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Abstract
Metabolic acidosis is a frequent complication in non-transplant chronic kidney disease (CKD) and after kidney transplanta-
tion. It occurs when net endogenous acid production exceeds net acid excretion. While nephron loss with reduced ammoni-
agenesis is the main cause of acid retention in non-transplant CKD patients, additional pathophysiological mechanisms are 
likely inflicted in kidney transplant recipients. Functional tubular damage by calcineurin inhibitors seems to play a key role 
causing renal tubular acidosis. Notably, experimental and clinical studies over the past decades have provided evidence that 
metabolic acidosis may not only be a consequence of CKD but also a driver of disease. In metabolic acidosis, activation of 
hormonal systems and the complement system resulting in fibrosis have been described. Further studies of changes in renal 
metabolism will likely contribute to a deeper understanding of the pathophysiology of metabolic acidosis in CKD. While 
alkali supplementation in case of reduced serum bicarbonate < 22 mmol/l has been endorsed by CKD guidelines for many 
years to slow renal functional decline, among other considerations, beneficial effects and thresholds for treatment have lately 
been under intense debate. This review article discusses this topic in light of the most recent results of trials assessing the 
efficacy of dietary and pharmacological interventions in CKD and kidney transplant patients.
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Introduction

Living beings depend on tight acid–base regulation as 
numerous vital biological processes are affected by pH. 
Hydrogen ion concentration may influence protein confor-
mation, electrostatic properties, enzyme activity, protein 
interactions, and bioavailability of molecules. Additionally, 
protons are essential for the generation of adenosine triphos-
phate (ATP), the universal intracellular “energy provider.”

Kidneys and lungs are the main organs to guarantee 
acid–base homeostasis in a state of health, with the car-
bonic acid-bicarbonate buffer system being paramount. In 
this article, we follow the acid–base school of thought based 
on the Henderson-Hasselbalch equation, with bicarbonate 
being a key molecule in renal acid–base regulation, and not 
the Stewart`s approach in which protons are determined by 
strong ions [106]. Under normal conditions, the lungs elimi-
nate roughly 15 mol of  CO2 and the kidneys 1 mmol/kg of 
hydrogen ions per day, respectively [44]. These nonvolatile 
acids (fixed acids) are excreted by the kidneys into the urine 
as ammonium and titratable acids. They primarily reflect 
the dietary acid load and, to a lesser extent, endogenous 
production of organic acids. Kidneys counteract a decline in 
serum bicarbonate concentration via reabsorption of filtered 
bicarbonate, acid excretion, and regeneration of bicarbonate 
by ammoniagenesis [115].

Chronic kidney disease (CKD) is characterized by 
impaired kidney function and/or abnormal structure last-
ing longer than three months [129]. It is the most frequent 
underlying cause of metabolic acidosis (MA). MA is 
defined by a reduction in serum bicarbonate (often defined 
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as < 22 mmol/l) and blood pH. In CKD, acid retention ensues 
when net endogenous acid production (NEAP) exceeds net 
acid excretion (NAE). Consequently, acid accumulates 
in cells and interstitial space and may eventually cause a 
decline in serum bicarbonate [44, 50]. The prevalence of 
chronic MA in CKD increases with fall in glomerular filtra-
tion rate (GFR) and is associated with increased morbidity 
and mortality [61].

Several studies have shown that MA is associated with 
CKD progression and ESKD not only in non-transplant 
CKD but also after kidney transplantation (KTx) [20, 61, 94, 
124, 125]. ESKD comes with high morbidity and mortality. 
As its prevalence increases worldwide, therapeutic measures 
to slow renal functional decline are needed. Over the past 
two decades, a number of studies have been conducted to 
address the question of whether or not alkalinizing therapies 
are beneficial for kidney function. Based on the existing evi-
dence, the general treatment recommendations focusing on 
the preservation of kidney function are currently the subject 
of controversy.

A detailed discussion of renal acid–base regulation is 
beyond the scope of this review article and covered else-
where [44, 50, 115]. In addition to general aspects of MA in 
CKD, we will focus on the underlying mechanisms of MA in 
CKD and its effects on the kidney, and provide an overview 
of the current knowledge about the effect of alkali therapy 
on kidney function.

Renal acid–base regulation

Urinary NAE is the difference between the total acid excre-
tion (ammonium + titratable acids) and excreted bicarbonate. 
In the steady state, almost all of the filtered bicarbonate is 
reabsorbed along the nephron, with the majority (~ 70–80%) 
occurring the proximal tubule [44]. When urinary pH drops 
below 6.5, there is virtually no urinary bicarbonate excre-
tion [89].

Kidneys eliminate the daily load of non-volatile acids 
primarily by urinary ammonium excretion [44, 50, 89]. 
Ammonium is produced in proximal tubular (PT) cells by 
ammoniagenesis, as systemic glutamine is metabolized 
to glutamate and then to α-ketoglutarate, resulting in two 
bicarbonate and two ammonium ions. These newly generated 
bicarbonate molecules are transported across the basolateral 
cell membranes of PT cells to reach the systemic circulation. 
Ammonium enters the urinary space by apical transport in 
place of protons via  Na+/H+ exchanger 3 (NHE3) or by par-
allel transport of ammonia and protons via  H+-ATPase. In 
the thick ascending limb of the loop of Henle, apical entry 
into cells occur through the  Na+-K+-2Cl− cotransporter 
(NKCC2) before ammonium reaches the interstitial space 
primarily via the basolateral  Na+/H+ exchanger 4 (NHE4). 

Afterwards, it binds anionic sulfatides in the interstitial 
space in a reversible manner and in a concentration gradient 
from the inner medulla to the cortex [105]. In type A inter-
calated cells in the collecting duct, ammonia and protons 
again enter the urinary space where they form ammonium. 
The ammonia-specific transport proteins RhBG and RhCG 
(Rhesus glycoproteins) seem to play a major role in ammo-
nia transport in the collecting duct, and not mere diffusion 
as previously suspected [10, 18]. Efficient urinary proton 
elimination is due to the high pKa of 9.2 of the ammonia 
buffer system, which guarantees extensive protonation of 
ammonia in the relatively acidic urine, ensuring continuous 
proton secretion [44].

Urinary titratable acids originate mainly from the sys-
temic circulation and reach the tubular system by glomerular 
filtration [44]. Only a small amount derives from tubular 
secretion. Therefore, compensatory increase of titratable 
acids to raise net acid excretion is limited compared to 
adaptive changes in ammonium excretion [31]. Hydrogen 
phosphate is the most relevant titratable buffer with a pKa 
of 6.8, while uric acid (pKa 5.4) and creatinine (pKa 5.0) 
add to titratable acid excretion at more acidic urinary pH 
levels [89].

Metabolic acidosis as consequence of CKD

CKD and KTx seem to share some pathogenic mechanisms 
of MA, while others are specific to KTx and are therefore 
discussed separately.

Chronic kidney disease

Nephron loss is the hallmark of CKD progression and a 
consequence of interstitial fibrosis and tubular atrophy - 
the main histologic features of decline in renal mass (loss 
of functioning nephrons) for most underlying kidney dis-
eases. As CKD progresses, glutamine uptake in the PT cells 
declines and the renal interstitial concentration gradient 
decreases, resulting in reduced ammonia secretion in the 
collecting duct [13, 109]. In a CKD rat model, expression of 
key molecules of ammoniagenesis was reduced [16]. Conse-
quently, overall excretion of ammonia declines, but ammoni-
agenesis in the individual remaining nephrons increases as a 
compensatory mechanism [43, 64, 73, 75, 102].

Titratable acid excretion is usually maintained until 
CKD stage 5, with dihydrogen phosphate playing the key 
role, as higher serum phosphate levels cause increased glo-
merular phosphate filtration [73, 97]. In an analysis of the 
Chronic Renal Insufficiency Cohort Study (CRIC) cohort, 
MA and higher acid load were associated with increased 
phosphatemia and phosphaturia, but high NAE was not 
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associated with augmented phosphaturic hormones [57]. 
This is in contrast to prior studies providing evidence that 
phosphaturic hormones may play a relevant role in phospho-
rus homeostasis in MA. In vitro, it was demonstrated that 
MA directly increases fibroblast growth factor 23 (FGF23) 
mRNA and protein expression in mouse bone [62]. Parathy-
roid hormone (PTH) levels were reported to be augmented 
in cell cultures (HEK-293 cells and bovine parathyroid cells) 
as a result of altered pH-dependent responsiveness of the 
calcium-sensing receptor [17]. However, a rat MA model 
by ammonium-chloride ingestion demonstrated that chronic 
MA resulted in increased phosphaturia and reduced proxi-
mal tubular sodium-phosphate cotransporter activity, which 
was independent of PTH activity in chronic MA but shown 
to be attenuated by dietary phosphate intake [4].

Finally, hemoglobin like bicarbonate also serves as a 
buffer system in the blood, but is decreased in renal anemia 
because of impaired erythropoietin production in advanced 
CKD, which therefore may potentially contribute to the 
occurrence of MA.

As GFR declines, the prevalence of MA increases, rising 
from 7% in CKD stage 2 to 37% in CKD stage 4 in the CRIC 
study [90]. In CKD, a normal or increased (in advanced 
CKD) serum anion gap with normal serum chloride is typi-
cally found [128]. The increased anion gap is the result of 
the accumulation of titratable acids with declining GFR.

Subclinical metabolic acidosis

Current literature describes the concept of a so called “eubi-
carbonatemic metabolic acidosis,” a subclinical metabolic 
acidosis that appears in earlier CKD stages, preceding overt 
MA with slightly reduced serum bicarbonate but levels still 
in the normal range [3, 88, 123]. This concept assumes a 
continuum of MA development with various compensatory 
mechanisms attempting to maintain acid–base balance, 
rather than a clear threshold above which acid accumulates 
as indicated by the arbitrary definition of “normal” serum 
bicarbonate levels. In CKD, kidneys fail to keep up with 
the daily load of fixed acids deriving from metabolism. 
The acids originate in cells and have to pass the interstitial 
space and several layers of buffer and lead to a decline in 
serum bicarbonate in the blood, the fluid where we typi-
cally measure acid–base parameters. To capture an early 
state of subclinical acid accumulation, urinary measure-
ments other than a profound decline in serum bicarbonate 
may be more sensitive, such as urinary ammonium excre-
tion. It could be argued that these subclinical changes affect-
ing blood acid–base parameters to a lesser extent are there-
fore unlikely to be relevant for CKD progression or other 
clinical outcomes. However, several studies point into the 
direction that these early stages of acid retention may have 
clinical implications. In the NephroTest cohort, CKD stage 

1–4 patients with low ammonium excretion had a higher 
risk for ESKD even without overt MA [111]. In the Afri-
can American Study of Kidney Disease and Hypertension 
(AASK), a low urinary ammonium excretion in a state of 
normal serum bicarbonate indicating acid retention was 
associated with an increased risk for end-stage kidney dis-
ease (ESKD), death, and overt acidosis at 1 year compared 
to those with normal serum bicarbonate and higher ammo-
nium excretion [91]. The pH-sensitive metabolite citrate is 
another interesting candidate marker to identify early acid 
retention in subclinical MA [41]. The citrate cycle serves the 
oxidative degradation of organic substances for the purpose 
of energy production and the provision of intermediates for 
biosynthesis. Citrate metabolization leads to a net gain in 
bicarbonate. Citrate excretion declines in MA [54]. It has 
been demonstrated that urinary citrate-to-creatinine ratio is 
sensitive to changes in GFR, acid stress, and alkali therapy 
and that it might be superior to serum bicarbonate to detect 
acid accumulation [35]. An association of acid retention and 
the effect of reduction in acid load by fruit and vegetable diet 
on 8 h urinary citrate excretion was demonstrated in CKD 
stage 1 and 2 patients [40]. However, it has to be taken into 
account that citrate serves various physiologic functions and 
is not specific to acid–base regulation. Furthermore, the rel-
evance of hypocitraturia on clinical CKD outcomes remains 
to be examined. To date, the ideal metabolic parameter or 
panel of metabolites to capture an early state of acid reten-
tion have not been identified yet.

NEAP is a result of dietary intake of fixed acids (mainly 
animal protein) and alkali precursors (organic anions like 
citrate and acetate). The Western diet is rich in animal pro-
tein, including the sulfur-containing amino acids methionine 
and cysteine, which are metabolized to sulfuric acid and 
therefore represent an “acid stress”. In CKD, dietary acid 
load is a key factor that may lead to either subclinical or 
overt MA.

A better understanding of acid–base regulation in the 
kidney is needed to clarify whether subclinical acid accu-
mulation in renal tissue is as relevant a factor as is often 
discussed.

Kidney transplantation

Among KTx patients, the prevalence of MA is high, ranging 
from 12 to 58%, and it is seen at higher GFR levels com-
pared to non-transplant CKD patients [68]. This is likely 
due to additional pathophysiologic mechanisms after organ 
transplantation as depicted in Fig. 1. The typical presenta-
tion of MA in KTx also differs. It is commonly manifesting 
as renal tubular acidosis (RTA) with normal anion-gap and 
normal or high serum chloride levels [98]. Distal (classic) 
RTA type I and distal (hyperkalemic) RTA type IV are the 
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predominant forms. However, proximal RTA type II may 
be found early after KTx as a result of tubular damage and 
hyperparathyroidism. It usually resolves within the first 
months after KTx.

The use of calcineurin inhibitors (CNIs) as a mainstay 
of most immunosuppressive regimens seems to be a major 
cause of RTA occurrence after KTx. CNI treatment was 
associated with chronic MA in a number of studies [12, 
45, 81, 98, 126]. This seems to happen in a dose depend-
ent manner [59, 103]. Tubular function can be impaired 
by cyclosporine A and tacrolimus as was demonstrated in 
humans and animals [45, 70, 116]. In animal experiments, 
changes in electrolyte transport resulting in RTA were iden-
tified. Cyclosporine A seems to inhibit the peptidyl-prolyl 
cis–trans isomerase activity of cyclophilin in distal tubular 
type B intercalated cells and thereby reduces their cellular 
adaptation capacity [116]. Tacrolimus seems to affect the 
expression and distribution of key transport proteins like 
the anion exchanger AE1, sodium bicarbonate cotransporter 
NBCe1, and the vacuolar proton pump [70]. Furthermore, 
tacrolimus causes hypertension, hyperkalemia, and acidosis 
by activating the sodium chloride cotransporter (NCC) and 
its regulatory kinases [48].

After KTx, additional factors may contribute to MA. 
Non-anion gap MA can be provoked by drugs, in particu-
lar mycophenolate and antibiotics, that often cause diarrhea 

with ensuing fecal alkali loss. Whether immunological fac-
tors like rejection play a role is controversial as results are 
conflicting [94]. Hyperchloremic MA was suspected to be 
an early sign indicating rejection [7, 72]. For example, in 
Sjogren`s syndrome, autoantibodies can cross-react with 
intercalated cells and potentially cause RTA [29]. A simi-
lar immunologic mechanism was suspected for antibody 
mediated rejection episodes. However, in KTx, there is no 
clear association of acute rejection and RTA throughout the 
existing literature [12, 81, 98]. Reduced immunoactivity of 
the vacuolar proton pump (and AE1), initially attributed to 
rejection in a patient with MA, was also detected in another 
study independent of acute rejection [21, 86]. Donation and 
donor characteristics could potentially be relevant but evi-
dence is rather limited so far [94]. In a few studies, MA was 
more frequent in patients with organs from deceased donors. 
Longer cold-ischemia time, the time from organ retrieval 
to reperfusion, was associated with MA three months post 
KTx.

Alterations in chemical and electrical transtubular gra-
dients, caused by increased perfusion of the transplanted 
kidney due to the single kidney state, could be an additional 
mechanism causing a decrease in NAE, as was shown for 
patients with nephrectomy [19].

As shown in a large cohort, dietary acid load with an 
increase in NAE is a relevant factor in MA occurrence after 

Fig. 1  Additional factors likely contributing to metabolic acido-
sis after kidney transplantation. Apart from CKD progression with 
nephron loss (blue), some factors are specific to kidney transplanta-
tion, and contribute to acid retention (red). Calcineurin inhibitors 
impair tubular adaptation capacity and tubular acid handling, while 
medication such as mycophenolate and antibiotics may cause fecal 
alkali loss due to diarrhea. Hyperparathyroidism can lead to proximal 

RTA type II early after kidney transplantation and usually resolves. 
Donor and donation characteristics (deceased donor transplantation, 
cold ischemia time) may be associated with metabolic acidosis; rejec-
tion is controversial. The single kidney state with alterations in chem-
ical and electrical gradients may impair net acid excretion. Dietary 
acid load may unmask incomplete renal tubular acidosis
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KTx [112]. It could also unmask incomplete RTA, a tubular 
defect that becomes only overt after acid stress.

Impact of metabolic acidosis in chronic 
kidney disease

MA in CKD is associated with several organ dysfunctions, 
which may take time to fully develop (3). CKD appears to 
influence the cellular response to MA. In particular, muscle 
wasting and bone disease as consequence of acid retention 
are relatively well studied. Furthermore, hypoalbuminemia, 
inflammation, impaired glucose tolerance, and other hor-
monal changes (for example growth hormone, insulin-like 
growth factor 1, thyroid hormone) have been described. 
Mortality has been shown to be increased in CKD patients 
with MA. Furthermore, an association of MA in CKD with 
cognitive dysfunction is discussed [51]. In KTx, a few 
mainly observational studies identified associations with 
impaired bone metabolism, cardiovascular events, and mor-
tality [94]. The increasing prevalence with declining kidney 
function - both in the non-transplant CKD as in the KTx 
setting - clearly indicates that MA occurrence is a conse-
quence of declining kidney function. However, to assess the 
question whether MA is only a marker of impaired kidney 
function or indeed also a “culprit” that promotes disease pro-
gression by nature observational studies are insufficient. MA 
could simply be an indicator of disease severity. Answering 

the question of causality requires a deeper understanding of 
pathophysiological effects of MA on renal tissue and inter-
ventional studies that demonstrate either a negative impact 
of MA on kidney functional decline or a positive effect by 
MA correction through alkali therapy. In the following sec-
tion, we aim to provide an overview of the current state of 
knowledge about this question.

Effects of metabolic acidosis on the kidney

The physiological adjustments mentioned earlier enhance 
the removal of acid from the body, thereby assisting in the 
restoration of serum bicarbonate levels. However, these 
same processes could potentially accelerate the develop-
ment of chronic kidney disease (CKD) as shown in Fig. 2. 
Chronic MA upregulates various intrarenal paracrine hor-
mone systems, including angiotensin II (AngII), aldosterone, 
and endothelin-1 (ET1). Collectively, they augment NAE, 
but may come at the expense of activation of deleterious 
downstream pathways.

The renin-angiotensin system (RAS) is both systemic and 
intrinsic to the kidney, the latter operating independently of 
the systemic RAS. PT cells produce angiotensinogen, which 
is subsequently secreted into the filtrate, where it is acti-
vated to AngII [78]. Within the PT, AngII augments ammo-
niagenesis, which is further potentiated in the distal tubule 

Fig. 2  Consequences of metabolic acidosis on the kidney and adap-
tive responses. Vicious cycle initiated by acid retention leading to a 
cascade of events contributing to progression of chronic kidney dis-
ease (CKD). Metabolic acidosis (MA) triggers increased ammoni-
agenesis in remaining nephrons, endothelin-1 (ET1) production, and 
activation of the renin-angiotensin system (RAS), subsequently pro-
moting complement activation by ammonium, as well as generation 

of proinflammatory and profibrotic mediators. Interstitial fibrosis and 
tubular atrophy, and loss of podocyte integrity, culminating in loss 
of functioning nephrons is a result. This exacerbates acid retention, 
perpetuating the maladaptive response. In the adaptive response, the 
kidney upregulates various acid transporters, collectively leading to 
increased ammonium excretion and hence decreased acid retention. 
Figure modified after [123]
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by enhanced Na + /H + exchange, H + /K + -ATPase, and 
H + -ATPase activity, leading to increased NAE [122]. Fur-
thermore, the basolateral  Na+/HCO3-cotransporter (NBC1) 
is upregulated by AngII, enhancing bicarbonate reabsorp-
tion in the PT [110]. Notwithstanding its short-term benefits, 
there is growing evidence that sustained intrarenal AngII 
activity may mediate interstitial inflammation, subsequently 
culminating in fibrosis and tubular atrophy [95, 100]. It has 
also been shown that AngII promotes podocyte apoptosis 
by downregulation of the synthesis of negatively charged 
proteoglycans and nephrin [96]. Intriguingly, treatment with 
systemic ACE-inhibition has no effect on the kidney-inher-
ent RAS [78, 79]. Whether bicarbonate loading by dietary 
interventions or oral alkali supplementation are able to 
attenuate intrarenal AngII levels, as assessed by measuring 
urinary angiotensinogen as a surrogate, remains debated [11, 
39]. Given that urinary angiotensinogen mirrors albumin 
excretion, and thereby might simply reflect glomerular filtra-
tion and renal handling of both proteins, urinary renin has 
been proposed as a more accurate indicator of intrarenal 
RAS [113]. The synthesis of Aldosterone, another part of 
the RAS, is also augmented in states of metabolic acidosis, 
even after systemic blockade of AngII synthesis [47]. Aldos-
terone not only promotes distal-tubular acidification, but also 
exhibits hemodynamic and profibrotic properties, including 
reactive oxygen species, cumulatively undermining kidney 
integrity [55, 85]. Studies that investigated if bicarbonate 
supplementation reduces both plasma and urine aldosterone 
excretion have been promising [121]. However, the protec-
tive effects on the kidneys involve more than just aldoster-
one, as blocking aldosterone alone has a lesser effect on GFR 
compared to alkali supplementation [119]. Taken together, 
the upregulation of the RAS is heavily inflicted in profibrotic 
pathways leading to CKD, which may be alleviated by alkali 
supplementation, but the reflection of urinary markers as 
index of intrarenal RAS remains controversial.

Another hormone that seems to be inflicted in MA-medi-
ated kidney fibrosis is ET1, a peptide predominantly pro-
duced by the endothelium, though glomerular epithelial and 
mesangial cells also contribute to synthesis [25, 32, 120]. 
Beyond its well-known function as potent vasoconstrictor, 
ET1 underpins several renal functions to maintain homeosta-
sis, including maintaining podocyte integrity and increasing 
proximal and distal tubular acidification in response to a 
dietary acid challenge [28, 118]. Analogous to AngII, while 
ET1’s short-term roles enhance acid excretion, prolonged 
elevations may have deleterious consequences. In vitro 
studies have demonstrated that ET1 promotes the synthesis 
of fibronectin and collagen 5. Additionally, sustained ET1 
levels are linked with inflammation, fibrosis, and podocyte 
effacement [83, 93]. Furthermore, ET1 increases the pro-
duction of AngII, which reciprocally stimulates renal ET1 
formation, creating a deleterious positive feedback loop [6, 

56]. Blocking of the endothelin A receptor by a selective 
antagonist was shown to reduce the risk of renal events in 
patients with diabetes and CKD in a double-blind, rand-
omized, placebo-controlled trial [46].

In summary, the hormonal renal response to MA, while 
ensuring acid–base homeostasis, paradoxically becomes 
maladaptive in chronic MA and may induce deleterious 
inflammatory and profibrotic effects. Accumulating data 
advocate that in MA, alkali substitution, whether dietary 
or pharmacological, might attenuate these adverse effects.

Ammonium-mediated activation of the complement 
cascade seems to further contribute to CKD progression. 
As indicated above, overall ammonia synthesis decreases 
along with nephron loss as CKD progresses, whereas sin-
gle-nephron ammoniagenesis of the remaining nephrons 
increases to compensate for the loss [58]. Ammonia reacts 
with the complement C3 to form a convertase for the alter-
native complement pathway, which has been postulated to 
be an independent factor for inflammation. In a remnant 
kidney rat model, bicarbonate supplementation led to less 
impairment of tubular function (as assessed by proteinuria), 
reduced histological signs of tubulo-interstitial injury, and 
diminished deposition of complement C3 and the membrane 
attack complex (C5b-9) [74]. This suggests that the compen-
satory increase in single-nephron ammoniagenesis causing 
complement-mediated inflammation could further promote 
decline in kidney function in CKD. However, caveats remain 
about the infliction of complement activation in MA, since 
complement activity seems not to correlate with the increase 
in ammoniagenesis, and NaCl used in the control group 
might be more prohypertensive than  NaHCO3 used for cor-
rection of acidosis, as discussed by Mannon and O`Connor 
[66].

MA is also closely linked to glucose metabolism. Along-
side the liver, the kidneys have the capacity to synthesize 
glucose and play a pivotal role in regulation blood glucose 
levels. After an overnight fast, the kidneys are responsible 
for ~ 40% of the body’s gluconeogenesis, a figure that can 
increase to as much as 50% after prolonged periods of star-
vation [34, 80]. In the presence of acidosis, there is a shift 
away from using substrates of gluconeogenesis such as lac-
tate (which is typically the primary substrate) towards the 
utilization of glutamine [69, 84]. In both healthy humans 
and animal research models, the activation of ammoni-
agenesis and gluconeogenesis in response to acidosis leads 
to an elevation in renal glucose production [1, 104]. The 
α-ketoglutarate produced through the renal breakdown of 
glutamine is primarily converted into glucose, a process 
that involves the enzyme phosphoenolpyruvate carbox-
ykinase. This enzyme becomes upregulated during acido-
sis and increases the ability of the kidneys to remove lac-
tate, whereas extrarenal lactate clearance decreases with 
acidosis [2, 15, 63]. Consequently, in conjunction with 
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ammoniagenesis, renal gluconeogenesis results in both glu-
cose production and the excretion of acid, thereby contribut-
ing significantly to the maintenance of systemic acid–base 
balance [23, 24]. It’s worth noting that while this mecha-
nism works in individuals with preserved kidney function, 
in patients suffering from CKD, the kidneys extract only 
reduced amounts of glutamine, even after an oral glutamine 
loading [108, 117]. This suggests that in CKD, glutamine 
delivery may not be a rate-limiting step for ammoniagen-
esis. More probably, the downregulation of gluconeogenesis 
enzymes acts as the culprit. This has recently been corrobo-
rated in a study using transcriptomics in kidney biopsies of 
CKD patients as well as in a CKD mouse model, where the 
downregulation of gluconeogenesis enzyme genes was still 
observed when measured at the cellular level, and therefore 
independent of reduction in tubular mass [114].

Acidosis has broader implications on the metabolic func-
tions of the kidneys than just gluconeogenesis. Mitochon-
dria, for instance, play a pivotal role in generating adenosine 
triphosphate (ATP) through oxidative phosphorylation. They 
are particularly abundant in PT cells and the thick ascending 
limb due to the high energy demand for solute reabsorption. 
Additionally, the tricarboxylic acid cycle (TAC, also known 
as the citric acid cycle) takes place within mitochondria. 
This cycle oxidizes acetyl-CoA derived from carbohydrates, 
fats, and proteins, reducing  NAD+ to NADH, which then 
participates in oxidative phosphorylation. Studies indicate 
that when compared to healthy controls, TAC activity is sig-
nificantly reduced in CKD patients, which supports the per-
spective that CKD may be seen as a state of mitochondrial 
dysfunction [42, 101]. One small study employing metabo-
lomics found that alkali treatment seems to restore circu-
lating TAC intermediates, indicating a potential protective 
mechanism against CKD progression [99]. Another recent 
investigation employed transcriptomics on kidney transplant 
recipients, both with and without acidosis, revealing signifi-
cant alterations in 40 transcripts mainly associated with PT 
amino acid and lipid metabolism. Notably, alkali treatment 
successfully reversed three of these altered transcripts [52]. 
A separate study involving mice subjected to a sudden acid 
load identified an immediate shift in the nicotinamide ade-
nine dinucleotide (NAD) redox balance within the mitochon-
dria of PT cells. This led to lipid build-up in PT cells, subse-
quently causing acute tubular damage. Yet, increasing blood 
pH with intravenous bicarbonate greatly enhanced tubular 
functionality [14]. Upregulation in genes encoding several 
proinflammatory cytokine proteins and metallopeptidases 
has been found in another study using Madin-Darby canine 
kidney cells subjected to an acidic milieu [87]. Lastly, a 
recent study delved into new mechanisms that might explain 
the advantage of alkali treatment in both an oxalate-induced 
murine crystallopathy model and human biopsies of kidney 

transplant recipients [82]. Bicarbonate supplementation 
reestablished multiple deranged cell metabolism pathways 
involved in lipid, cholesterol, and iron homeostasis. Further-
more, it led to the reestablishment of α-Klotho levels, which 
may limit the expression of adhesion molecules in injured 
kidneys and thereby downregulate leukocyte recruitment.

However, despite the above findings suggesting that MA 
is indeed an independent culprit in the progression of CKD, 
there are studies that call this result into question. For exam-
ple, one study subjected rats to a dietary hydrochloric acid 
load for 14 weeks [107]. Although there was an expected 
decrease in urine pH as a surrogate of upregulated ammo-
niagenesis, GFR was identical to the control group, and 
kidney histology assessed by light microscopy was normal. 
The same research group performed 5/6 nephrectomies in 
rats, and although one group received oral bicarbonate to 
correct acidosis, there was no difference compared to the 
control group in terms of GFR or histological findings. In 
another study, chronic MA even protected against CKD 
progression in phosphate-loaded 5/6 nephrectomized rats 
[53]. Finally, the hypothesis of a direct profibrotic effect of 
hormone upregulation on the deterioration of renal func-
tion has been challenged and it has been suggested that 
hemodynamic pathways may dominate, possibly ending in 
a common downstream pathway of damage such as fibrosis 
or inflammation. For example, upregulation of AngII and 
aldosterone in the setting of salt-restriction does not appear 
to lead to kidney injury [22]. In addition, in a two-kidney, 
one-clip hypertensive model, inflammatory cells, and histo-
logical signs of CKD after 11 weeks were observed almost 
exclusively in the unclipped kidney exposed to hypertension, 
again suggesting that AngII without concomitant hyperten-
sion is not a main culprit leading to kidney injury.

Taken together, the relationship between MA and CKD 
progression is complex and multifaceted. While there is sub-
stantial evidence supporting MA’s role in exacerbating CKD 
through hormonal imbalances and inflammatory pathways, 
this perspective is not definitive, with some studies suggest-
ing that factors like hemodynamic changes might be more 
influential in kidney injury, questioning the direct culpability 
of MA.

Correction of metabolic acidosis in CKD

The key question from a kidney point of view is whether a 
correction of MA, either through dietary interventions or 
pharmacological therapies, will help slow down the decline 
in renal function. What treatment recommendations should 
be given in the non-transplant CKD- or the KTx-setting? 
To address these questions, a number of trials have been 
undertaken in the last two decades.
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Chronic kidney disease

Dietary interventions

Several observational studies have shown a beneficial effect 
of lower dietary acid load on kidney function. For exam-
ple, a study in the National Health and Nutrition Estima-
tion Survey (NHANES) III population detected a threefold 
increased risk of ESKD in CKD participants in the highest 
tertile of dietary acid load [5]. In the last decade, there have 
been a few dietary intervention trials assessing the effect 
of fruits and vegetables (F/V) on CKD progression across 
different CKD stages and baseline serum bicarbonate lev-
els. In early stages of hypertensive nephropathy, the group 
of Wesson could demonstrate a beneficial effect of reduced 
dietary acid load from a diet rich in F/V despite normal 
serum bicarbonate in CKD stage 2 (but not in CKD stage 
1) [37]. In a short controlled trial of 30-day duration, they 
examined 199 CKD stage 1 and 2 patients with plasma total 
 CO2 ≥ 24.5 mmol/l and achieved 50% reduction in potential 
renal acid load (PRAL) through F/V consumption. There 
was no change in serum bicarbonate levels, but a decrease 
in urinary albumin-to-creatinine ratio (ACR), transforming 
growth factor-β1 (TGF-β1) and N-acetyl beta-D-glucosami-
nidase (NAG) in CKD stage 2 patients treated with F/V or 
sodium bicarbonate. In a trial with 108 CKD stage 3 patients 
and plasma total  CO2 of 22–24 mmol/l, an intervention with 
F/V or sodium bicarbonate over 3 years preserved eGFR and 
reduced ACR [39]. In 71 CKD stage 4 patients with plasma 
total CO2 levels < 22 mmol/l at baseline, ACR, NAG, and 
TGF-β1 were lowered under F/V or sodium bicarbonate 
treatment over 1 year [38]. Weight and blood pressure also 
decreased in the F/V treatment arm, while there was no 
effect on eGFR. A recent meta-analysis comprising six tri-
als investigating dietary interventions (one with additional 
oral alkali supplementation) compared to controls found 
low- to moderate-certainty evidence that reduced dietary 
acid intake slows renal functional decline in CKD with MA 
[76]. Plant-based protein is preferred over animal protein 
because of sulfur-containing amino acids of the latter. How-
ever, in progressing CKD, the risk of hyperkalemia has to 
be taken into account. F/V diet may help preserve kidney 
function not only by mitigating MA. It has to be consid-
ered that there might be other dietary reasons apart from 
the reduced dietary acid load and that the beneficial effect 
could at least to some extent be falsely attributed to it. Other 
mechanisms like lowering blood pressure and body weight 
or lower salt and phosphate content could also play a role 
in beneficial renal outcomes. High protein intake has been 
shown to cause kidney hypertrophy and augment glomerular 
pressure and hyperfiltration with negative impact on kidney 
function and proteinuria [33, 60]. Since high protein intake 

and high NAE go hand in hand, it is difficult to analyze the 
different contribution of proteins/amino acids and acid load 
on kidney function. However, due to adverse outcomes, a 
very strict protein restriction is not recommended in CKD.

Pharmacological therapies

In recent years, a number of randomized controlled trials 
of varying size and study duration were undertaken in the 
non-transplant CKD population of different CKD stages 
and serum bicarbonate levels investigating the effect of oral 
alkali therapy on kidney function. In most cases, the treat-
ment consisted of sodium bicarbonate. A recent systematic 
meta-analysis comprised 15 sodium bicarbonate trials (total 
of 2245 participants, median follow-up of 1 year) - some 
with placebo control and others with open-label design 
[49]. It showed low certainty evidence that sodium bicar-
bonate slows renal functional decline and reduces the risk 
of ESKD. Results were in line with an earlier systematic 
meta-analysis that also comprised a trial with sodium citrate 
treatment and found low-to-moderate certainty evidence for 
these outcomes [76].

Sample size of the majority of these trials was rather 
small and study designs not always rigorous. The largest 
trial of the latest meta-analysis originating from Italy (UBI 
Study), that was also given the highest weight, comprised 
795 CKD stage 3–5 patients in multiple centers with 3 years 
of follow-up [30]. Results demonstrated a significant differ-
ence in the composite primary outcome (doubling of serum 
creatinine, time to renal replacement therapy, or all-cause 
mortality) between the sodium bicarbonate and standard 
care group in favor of alkali therapy. We consider the open 
label design and the lack of standardization of care among 
centers to be the main limitations that might have caused 
treatment bias.

Another earlier open label trial in 134 patients with 
CKD and MA from the UK demonstrated a slower decline 
in creatinine clearance, less patients with rapid decline in 
creatinine clearance (> 3 ml/min/year), and less patients 
that experienced ESKD in patients randomized to sodium 
bicarbonate treatment compared to standard care [26]. Apart 
from the rather small sample size, the single-center design 
and again the lack of placebo control may be viewed as main 
limitations.

In a small single-center randomized-controlled trial with 
hypertensive nephropathy patients in CKD stage 2 with 
albuminuria (> 200 to < 2000 mg/g Crea) over 5 years with 
40 patients per treatment arm, patients in the sodium bicar-
bonate group experienced a slower cystatin C-based eGFR 
decline compared to placebo or sodium chloride treated 
patients [65]. Interestingly, on average, these patients did 
not have overt MA.
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Another trial from the UK (BiCARB), which was con-
ducted in 27 nephrology and geriatric medicine departments 
focused on a geriatric population (≥ 60 years) and involved 
300 CKD patients with mild MA, was primarily designed 
to assess the impact of bicarbonate on physical function. 
Compared to placebo, the study did neither find improve-
ment in physical function nor in renal function (assessed as 
secondary outcome) at 1 year [9]. Patients were followed up 
to 2 years, and there were more adverse events in the bicar-
bonate group. In our view, a major limitation of the study is 
the pragmatic study design, leading to cross-over between 
treatment groups and thereby limiting the ability to answer 
the true effect of bicarbonate on these outcomes. Over the 
study period, serum bicarbonate levels leveled off between 
treatment groups. This makes it almost impossible to work 
out the true physiological effect of bicarbonate administra-
tion, even though the pragmatic study design may corre-
spond to the treatment reality of many “real world patients.”

Sodium loading and consequent increase in volume reten-
tion and blood pressure is always a concern with this treat-
ment. However, a recent meta-analysis of 2110 patients in 14 
trials did not identify evidence with moderate certainty that 
sodium bicarbonate negatively affects blood pressure [8].

According to preliminary results, a phase 3 trial of the 
novel agent veverimer (VALOR-CKD) to bind hydrochloric 
acid in the gastrointestinal tract in 1480 CKD patients with 
MA (eGFR 20–40 ml/min/1.73  m2) did not show evidence 
of benefit on a composite renal endpoint (ESKD, eGFR 
decline ≥ 40%, death due to kidney failure) compared to pla-
cebo [27, 67]. However, the trial seems to have failed to dis-
criminate serum bicarbonate levels as anticipated between 
treatment groups.

To date, robust data from large, well-designed studies 
with sufficient follow-up that manage to maintain a differ-
ence in serum bicarbonate over the entire study duration 
are lacking to give us a final answer for a general treatment 
recommendation.

Based on these uncertainties, the preliminary novel 
“KDIGO 2023 Clinical Practice Guideline for the Evalua-
tion and Management of Chronic Kidney Disease for public 
review” intends to lower the serum bicarbonate threshold 
for treatment from < 22 to < 16 mmol/l [119]. It particularly 
stresses the results of the so far largest randomized con-
trolled bicarbonate trial in CKD (BiCARB), which in our 
opinion is problematic due to the methodological limitations 
described above [9].

In this respect, the so-called BASE pilot trial investigat-
ing safety, tolerability, and adherence as well as pharmaco-
dynamics of two different dosages of oral bicarbonate was an 
important initiative to establish a solid basis for future large 
scale randomized controlled trials with capability to detect 
moderate-sized treatment effects [77, 92]. Although the pen-
dulum may currently be swinging towards lower bicarbonate 

levels as trigger for intervention, it appears that the final 
word regarding alkali therapy in CKD with MA does not 
seem to have been spoken.

Kidney transplantation

Dietary interventions

After kidney transplantation, in a Dutch cohort of 642 kid-
ney transplant recipients (KTRs) with a median follow-up of 
5.3 years, an association of dietary acid load was found with 
a higher risk of doubling of plasma creatinine or graft failure 
- NEAP measured with food frequency questionnaires and 
urinary excretion [127]. In another cohort study, a Mediter-
ranean diet was associated with better allograft outcomes 
[36]. To our knowledge, there are no interventional trials 
regarding dietetic interventions on MA on allograft out-
comes in KTRs so far.

Pharmacological therapies

In kidney transplantation, an increasing number of observa-
tional studies have seen an association of MA with decreas-
ing allograft function or allograft failure [12, 81, 94]. How-
ever, to date, there is only one randomized-controlled trial 
in the kidney transplant setting (Preserve-Transplant Study) 
[71]. Surprisingly, this multicentric placebo-controlled trial 
over 2 years did not find a beneficial effect of sodium bicar-
bonate on eGFR slope as surrogate renal endpoint in 240 
KTRs with MA underlining the importance of randomized 
evidence before treatment recommendations are made. 
Study participants with an eGFR of 15–89 ml/min/1.73  m2 
at least 1 year after KTx were included. A significant differ-
ence in serum bicarbonate levels was maintained throughout 
the study duration between treatment groups. Safety con-
cerns, including increases in blood pressure due to sodium 
load, were not identified. Currently, recruitment for another 
smaller, placebo-controlled trial in 120 KTRs investigating 
the effect of sodium bicarbonate therapy over 1 year duration 
on surrogate markers of graft function (and cardiovascular 
disease) is ongoing and will contribute further evidence in 
the KTx-setting (ClinicalTrials.gov ID NCT05005793).

Why trial results on kidney function differed between the 
transplant and many trials in the non-transplant CKD popu-
lation could have several reasons. A main aspect could be 
that it is more difficult to overcome the additional pathophys-
iologic antagonistic mechanisms (probably mainly caused 
by CNIs among others) to reduce acid retention not only 
in blood but also down to the interstitial and cellular space 
of the transplanted kidney. Whether additional measures to 
sodium bicarbonate treatment like for example dietetic inter-
ventions would help to further reduce acid retention and to 
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slow functional graft decline remains to be determined. At 
the moment, based on the existing evidence in KTx, a gen-
eral recommendation for sodium bicarbonate treatment of 
MA to preserve allograft function cannot be given. Official 
treatment guidelines are lacking for KTRs with MA so far.

Conclusion

Metabolic acidosis is a frequent health issue in non-transplant 
CKD and KTx. The underlying pathophysiology is only par-
tially overlapping. In our opinion, the evidence of MA being 
more than just a consequence of CKD but also a culprit can-
not be neglected. However, treatment effects of alkali therapy 
in non-transplant CKD seem to be smaller than hoped for 
and smaller than suggested in early clinical studies. To date, 
there is low(-to-moderate)  certainty evidence that oral alkali 
therapy or dietary interventions are beneficial for renal func-
tion. Treatment recommendations are not straightforward and 
clear cut-offs, when to begin treatment and what treatment 
targets are to be achieved are not well defined and currently 
under vivid debate. Further evidence from robust trials is 
therefore needed. In this discussion about treatment of this 
fragile patient population, the multifaceted role of acid–base 
homeostasis on diverse bodily functions apart from the kidney 
should not be forgotten. A more in depth understanding of 
metabolic changes originating from or being a cause of MA 
may help in the future to detect earlier stages of acid reten-
tion, to find new potential therapeutic targets and to identify 
patients at risk that might benefit from therapy. Based on 
current knowledge, for KTRs, sodium bicarbonate treatment 
cannot be generally recommended and randomized evidence 
for dietary advice is missing. Hopefully, in the coming years, 
research will provide us with answers to these open questions.
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