunit; only the sAC isoform 
is directly activated by binding of  HCO3

− to the enzyme [55, 
87, 120, 179]. Human sAC has an  EC50 between 11 and 12 
mM for  HCO3

−, which is close to physiological  HCO3
− con-

centration and enables sAC to detect already small changes 
in intracellular  HCO3

− concentration [22, 87]. Therefore, 
sAC can serve as a key regulator for acid/base-depending 
cell signaling in various intracellular compartments, includ-
ing cytosolic microdomains and organelles like mitochondria 
and the nucleus [1, 209]. A recent study could demonstrate 
that sAC can regulate the cytosolic NADH/NAD+ redox state 
and is therefore involved in the bioenergetic switch between 
glycolysis and oxidative phosphorylation [21]. sAC was 
first found in the testis [15] but is ubiquitously expressed 
in mammalian tissue, including the intestine [67]. Intesti-
nal  HCO3

− sensing by sAC, however, has been primarily 
studied in teleost and cartilage fish: Marine fish, which live 
in a hyperosmotic environment, absorb water through their 
intestine to compensate for dehydration due to water loss 
across the gills. Water absorption is driven by absorption 
of  Na+ and  Cl− via Na–K-2Cl-Cotransporters (NKCC) and 
 Cl−/HCO3

− exchangers in the gastrointestinal tract. Water 
absorption, however, also requires the removal of divalent 
cations like  Ca2+ and  Mg2+ to further decrease osmotic pres-
sure. Removal of  Ca2+ and  Mg2+ is facilitated by  HCO3

−, 
which is secreted in exchange for  Cl− via an anion exchanger 
of the SLC26A6 family on the apical site of intestinal cells 
[99]. Additionally,  HCO3

− can be imported into the epithelial 
cell from the apical side via the  Na+/HCO3

− cotransporter 
NBCe1 [99] or luminal  CO2, which diffuses back into the cell 
and is converted to  HCO3

− and  H+ by intracellular carbonic 
anhydrase in the subapical region of the cytosol [171]. This 
results in extremely high luminal  HCO3

− concentrations of 
more than 100 mM. The resulting alkaline conditions induce 
precipitation of  Mg2+ and  Ca2+ ions as  MgCO3 and  CaCO3 
and reduce osmotic pressure to facilitate water absorption 
[171, 194]. Furthermore, the  HCO3

− activates sAC. Acti-
vated sAC activates the NKCC and triggers intestinal NaCl 
absorption [20, 194]. By this mechanism, sAC can locally 
modulate bicarbonate secretion and water absorption in the 
fish intestine [20, 194].

Outlook

Many of the reviewed publications have been performed 
in genetically altered mice. However, this has recently 
changed, with new studies focusing on  HCO3

− transport and 

the regulation of enterocyte pH in human intestinal two- or 
three-dimensional organoids. Although the in vitro differ-
entiation of intestinal organoids still needs refinement, it is 
anticipated that this technique, in combination with genetic 
manipulations and novel optical approaches to study acid/
base transport in cultured epithelia, will greatly enhance our 
understanding of the regulation and interplay of the different 
ion transport proteins and pH sensors along the crypt-villus/
surface axes of the different intestinal segments.
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